SlideShare a Scribd company logo
Linear Transformation
By Kaushal Patel
Linear Transformation
 Zero transformation:
VWVT  vu,,:
VT  vv ,0)(
 Identity transformation:
VVT : VT  vvv ,)(
 Properties of linear transformations
WVT :
00 )((1)T
)()((2) vv TT 
)()()((3) vuvu TTT 
)()()(
)()(Then
If(4)
2211
2211
2211
nn
nn
nn
vTcvTcvTc
vcvcvcTT
vcvcvc






v
v
2
The Kernel and Range of a Linear Transformation
› Kernel of a linear transformation T:
Let be a linear transformationWVT :
Then the set of all vectors v in V that satisfy is called
the kernel of T and is denoted by ker(T).
0)( vT
},0)(|{)ker( VTT  vvv
 Ex 1: (Finding the kernel of a linear transformation)
):()( 3223   MMTAAT T
Sol:





















00
00
00
)ker(T
3
The kernel is a subspace of V
The kernel of a linear transformation is a
subspace of the domain V.
)16.Theorem(0)0( TPf:
VT ofsubsetnonemptyais)ker(
then.ofkernelin thevectorsbeandLet Tvu
000)()()(  vuvu TTT
00)()(  ccTcT uu )ker(Tc  u
)ker(T vu
.ofsubspaceais)ker(Thus, VT
Note:
The kernel of T is sometimes called the nullspace of T.
WVT :
4
 Ex 6: (Finding a basis for the kernel)
















82000
10201
01312
11021
andRiniswhere,)(bydefinedbe:Let 545
A
ATRRT xxx
Find a basis for ker(T) as a subspace of R5.
5
Sol:
 














 















000000
041000
020110
010201
082000
010201
001312
011021
0
.. EJG
A
s t
































































1
4
0
2
1
0
0
1
1
2
4
2
2
5
4
3
2
1
ts
t
t
s
ts
ts
x
x
x
x
x
x
  TB ofkernelfor thebasisone:)1,4,0,2,1(),0,0,1,1,2( 
6
 Range of a linear transformation T:
)(bydenotedisandTofrangethecalledisVin
vectorofimagesarein W thatwvectorsallofsetThen the
L.T.abe:Let
Trange
WVT 
}|)({)( VTTrange  vv
7
.:Tnnsformatiolinear traaofrangeThe WWV foecapsbusasi
 The range of T is a subspace of W
Pf:
)1Thm.6.(0)0( T
WTrange ofsubsetnonemptyais)(
TTT ofrangein thevectorbe)(and)(Let vu
)()()()( TrangeTTT  vuvu
)()()( TrangecTcT  uu
),( VVV  vuvu
)( VcV  uu
.subspaceis)(Therefore, WTrange
8
 Notes:
ofsubspaceis)()1( VTKer
L.T.ais: WVT 
ofsubspaceis)()2( WTrange
9
 Ex 7: (Finding a basis for the range of a linear transformation)
















82000
10201
01312
11021
andiswhere,)(bydefinedbe:Let 545
A
RATRRT xxx
Find a basis for the range of T.
10
Sol:
BA EJG















 















00000
41000
20110
10201
82000
10201
01312
11021
..
54321 ccccc 54321 wwwww
 
  )(forbasisais,,
)(forbasisais,,
421
421
ACSccc
BCSwww
  Tofrangefor thebasisais)2,0,1,1(),0,0,1,2(),0,1,2,1( 
11
 Rank of a linear transformation T:V→W:
TTrank ofrangetheofdimensionthe)( 
 Nullity of a linear transformation T:V→W:
TTnullity ofkerneltheofdimensionthe)( 
 Note:
)()(
)()(
then,)(bygivenL.T.thebe:Let
AnullityTnullity
ArankTrank
ATRRT mn


 xx
Rank and Nullity of Linear Transformation
12
then.spacevectorainto
spacevectorldimensiona-nanformL.T.abe:Let
W
VWVT 
 Sum of rank and nullity
Pf:
AmatrixnmT anbydrepresenteisLet 
)ofdomaindim()ofkerneldim()ofrangedim(
)()(
TTT
nTnullityTrank


rArank )(Assume
rArank
ATTrank


)(
)ofspacecolumndim()ofrangedim()((1)
nrnrTnullityTrank  )()()(
rn
ATTnullity

 )ofspacesolutiondim()ofkerneldim()()2(
13
 Ex 8: (Finding the rank and nullity of a linear transformation)









 


000
110
201
bydefine:L.T.theofnullityandranktheFind 33
A
RRT
Sol:
123)()ofdomaindim()(
2)()(


TrankTTnullity
ArankTrank
14
 Ex 9: (Finding the rank and nullity of a linear transformation)
}0{)(ifofranktheFind)(
4isofnullitytheifofranktheFind)(
2israngetheof
dimensiontheifofkerneltheofdimensiontheFind)(
n.nsformatiolinear traabe:Let 75


TKerTc
TTb
Ta
RRT
Sol:
325)ofrangedim()ofkerneldim(
5)ofdomaindim()(


TnT
Ta
145)()()(  TnullitynTrankb
505)()()(  TnullitynTrankc
15
One-to-one Transformation
vector.singleaofconsistsrangein theevery w
ofpreimagetheifone-to-onecalledis:functionA WVT 
.thatimplies
)()(inV,vanduallforiffone-to-oneis
vu
vu

 TTT
one-to-one not one-to-one
16
Onto Transformation
inpreimageahasin
elementeveryifontobetosaidis:functionA
V
WVT
w

(T is onto W when W is equal to the range of T.)
17
 One-to-one linear transformation
}0{)(iff1-1isTThen
L.T.abe:Let


TKer
WVT
Pf:
1-1isSupposeT
0:solutiononeonlyhavecan0)(Then  vvT
}0{)(i.e. TKer
)()(and}0{)(Suppose vTuTTKer 
0)()()(  vTuTvuT
L.T.aisT
0)(  vuTKervu
1-1isT
18
 Ex 10: (One-to-one and not one-to-one linear transformation)
one.-to-oneis
)(bygiven:L.T.The)( T
mnnm AATMMTa  
matrix.zeroonly theofconsistskernelitsBecause nm
one.-to-onenotis:ationtransformzeroThe)( 33
RRTb 
.ofalliskernelitsBecause 3
R
19
 Thm 6.7: (Onto linear transformation)
.ofdimensionthetoequalisofranktheiffontoisThen
l.dimensionafiniteiswhereL.T.,abe:Let
WTT
WWVT 
 Thm 6.8: (One-to-one and onto linear transformation)
onto.isitifonlyandifone-to-oneisThen.dimension
ofbothandspaceorwith vectL.T.abe:Let
Tn
WVWVT 
Pf:
0))(dim(and}0{)(thenone,-to-oneisIf  TKerTKerT
)dim())(dim())(dim( WnTKernTrange 
onto.isly,Consequent T
0)ofrangedim())(dim(  nnTnTKer
one.-to-oneisTherefore,T
nWTT  )dim()ofrangedim(thenonto,isIf
20
 Ex 11:
neither.oronto,one,-to-oneiswhetherdetermineandof
rankandnullitytheFind,)(bygivenis:L.T.The
TT
ATRRT mn
xx 









100
110
021
)( Aa









00
10
21
)( Ab






110
021
)( Ac









000
110
021
)( Ad
Sol:
T:Rn→Rm dim(domain of T) rank(T) nullity(T) 1-1 onto
(a)T:R3→R3 3 3 0 Yes Yes
(b)T:R2→R3 2 2 0 Yes No
(c)T:R3→R2 3 2 1 No Yes
(d)T:R3→R3 3 2 1 No No
21
 Isomorphism:
other.eachtoisomorphicbetosaidare
andthen,tofrommisomorphisanexiststheresuch that
spacesvectorareandifMoreover,m.isomorphisancalledis
ontoandonetooneisthat:nnsformatiolinear traA
WVWV
WV
WVT 
 Isomorphic spaces and dimension
Pf:
.dimensionhaswhere,toisomorphicisthatAssume nVWV
onto.andonetooneisthat:L.T.aexistsThere WVT 
one-to-oneisT
nnTKerTT
TKer


0))(dim()ofdomaindim()ofrangedim(
0))(dim(
Two finite-dimensional vector space V and W are isomorphic if and only
if they are of the same dimension.
Bijective Transformation
22
.dimensionhavebothandthatAssume nWV
onto.isT
nWT  )dim()ofrangedim(
nWV  )dim()dim(Thus
 
  .ofbasisabe,,,let
andV,ofbasisabe,,,Let
21
21
Wwww
vvv
n
n


nnvcvcvc
V
 2211
asdrepresentebecaninvectorarbitraryanThen
v
nnwcwcwcT
WVT


2211)(
follows.as:L.T.adefinecanyouand
v
It can be shown that this L.T. is both 1-1 and onto.
Thus V and W are isomorphic.
23
Inverse linear Transformation
ineveryfors.t.L.T.are:and:If 21
nnnnn
RRRTRRT v
))((and))(( 2112 vvvv  TTTT
invertiblebetosaidisandofinversethecalledisThen 112 TTT
 Note:
If the transformation T is invertible, then the inverse is
unique and denoted by T–1 .
24
Existence of an inverse transformation
.equivalentareconditionfollowingThen the
,matrixstandardwithL.T.abe:Let ARRT nn

 Note:
If T is invertible with standard matrix A, then the standard
matrix for T–1 is A–1 .
(1) T is invertible.
(2) T is an isomorphism.
(3) A is invertible.
25
Finding the inverse of a linear transformation
bydefinedis:L.T.The 33
RRT 
)42,33,32(),,( 321321321321 xxxxxxxxxxxxT 
Sol:
142
133
132
formatrixstandardThe










A
T
321
321
321
42
33
32
xxx
xxx
xxx



 









100142
010133
001132
3IA
Show that T is invertible, and find its inverse.
26
 1..
326100
101010
011001













  AIEJG
11
isformatrixstandardtheandinvertibleisTherefore 
ATT












326
101
011
1
A































 
321
31
21
3
2
1
11
326326
101
011
)(
xxx
xx
xx
x
x
x
AT vv
)326,,(),,(
s,other wordIn
3213121321
1
xxxxxxxxxxT 
27
.formatrixstandardtheFindaxis.-xtheontoinpointeach
projectingbygivenis:nnsformatiolinear traThe
2
22
TR
RRT 
Sol:
)0,(),( xyxT 
    




00
01
)1,0()0,1()()( 21 TTeTeTA
 Notes:
(1) The standard matrix for the zero transformation from Rn into Rm
is the mn zero matrix.
(2) The standard matrix for the zero transformation from Rn into Rn
is the nn identity matrix In
Finding the matrix of a linear transformation
28
Composition of T1:Rn→Rm with T2:Rm→Rp :
n
RTTT  vvv )),(()( 12
112 ofdomainofdomain, TTTTT  
 Composition of linear transformations
then,andmatricesstandardwith
L.T.be:and:Let
21
21
AA
RRTRRT pmmn

L.T.ais)),(()(bydefined,:ncompositioThe(1) 12 vv TTTRRT pn

12productmatrixby thegivenisformatrixstandardThe)2( AAATA 
29
Pf:
nscalar theanybecletandinvectorsbeandLet
L.T.)ais((1)
n
R
T
vu
)formatrixstandardtheis)(2( 12 TAA
)()())(())((
))()(())(()(
1212
11212
vuvu
vuvuvu
TTTTTT
TTTTTT


)())(())(())(()( 121212 vvvvv cTTcTcTTcTTcT 
vvvvv )()())(()( 12121212 AAAAATTTT 
 Note:
1221 TTTT  
30
The standard matrix of a composition
s.t.intofromL.T.beandLet 33
21 RRTT
),0,2(),,(1 zxyxzyxT 
),z,(),,(2 yyxzyxT 
,'and
nscompositiofor thematricesstandardtheFind
2112 TTTTTT  
Sol:
)formatrixstandard(
101
000
012
11 TA











)formatrixstandard(
010
100
011
22 TA









 

31
12formatrixstandardThe TTT 
21'formatrixstandardThe TTT 
























 

000
101
012
101
000
012
010
100
011
12 AAA









 










 











001
000
122
010
100
011
101
000
012
' 21AAA
32
Matrices for Linear Transformations
)43,23,2(),,()1( 32321321321 xxxxxxxxxxxT 
 Three reasons for matrix representation of a linear transformation:



















3
2
1
430
231
112
)()2(
x
x
x
AT xx
 It is simpler to write.
 It is simpler to read.
 It is more easily adapted for computer use.
 Two representations of the linear transformation T:R3→R3 :
33
Definition 1: A nonzero vector x is an eigenvector (or characteristic vector)
of a square matrix A if there exists a scalar λ such that Ax = λx. Then λ is an
eigenvalue (or characteristic value) of A.
Note: The zero vector can not be an eigenvector even though A0 = λ0. But λ
= 0 can be an eigenvalue.
Example: Show x 
2
1





isaneigenvector for A 
2 4
3 6






Solution: Ax 
2 4
3 6






2
1






0
0






But for   0, x  0
2
1






0
0






Thus,xisaneigenvectorof A,and  0 isaneigenvalue.
Definitions
34
An n×n matrix A multiplied by n×1 vector x results in another n×1
vector y=Ax. Thus A can be considered as a transformation matrix.
In general, a matrix acts on a vector by changing both its magnitude
and its direction. However, a matrix may act on certain vectors by
changing only their magnitude, and leaving their direction
unchanged (or possibly reversing it). These vectors are the
eigenvectors of the matrix.
A matrix acts on an eigenvector by multiplying its magnitude by a
factor, which is positive if its direction is unchanged and negative if
its direction is reversed. This factor is the eigenvalue associated
with that eigenvector.
Geometric interpretation of
Eigenvalues and Eigenvectors
35
Let x be an eigenvector of the matrix A. Then there must exist an eigenvalue λ
such that Ax = λx or, equivalently,
Ax - λx = 0 or
(A – λI)x = 0
If we define a new matrix B = A – λI, then
Bx = 0
If B has an inverse then x = B-10 = 0. But an eigenvector cannot be zero.
Thus, it follows that x will be an eigenvector of A if and only if B does not have
an inverse, or equivalently det(B)=0, or
det(A – λI) = 0
This is called the characteristic equation of A. Its roots determine the
eigenvalues of A.
Eigenvalues
36
Eigenvalues: examples
Example 1: Find the eigenvalues of
two eigenvalues: 1,  2
Note: The roots of the characteristic equation can be repeated. That is, λ1 = λ2 =…=
λk. If that happens, the eigenvalue is said to be of multiplicity k.









51
122
A
)2)(1(23
12)5)(2(
51
122
2









 AI
37
Eigenvectors
Example 1 (cont.):





 









00
41
41
123
)1(:1 AI
0,
1
4
,404
2
1
1
2121














tt
x
x
txtxxx
x





 









00
31
31
124
)2(:2 AI
0,
1
3
2
1
2 











 ss
x
x
x
To each distinct eigenvalue of a matrix A there will correspond at least one
eigenvector which can be found by solving the appropriate set of homogenous
equations. If λi is an eigenvalue then the corresponding eigenvector xi is the
solution of (A – λiI)xi = 0
38
Example 2 (cont.): Find the eigenvectors of
Recall that λ = 2 is an eigenvector of multiplicity 3.
Solve the homogeneous linear system represented by
Let . The eigenvectors of  = 2
are of the form
and t not both zero.






























 

0
0
0
000
000
010
)2(
3
2
1
x
x
x
AI x
txsx  31 ,
,
1
0
0
0
0
1
0
3
2
1











































 ts
t
s
x
x
x
x











200
020
012
A
39
Definition: The trace of a matrix A, designated by tr(A), is the sum of the elements on the
main diagonal.
Property 1: The sum of the eigenvalues of a matrix equals the trace of the matrix.
Property 2: A matrix is singular if and only if it has a zero eigenvalue.
Property 3: The eigenvalues of an upper (or lower) triangular matrix are the elements on
the main diagonal.
Property 4: If λ is an eigenvalue of A and A is invertible, then 1/λ is an eigenvalue of
matrix A-1.
Properties of Eigenvalues and Eigenvectors
40
Property 5: If λ is an eigenvalue of A then kλ is an eigenvalue of
kA where k is any arbitrary scalar.
Property 6: If λ is an eigenvalue of A then λk is an eigenvalue of
Ak for any positive integer k.
Property 8: If λ is an eigenvalue of A then λ is an eigenvalue of AT.
Property 9: The product of the eigenvalues (counting multiplicity)
of a matrix equals the determinant of the matrix.
41
Theorem: Eigenvectors corresponding to distinct (that is, different) eigenvalues
are linearly independent.
Theorem: If λ is an eigenvalue of multiplicity k of an n  n matrix A then the
number of linearly independent eigenvectors of A associated with λ is given
by m = n - r(A- λI). Furthermore, 1 ≤ m ≤ k.
Example 2 (cont.): The eigenvectors of  = 2 are of the form
s and t not both zero.
 = 2 has two linearly independent eigenvectors
,
1
0
0
0
0
1
0
3
2
1











































 ts
t
s
x
x
x
x
Linearly independent eigenvectors
42
Diagonalization
 Diagonalizable matrix:
A square matrix A is called diagonalizable if there exists an
invertible matrix P such that P-1AP is a diagonal matrix.
(P diagonalizes A)
 Notes:
(1) If there exists an invertible matrix P such that ,
then two square matrices A and B are called similar.
(2) The eigenvalue problem is related closely to the
diagonalization problem.
APPB 1

43
A diagonalizable matrix










200
013
031
A
Sol: Characteristic equation:
0)2)(4(
200
013
031
I 2




 



 A
2,2,4:sEigenvalue 321  
Ex.5)p.403(See
0
1
1
:rEigenvecto4)1( 1










 p
44
1
0
0
,
0
1
1
:igenvectorE2)2( 32





















 pp






















 
200
020
004
100
011
011
][ 1
321 APPpppP


















































400
020
002
010
101
101
][(2)
200
040
002
100
011
011
][(1)
1
132
1
312
APPpppP
APPpppP
 Notes:
45
Condition for Diagonalization
An nn matrix A is diagonalizable if and only if
it has n linearly independent eigenvectors.
Pf:
ablediagonalizis)( A
),,,(and][Let
diagonaliss.t.invertibleanexiststhere
2121
1
nn diagDpppP
APPDP
  
 
][
00
00
00
][
2211
2
1
21
nn
n
n
ppp
pppPD
























46
][][ 2121 nn
ApApAppppAAP  
)ofrseigenvectoareoftorcolumn vecthe..(
,,2,1,
APpei
nipAp
PDAP
i
iii





t.independenlinearlyare,,,invertibleis 21 npppP  
rs.eigenvectotindependenlinearlyhas nA
n
npppnA
 

,,seigenvalueingcorrespondhwit
,,rseigenvectotindependenlinearlyhas)(
21
21
nipAp iii ,,2,1,i.e.  
][Let 21 n
pppP 
47
PDppp
ppp
ApApAp
pppAAP
n
n
nn
n
n





























00
00
00
][
][
][
][
2
1
21
2211
21
21
ablediagonalizis
invertibleistindependenlinearlyare,,,
1
11
A
DAPP
Pppp n





Note: If n linearly independent vectors do not exist,
then an nn matrix A is not diagonalizable.
48
A matrix that is not diagonalizable







10
21
able.diagonaliznotismatrixfollowingthat theShow
A
Sol: Characteristic equation:
0)1(
10
21
I 2



 


 A
1:Eigenvalue 1 

















 

0
1
:rEigenvecto
00
10
~
00
20
I 1pAIA
A does not have two (n=2) linearly independent eigenvectors,
so A is not diagonalizable.
49
Steps for diagonalizing an nn square matrix:
n ,,, 21 
Step 2: Let ][ 21 npppP 
Step 1: Find n linearly independent eigenvectors
for A with corresponding eigenvalues
nppp ,,, 21 
Step 3:
nipApDAPP iii
n
,,2,1,where,
00
00
00
2
1
1























Note:
The order of the eigenvalues used to form P will determine
the order in which the eigenvalues appear on the main diagonal of D.
50
Diagonalizing a matrix
diagonal.issuch thatmatrixaFind
113
131
111
1
APPP
A














Sol: Characteristic equation:
0)3)(2)(2(
113
131
111
I 



 



 A
3,2,2:sEigenvalue 321  
51
21 


















000
010
101
~
313
111
111
I1 A












































1
0
1
:rEigenvecto
1
0
1
0 1
3
2
1
pt
t
t
x
x
x
22 







 












000
10
01
~
113
151
113
I 4
1
4
1
2 A












































4
1
1
:rEigenvecto
4
1
1
24
1
4
1
4
1
3
2
1
pt
t
t
t
x
x
x
52
33 



















000
110
101
~
413
101
112
I3 A












































1
1
1
:rEigenvecto
1
1
1
3
3
2
1
pt
t
t
t
x
x
x

























300
020
002
141
110
111
][Let
1
321
APP
pppP
53
 Notes: k is a positive integer


























k
n
k
k
k
n d
d
d
D
d
d
d
D








00
00
00
00
00
00
)1( 2
1
2
1
1
1
1
1111
111
1
1
)()()(
)())((
)(
)2(














PPDA
PAP
APAAP
APPPPPAPPAP
APPAPPAPP
APPD
APPD
kk
k
kk
54
Sufficient conditions for Diagonalization
If an nn matrix A has n distinct eigenvalues, then the
corresponding eigenvectors are linearly independent and
A is diagonalizable.
55
 Determining whether a matrix is diagonalizable













300
100
121
A
Sol: Because A is a triangular matrix,
its eigenvalues are the main diagonal entries.
3,0,1 321  
These three values are distinct, so A is diagonalizable. (Thm.7.6)
56
Finding a diagonalizing matrix for a linear transformation
diagonal.istorelative
formatrixthesuch thatforbasisaFind
)33()(
bygivennnsformatiolinear trathebeLet
3
321321321321
33
B
TRB
xxx,xx, xxxx,x,xxT
RT:R


Sol:
 













113
131
111
)()()(
bygivenisformatrixstandardThe
321 eTeTeTA
T
From Ex. 5, there are three distinct eigenvalues
so A is diagonalizable. (Thm. 7.6)
3,2,2 321  
57
 
 
 














300
020
002
][][][
][][][
])([)]([])([
332211
321
321
BBB
BBB
BBB
ppp
ApApAp
pTpTpTD

The matrix for T relative to this basis is
)}1,1,1(),4,1,1(),1,0,1{(},,{ 321  pppB
Thus, the three linearly independent eigenvectors found in Ex. 5
can be used to form the basis B. That is
)1,1,1(),4,1,1(),1,0,1( 321  ppp
58

More Related Content

What's hot

Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
Abu Bakar Soomro
 
Linear Transformations, Matrix Algebra
Linear Transformations, Matrix AlgebraLinear Transformations, Matrix Algebra
Linear Transformations, Matrix AlgebraPrasanth George
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
Raj Parekh
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem
Manthan Chavda
 
Ameer 14208
Ameer 14208Ameer 14208
Ameer 14208
Ameer Mehmood
 
Matrix of linear transformation
Matrix of linear transformationMatrix of linear transformation
Matrix of linear transformation
beenishbeenish
 
Linear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetLinear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent Set
Dhaval Shukla
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
Jayanshu Gundaniya
 
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Dr.SHANTHI K.G
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
alexkhan129
 
Unit-1 Classification of Signals
Unit-1 Classification of SignalsUnit-1 Classification of Signals
Unit-1 Classification of Signals
Dr.SHANTHI K.G
 
Laplace transform & fourier series
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier series
vaibhav tailor
 
Lecture10 Signal and Systems
Lecture10 Signal and SystemsLecture10 Signal and Systems
Lecture10 Signal and Systems
babak danyal
 
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
Waqas Afzal
 
Laplace
LaplaceLaplace
Unit 1 -Introduction to signals and standard signals
Unit 1 -Introduction to signals  and standard signalsUnit 1 -Introduction to signals  and standard signals
Unit 1 -Introduction to signals and standard signals
Dr.SHANTHI K.G
 
Laplace problems
Laplace problemsLaplace problems
Laplace problems
Arianne Banglos
 
Unit 1 Operation on signals
Unit 1  Operation on signalsUnit 1  Operation on signals
Unit 1 Operation on signals
Dr.SHANTHI K.G
 

What's hot (20)

Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
 
Linear Transformations, Matrix Algebra
Linear Transformations, Matrix AlgebraLinear Transformations, Matrix Algebra
Linear Transformations, Matrix Algebra
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem
 
Ameer 14208
Ameer 14208Ameer 14208
Ameer 14208
 
Matrix of linear transformation
Matrix of linear transformationMatrix of linear transformation
Matrix of linear transformation
 
Linear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetLinear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent Set
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
 
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Chapter3 laplace
 
Unit step function
Unit step functionUnit step function
Unit step function
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Unit-1 Classification of Signals
Unit-1 Classification of SignalsUnit-1 Classification of Signals
Unit-1 Classification of Signals
 
Laplace transform & fourier series
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier series
 
Lecture10 Signal and Systems
Lecture10 Signal and SystemsLecture10 Signal and Systems
Lecture10 Signal and Systems
 
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
 
Laplace
LaplaceLaplace
Laplace
 
Unit 1 -Introduction to signals and standard signals
Unit 1 -Introduction to signals  and standard signalsUnit 1 -Introduction to signals  and standard signals
Unit 1 -Introduction to signals and standard signals
 
Laplace problems
Laplace problemsLaplace problems
Laplace problems
 
Unit 1 Operation on signals
Unit 1  Operation on signalsUnit 1  Operation on signals
Unit 1 Operation on signals
 

Similar to linear tranformation- VC&LA

linear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdflinear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdf
BinitAgarwala3
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
Mohammed Waris Senan
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
NimithaSoman
 
Midterm assign 2
Midterm assign 2Midterm assign 2
Midterm assign 2
meezanchand
 
laplace transform 2 .pdf
laplace transform 2                  .pdflaplace transform 2                  .pdf
laplace transform 2 .pdf
abdnazar2003
 
chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for students
lipsa91
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
researchinventy
 
Linear Transformations_part1.pdf
Linear Transformations_part1.pdfLinear Transformations_part1.pdf
Linear Transformations_part1.pdf
HirunManujaya
 
Ss important questions
Ss important questionsSs important questions
Ss important questionsSowji Laddu
 
2. Power Computations and Analysis Techniques_verstud.pdf
2. Power Computations and Analysis Techniques_verstud.pdf2. Power Computations and Analysis Techniques_verstud.pdf
2. Power Computations and Analysis Techniques_verstud.pdf
LIEWHUIFANGUNIMAP
 
Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)
DeepRaval7
 
NAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace TransformNAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace Transform
Hussain K
 
Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transform
ShalabhMishra10
 
Ist module 3
Ist module 3Ist module 3
Ist module 3
Vijaya79
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...
Waqas Afzal
 
On an Optimal control Problem for Parabolic Equations
On an Optimal control Problem for Parabolic EquationsOn an Optimal control Problem for Parabolic Equations
On an Optimal control Problem for Parabolic Equations
ijceronline
 
Properties of Fourier transform
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transform
Muhammed Afsal Villan
 
Convolution representation impulse response
Convolution representation impulse responseConvolution representation impulse response
Convolution representation impulse response
uradiraghu92
 
Wide sense stationary process in digital communication
Wide sense stationary process in digital communicationWide sense stationary process in digital communication
Wide sense stationary process in digital communication
VitthalGavhane1
 

Similar to linear tranformation- VC&LA (20)

nabil-201-chap-06.ppt
nabil-201-chap-06.pptnabil-201-chap-06.ppt
nabil-201-chap-06.ppt
 
linear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdflinear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdf
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
 
Midterm assign 2
Midterm assign 2Midterm assign 2
Midterm assign 2
 
laplace transform 2 .pdf
laplace transform 2                  .pdflaplace transform 2                  .pdf
laplace transform 2 .pdf
 
chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for students
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Linear Transformations_part1.pdf
Linear Transformations_part1.pdfLinear Transformations_part1.pdf
Linear Transformations_part1.pdf
 
Ss important questions
Ss important questionsSs important questions
Ss important questions
 
2. Power Computations and Analysis Techniques_verstud.pdf
2. Power Computations and Analysis Techniques_verstud.pdf2. Power Computations and Analysis Techniques_verstud.pdf
2. Power Computations and Analysis Techniques_verstud.pdf
 
Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)
 
NAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace TransformNAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace Transform
 
Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transform
 
Ist module 3
Ist module 3Ist module 3
Ist module 3
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...
 
On an Optimal control Problem for Parabolic Equations
On an Optimal control Problem for Parabolic EquationsOn an Optimal control Problem for Parabolic Equations
On an Optimal control Problem for Parabolic Equations
 
Properties of Fourier transform
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transform
 
Convolution representation impulse response
Convolution representation impulse responseConvolution representation impulse response
Convolution representation impulse response
 
Wide sense stationary process in digital communication
Wide sense stationary process in digital communicationWide sense stationary process in digital communication
Wide sense stationary process in digital communication
 

More from Kaushal Patel

5 amazing monuments of ancient india
5 amazing monuments of ancient india5 amazing monuments of ancient india
5 amazing monuments of ancient india
Kaushal Patel
 
Simple vapour compression system
Simple vapour compression systemSimple vapour compression system
Simple vapour compression system
Kaushal Patel
 
Regenerative and reduced air refrigeration system
Regenerative and reduced air refrigeration  systemRegenerative and reduced air refrigeration  system
Regenerative and reduced air refrigeration system
Kaushal Patel
 
Gear manufacturing methods
Gear manufacturing methodsGear manufacturing methods
Gear manufacturing methods
Kaushal Patel
 
Combustion Chamber for Compression Ignition Engines
Combustion Chamber for Compression Ignition EnginesCombustion Chamber for Compression Ignition Engines
Combustion Chamber for Compression Ignition Engines
Kaushal Patel
 
Elliptical trammel
Elliptical trammelElliptical trammel
Elliptical trammel
Kaushal Patel
 
Time response analysis
Time response analysisTime response analysis
Time response analysis
Kaushal Patel
 
Tracing of cartesian curve
Tracing of cartesian curveTracing of cartesian curve
Tracing of cartesian curve
Kaushal Patel
 
Operators-computer programming and utilzation
Operators-computer programming and utilzationOperators-computer programming and utilzation
Operators-computer programming and utilzation
Kaushal Patel
 
simple casestudy on building materials
simple casestudy on building materialssimple casestudy on building materials
simple casestudy on building materials
Kaushal Patel
 
Broching machine-manufacturing process-1
Broching machine-manufacturing process-1Broching machine-manufacturing process-1
Broching machine-manufacturing process-1
Kaushal Patel
 
Case study 2 storke-elements of mechanical engineering
Case study 2 storke-elements of mechanical engineeringCase study 2 storke-elements of mechanical engineering
Case study 2 storke-elements of mechanical engineering
Kaushal Patel
 
Methods of variation of parameters- advance engineering mathe mathematics
Methods of variation of parameters- advance engineering mathe mathematicsMethods of variation of parameters- advance engineering mathe mathematics
Methods of variation of parameters- advance engineering mathe mathematics
Kaushal Patel
 
Drilling machines-manufacturing process-1
Drilling machines-manufacturing process-1Drilling machines-manufacturing process-1
Drilling machines-manufacturing process-1
Kaushal Patel
 
Stress and strain- mechanics of solid
Stress and strain- mechanics of solidStress and strain- mechanics of solid
Stress and strain- mechanics of solid
Kaushal Patel
 
Engineering thermodynemics-difference between heat and work
Engineering thermodynemics-difference between heat and workEngineering thermodynemics-difference between heat and work
Engineering thermodynemics-difference between heat and work
Kaushal Patel
 
Types of cables
Types of cablesTypes of cables
Types of cables
Kaushal Patel
 
Nano science _technology
Nano science _technologyNano science _technology
Nano science _technology
Kaushal Patel
 
Cochran Boiler-ELEMENTS OF MECHANICAL ENGINEERING
Cochran Boiler-ELEMENTS OF MECHANICAL ENGINEERINGCochran Boiler-ELEMENTS OF MECHANICAL ENGINEERING
Cochran Boiler-ELEMENTS OF MECHANICAL ENGINEERING
Kaushal Patel
 

More from Kaushal Patel (19)

5 amazing monuments of ancient india
5 amazing monuments of ancient india5 amazing monuments of ancient india
5 amazing monuments of ancient india
 
Simple vapour compression system
Simple vapour compression systemSimple vapour compression system
Simple vapour compression system
 
Regenerative and reduced air refrigeration system
Regenerative and reduced air refrigeration  systemRegenerative and reduced air refrigeration  system
Regenerative and reduced air refrigeration system
 
Gear manufacturing methods
Gear manufacturing methodsGear manufacturing methods
Gear manufacturing methods
 
Combustion Chamber for Compression Ignition Engines
Combustion Chamber for Compression Ignition EnginesCombustion Chamber for Compression Ignition Engines
Combustion Chamber for Compression Ignition Engines
 
Elliptical trammel
Elliptical trammelElliptical trammel
Elliptical trammel
 
Time response analysis
Time response analysisTime response analysis
Time response analysis
 
Tracing of cartesian curve
Tracing of cartesian curveTracing of cartesian curve
Tracing of cartesian curve
 
Operators-computer programming and utilzation
Operators-computer programming and utilzationOperators-computer programming and utilzation
Operators-computer programming and utilzation
 
simple casestudy on building materials
simple casestudy on building materialssimple casestudy on building materials
simple casestudy on building materials
 
Broching machine-manufacturing process-1
Broching machine-manufacturing process-1Broching machine-manufacturing process-1
Broching machine-manufacturing process-1
 
Case study 2 storke-elements of mechanical engineering
Case study 2 storke-elements of mechanical engineeringCase study 2 storke-elements of mechanical engineering
Case study 2 storke-elements of mechanical engineering
 
Methods of variation of parameters- advance engineering mathe mathematics
Methods of variation of parameters- advance engineering mathe mathematicsMethods of variation of parameters- advance engineering mathe mathematics
Methods of variation of parameters- advance engineering mathe mathematics
 
Drilling machines-manufacturing process-1
Drilling machines-manufacturing process-1Drilling machines-manufacturing process-1
Drilling machines-manufacturing process-1
 
Stress and strain- mechanics of solid
Stress and strain- mechanics of solidStress and strain- mechanics of solid
Stress and strain- mechanics of solid
 
Engineering thermodynemics-difference between heat and work
Engineering thermodynemics-difference between heat and workEngineering thermodynemics-difference between heat and work
Engineering thermodynemics-difference between heat and work
 
Types of cables
Types of cablesTypes of cables
Types of cables
 
Nano science _technology
Nano science _technologyNano science _technology
Nano science _technology
 
Cochran Boiler-ELEMENTS OF MECHANICAL ENGINEERING
Cochran Boiler-ELEMENTS OF MECHANICAL ENGINEERINGCochran Boiler-ELEMENTS OF MECHANICAL ENGINEERING
Cochran Boiler-ELEMENTS OF MECHANICAL ENGINEERING
 

Recently uploaded

Fundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptxFundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptx
manasideore6
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
dxobcob
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABSDESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
itech2017
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
yokeleetan1
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
ChristineTorrepenida1
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Soumen Santra
 

Recently uploaded (20)

Fundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptxFundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptx
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABSDESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
 

linear tranformation- VC&LA

  • 2. Linear Transformation  Zero transformation: VWVT  vu,,: VT  vv ,0)(  Identity transformation: VVT : VT  vvv ,)(  Properties of linear transformations WVT : 00 )((1)T )()((2) vv TT  )()()((3) vuvu TTT  )()()( )()(Then If(4) 2211 2211 2211 nn nn nn vTcvTcvTc vcvcvcTT vcvcvc       v v 2
  • 3. The Kernel and Range of a Linear Transformation › Kernel of a linear transformation T: Let be a linear transformationWVT : Then the set of all vectors v in V that satisfy is called the kernel of T and is denoted by ker(T). 0)( vT },0)(|{)ker( VTT  vvv  Ex 1: (Finding the kernel of a linear transformation) ):()( 3223   MMTAAT T Sol:                      00 00 00 )ker(T 3
  • 4. The kernel is a subspace of V The kernel of a linear transformation is a subspace of the domain V. )16.Theorem(0)0( TPf: VT ofsubsetnonemptyais)ker( then.ofkernelin thevectorsbeandLet Tvu 000)()()(  vuvu TTT 00)()(  ccTcT uu )ker(Tc  u )ker(T vu .ofsubspaceais)ker(Thus, VT Note: The kernel of T is sometimes called the nullspace of T. WVT : 4
  • 5.  Ex 6: (Finding a basis for the kernel)                 82000 10201 01312 11021 andRiniswhere,)(bydefinedbe:Let 545 A ATRRT xxx Find a basis for ker(T) as a subspace of R5. 5
  • 6. Sol:                                  000000 041000 020110 010201 082000 010201 001312 011021 0 .. EJG A s t                                                                 1 4 0 2 1 0 0 1 1 2 4 2 2 5 4 3 2 1 ts t t s ts ts x x x x x x   TB ofkernelfor thebasisone:)1,4,0,2,1(),0,0,1,1,2(  6
  • 7.  Range of a linear transformation T: )(bydenotedisandTofrangethecalledisVin vectorofimagesarein W thatwvectorsallofsetThen the L.T.abe:Let Trange WVT  }|)({)( VTTrange  vv 7
  • 8. .:Tnnsformatiolinear traaofrangeThe WWV foecapsbusasi  The range of T is a subspace of W Pf: )1Thm.6.(0)0( T WTrange ofsubsetnonemptyais)( TTT ofrangein thevectorbe)(and)(Let vu )()()()( TrangeTTT  vuvu )()()( TrangecTcT  uu ),( VVV  vuvu )( VcV  uu .subspaceis)(Therefore, WTrange 8
  • 9.  Notes: ofsubspaceis)()1( VTKer L.T.ais: WVT  ofsubspaceis)()2( WTrange 9
  • 10.  Ex 7: (Finding a basis for the range of a linear transformation)                 82000 10201 01312 11021 andiswhere,)(bydefinedbe:Let 545 A RATRRT xxx Find a basis for the range of T. 10
  • 11. Sol: BA EJG                                 00000 41000 20110 10201 82000 10201 01312 11021 .. 54321 ccccc 54321 wwwww     )(forbasisais,, )(forbasisais,, 421 421 ACSccc BCSwww   Tofrangefor thebasisais)2,0,1,1(),0,0,1,2(),0,1,2,1(  11
  • 12.  Rank of a linear transformation T:V→W: TTrank ofrangetheofdimensionthe)(   Nullity of a linear transformation T:V→W: TTnullity ofkerneltheofdimensionthe)(   Note: )()( )()( then,)(bygivenL.T.thebe:Let AnullityTnullity ArankTrank ATRRT mn    xx Rank and Nullity of Linear Transformation 12
  • 13. then.spacevectorainto spacevectorldimensiona-nanformL.T.abe:Let W VWVT   Sum of rank and nullity Pf: AmatrixnmT anbydrepresenteisLet  )ofdomaindim()ofkerneldim()ofrangedim( )()( TTT nTnullityTrank   rArank )(Assume rArank ATTrank   )( )ofspacecolumndim()ofrangedim()((1) nrnrTnullityTrank  )()()( rn ATTnullity   )ofspacesolutiondim()ofkerneldim()()2( 13
  • 14.  Ex 8: (Finding the rank and nullity of a linear transformation)              000 110 201 bydefine:L.T.theofnullityandranktheFind 33 A RRT Sol: 123)()ofdomaindim()( 2)()(   TrankTTnullity ArankTrank 14
  • 15.  Ex 9: (Finding the rank and nullity of a linear transformation) }0{)(ifofranktheFind)( 4isofnullitytheifofranktheFind)( 2israngetheof dimensiontheifofkerneltheofdimensiontheFind)( n.nsformatiolinear traabe:Let 75   TKerTc TTb Ta RRT Sol: 325)ofrangedim()ofkerneldim( 5)ofdomaindim()(   TnT Ta 145)()()(  TnullitynTrankb 505)()()(  TnullitynTrankc 15
  • 16. One-to-one Transformation vector.singleaofconsistsrangein theevery w ofpreimagetheifone-to-onecalledis:functionA WVT  .thatimplies )()(inV,vanduallforiffone-to-oneis vu vu   TTT one-to-one not one-to-one 16
  • 18.  One-to-one linear transformation }0{)(iff1-1isTThen L.T.abe:Let   TKer WVT Pf: 1-1isSupposeT 0:solutiononeonlyhavecan0)(Then  vvT }0{)(i.e. TKer )()(and}0{)(Suppose vTuTTKer  0)()()(  vTuTvuT L.T.aisT 0)(  vuTKervu 1-1isT 18
  • 19.  Ex 10: (One-to-one and not one-to-one linear transformation) one.-to-oneis )(bygiven:L.T.The)( T mnnm AATMMTa   matrix.zeroonly theofconsistskernelitsBecause nm one.-to-onenotis:ationtransformzeroThe)( 33 RRTb  .ofalliskernelitsBecause 3 R 19
  • 20.  Thm 6.7: (Onto linear transformation) .ofdimensionthetoequalisofranktheiffontoisThen l.dimensionafiniteiswhereL.T.,abe:Let WTT WWVT   Thm 6.8: (One-to-one and onto linear transformation) onto.isitifonlyandifone-to-oneisThen.dimension ofbothandspaceorwith vectL.T.abe:Let Tn WVWVT  Pf: 0))(dim(and}0{)(thenone,-to-oneisIf  TKerTKerT )dim())(dim())(dim( WnTKernTrange  onto.isly,Consequent T 0)ofrangedim())(dim(  nnTnTKer one.-to-oneisTherefore,T nWTT  )dim()ofrangedim(thenonto,isIf 20
  • 21.  Ex 11: neither.oronto,one,-to-oneiswhetherdetermineandof rankandnullitytheFind,)(bygivenis:L.T.The TT ATRRT mn xx           100 110 021 )( Aa          00 10 21 )( Ab       110 021 )( Ac          000 110 021 )( Ad Sol: T:Rn→Rm dim(domain of T) rank(T) nullity(T) 1-1 onto (a)T:R3→R3 3 3 0 Yes Yes (b)T:R2→R3 2 2 0 Yes No (c)T:R3→R2 3 2 1 No Yes (d)T:R3→R3 3 2 1 No No 21
  • 22.  Isomorphism: other.eachtoisomorphicbetosaidare andthen,tofrommisomorphisanexiststheresuch that spacesvectorareandifMoreover,m.isomorphisancalledis ontoandonetooneisthat:nnsformatiolinear traA WVWV WV WVT   Isomorphic spaces and dimension Pf: .dimensionhaswhere,toisomorphicisthatAssume nVWV onto.andonetooneisthat:L.T.aexistsThere WVT  one-to-oneisT nnTKerTT TKer   0))(dim()ofdomaindim()ofrangedim( 0))(dim( Two finite-dimensional vector space V and W are isomorphic if and only if they are of the same dimension. Bijective Transformation 22
  • 23. .dimensionhavebothandthatAssume nWV onto.isT nWT  )dim()ofrangedim( nWV  )dim()dim(Thus     .ofbasisabe,,,let andV,ofbasisabe,,,Let 21 21 Wwww vvv n n   nnvcvcvc V  2211 asdrepresentebecaninvectorarbitraryanThen v nnwcwcwcT WVT   2211)( follows.as:L.T.adefinecanyouand v It can be shown that this L.T. is both 1-1 and onto. Thus V and W are isomorphic. 23
  • 24. Inverse linear Transformation ineveryfors.t.L.T.are:and:If 21 nnnnn RRRTRRT v ))((and))(( 2112 vvvv  TTTT invertiblebetosaidisandofinversethecalledisThen 112 TTT  Note: If the transformation T is invertible, then the inverse is unique and denoted by T–1 . 24
  • 25. Existence of an inverse transformation .equivalentareconditionfollowingThen the ,matrixstandardwithL.T.abe:Let ARRT nn   Note: If T is invertible with standard matrix A, then the standard matrix for T–1 is A–1 . (1) T is invertible. (2) T is an isomorphism. (3) A is invertible. 25
  • 26. Finding the inverse of a linear transformation bydefinedis:L.T.The 33 RRT  )42,33,32(),,( 321321321321 xxxxxxxxxxxxT  Sol: 142 133 132 formatrixstandardThe           A T 321 321 321 42 33 32 xxx xxx xxx               100142 010133 001132 3IA Show that T is invertible, and find its inverse. 26
  • 27.  1.. 326100 101010 011001                AIEJG 11 isformatrixstandardtheandinvertibleisTherefore  ATT             326 101 011 1 A                                  321 31 21 3 2 1 11 326326 101 011 )( xxx xx xx x x x AT vv )326,,(),,( s,other wordIn 3213121321 1 xxxxxxxxxxT  27
  • 28. .formatrixstandardtheFindaxis.-xtheontoinpointeach projectingbygivenis:nnsformatiolinear traThe 2 22 TR RRT  Sol: )0,(),( xyxT           00 01 )1,0()0,1()()( 21 TTeTeTA  Notes: (1) The standard matrix for the zero transformation from Rn into Rm is the mn zero matrix. (2) The standard matrix for the zero transformation from Rn into Rn is the nn identity matrix In Finding the matrix of a linear transformation 28
  • 29. Composition of T1:Rn→Rm with T2:Rm→Rp : n RTTT  vvv )),(()( 12 112 ofdomainofdomain, TTTTT    Composition of linear transformations then,andmatricesstandardwith L.T.be:and:Let 21 21 AA RRTRRT pmmn  L.T.ais)),(()(bydefined,:ncompositioThe(1) 12 vv TTTRRT pn  12productmatrixby thegivenisformatrixstandardThe)2( AAATA  29
  • 30. Pf: nscalar theanybecletandinvectorsbeandLet L.T.)ais((1) n R T vu )formatrixstandardtheis)(2( 12 TAA )()())(())(( ))()(())(()( 1212 11212 vuvu vuvuvu TTTTTT TTTTTT   )())(())(())(()( 121212 vvvvv cTTcTcTTcTTcT  vvvvv )()())(()( 12121212 AAAAATTTT   Note: 1221 TTTT   30
  • 31. The standard matrix of a composition s.t.intofromL.T.beandLet 33 21 RRTT ),0,2(),,(1 zxyxzyxT  ),z,(),,(2 yyxzyxT  ,'and nscompositiofor thematricesstandardtheFind 2112 TTTTTT   Sol: )formatrixstandard( 101 000 012 11 TA            )formatrixstandard( 010 100 011 22 TA             31
  • 32. 12formatrixstandardThe TTT  21'formatrixstandardThe TTT                             000 101 012 101 000 012 010 100 011 12 AAA                                   001 000 122 010 100 011 101 000 012 ' 21AAA 32
  • 33. Matrices for Linear Transformations )43,23,2(),,()1( 32321321321 xxxxxxxxxxxT   Three reasons for matrix representation of a linear transformation:                    3 2 1 430 231 112 )()2( x x x AT xx  It is simpler to write.  It is simpler to read.  It is more easily adapted for computer use.  Two representations of the linear transformation T:R3→R3 : 33
  • 34. Definition 1: A nonzero vector x is an eigenvector (or characteristic vector) of a square matrix A if there exists a scalar λ such that Ax = λx. Then λ is an eigenvalue (or characteristic value) of A. Note: The zero vector can not be an eigenvector even though A0 = λ0. But λ = 0 can be an eigenvalue. Example: Show x  2 1      isaneigenvector for A  2 4 3 6       Solution: Ax  2 4 3 6       2 1       0 0       But for   0, x  0 2 1       0 0       Thus,xisaneigenvectorof A,and  0 isaneigenvalue. Definitions 34
  • 35. An n×n matrix A multiplied by n×1 vector x results in another n×1 vector y=Ax. Thus A can be considered as a transformation matrix. In general, a matrix acts on a vector by changing both its magnitude and its direction. However, a matrix may act on certain vectors by changing only their magnitude, and leaving their direction unchanged (or possibly reversing it). These vectors are the eigenvectors of the matrix. A matrix acts on an eigenvector by multiplying its magnitude by a factor, which is positive if its direction is unchanged and negative if its direction is reversed. This factor is the eigenvalue associated with that eigenvector. Geometric interpretation of Eigenvalues and Eigenvectors 35
  • 36. Let x be an eigenvector of the matrix A. Then there must exist an eigenvalue λ such that Ax = λx or, equivalently, Ax - λx = 0 or (A – λI)x = 0 If we define a new matrix B = A – λI, then Bx = 0 If B has an inverse then x = B-10 = 0. But an eigenvector cannot be zero. Thus, it follows that x will be an eigenvector of A if and only if B does not have an inverse, or equivalently det(B)=0, or det(A – λI) = 0 This is called the characteristic equation of A. Its roots determine the eigenvalues of A. Eigenvalues 36
  • 37. Eigenvalues: examples Example 1: Find the eigenvalues of two eigenvalues: 1,  2 Note: The roots of the characteristic equation can be repeated. That is, λ1 = λ2 =…= λk. If that happens, the eigenvalue is said to be of multiplicity k.          51 122 A )2)(1(23 12)5)(2( 51 122 2           AI 37
  • 38. Eigenvectors Example 1 (cont.):                 00 41 41 123 )1(:1 AI 0, 1 4 ,404 2 1 1 2121               tt x x txtxxx x                 00 31 31 124 )2(:2 AI 0, 1 3 2 1 2              ss x x x To each distinct eigenvalue of a matrix A there will correspond at least one eigenvector which can be found by solving the appropriate set of homogenous equations. If λi is an eigenvalue then the corresponding eigenvector xi is the solution of (A – λiI)xi = 0 38
  • 39. Example 2 (cont.): Find the eigenvectors of Recall that λ = 2 is an eigenvector of multiplicity 3. Solve the homogeneous linear system represented by Let . The eigenvectors of  = 2 are of the form and t not both zero.                                  0 0 0 000 000 010 )2( 3 2 1 x x x AI x txsx  31 , , 1 0 0 0 0 1 0 3 2 1                                             ts t s x x x x            200 020 012 A 39
  • 40. Definition: The trace of a matrix A, designated by tr(A), is the sum of the elements on the main diagonal. Property 1: The sum of the eigenvalues of a matrix equals the trace of the matrix. Property 2: A matrix is singular if and only if it has a zero eigenvalue. Property 3: The eigenvalues of an upper (or lower) triangular matrix are the elements on the main diagonal. Property 4: If λ is an eigenvalue of A and A is invertible, then 1/λ is an eigenvalue of matrix A-1. Properties of Eigenvalues and Eigenvectors 40
  • 41. Property 5: If λ is an eigenvalue of A then kλ is an eigenvalue of kA where k is any arbitrary scalar. Property 6: If λ is an eigenvalue of A then λk is an eigenvalue of Ak for any positive integer k. Property 8: If λ is an eigenvalue of A then λ is an eigenvalue of AT. Property 9: The product of the eigenvalues (counting multiplicity) of a matrix equals the determinant of the matrix. 41
  • 42. Theorem: Eigenvectors corresponding to distinct (that is, different) eigenvalues are linearly independent. Theorem: If λ is an eigenvalue of multiplicity k of an n  n matrix A then the number of linearly independent eigenvectors of A associated with λ is given by m = n - r(A- λI). Furthermore, 1 ≤ m ≤ k. Example 2 (cont.): The eigenvectors of  = 2 are of the form s and t not both zero.  = 2 has two linearly independent eigenvectors , 1 0 0 0 0 1 0 3 2 1                                             ts t s x x x x Linearly independent eigenvectors 42
  • 43. Diagonalization  Diagonalizable matrix: A square matrix A is called diagonalizable if there exists an invertible matrix P such that P-1AP is a diagonal matrix. (P diagonalizes A)  Notes: (1) If there exists an invertible matrix P such that , then two square matrices A and B are called similar. (2) The eigenvalue problem is related closely to the diagonalization problem. APPB 1  43
  • 44. A diagonalizable matrix           200 013 031 A Sol: Characteristic equation: 0)2)(4( 200 013 031 I 2           A 2,2,4:sEigenvalue 321   Ex.5)p.403(See 0 1 1 :rEigenvecto4)1( 1            p 44
  • 45. 1 0 0 , 0 1 1 :igenvectorE2)2( 32                       pp                         200 020 004 100 011 011 ][ 1 321 APPpppP                                                   400 020 002 010 101 101 ][(2) 200 040 002 100 011 011 ][(1) 1 132 1 312 APPpppP APPpppP  Notes: 45
  • 46. Condition for Diagonalization An nn matrix A is diagonalizable if and only if it has n linearly independent eigenvectors. Pf: ablediagonalizis)( A ),,,(and][Let diagonaliss.t.invertibleanexiststhere 2121 1 nn diagDpppP APPDP      ][ 00 00 00 ][ 2211 2 1 21 nn n n ppp pppPD                         46
  • 47. ][][ 2121 nn ApApAppppAAP   )ofrseigenvectoareoftorcolumn vecthe..( ,,2,1, APpei nipAp PDAP i iii      t.independenlinearlyare,,,invertibleis 21 npppP   rs.eigenvectotindependenlinearlyhas nA n npppnA    ,,seigenvalueingcorrespondhwit ,,rseigenvectotindependenlinearlyhas)( 21 21 nipAp iii ,,2,1,i.e.   ][Let 21 n pppP  47
  • 49. A matrix that is not diagonalizable        10 21 able.diagonaliznotismatrixfollowingthat theShow A Sol: Characteristic equation: 0)1( 10 21 I 2         A 1:Eigenvalue 1                      0 1 :rEigenvecto 00 10 ~ 00 20 I 1pAIA A does not have two (n=2) linearly independent eigenvectors, so A is not diagonalizable. 49
  • 50. Steps for diagonalizing an nn square matrix: n ,,, 21  Step 2: Let ][ 21 npppP  Step 1: Find n linearly independent eigenvectors for A with corresponding eigenvalues nppp ,,, 21  Step 3: nipApDAPP iii n ,,2,1,where, 00 00 00 2 1 1                        Note: The order of the eigenvalues used to form P will determine the order in which the eigenvalues appear on the main diagonal of D. 50
  • 51. Diagonalizing a matrix diagonal.issuch thatmatrixaFind 113 131 111 1 APPP A               Sol: Characteristic equation: 0)3)(2)(2( 113 131 111 I           A 3,2,2:sEigenvalue 321   51
  • 52. 21                    000 010 101 ~ 313 111 111 I1 A                                             1 0 1 :rEigenvecto 1 0 1 0 1 3 2 1 pt t t x x x 22                       000 10 01 ~ 113 151 113 I 4 1 4 1 2 A                                             4 1 1 :rEigenvecto 4 1 1 24 1 4 1 4 1 3 2 1 pt t t t x x x 52
  • 54.  Notes: k is a positive integer                           k n k k k n d d d D d d d D         00 00 00 00 00 00 )1( 2 1 2 1 1 1 1 1111 111 1 1 )()()( )())(( )( )2(               PPDA PAP APAAP APPPPPAPPAP APPAPPAPP APPD APPD kk k kk 54
  • 55. Sufficient conditions for Diagonalization If an nn matrix A has n distinct eigenvalues, then the corresponding eigenvectors are linearly independent and A is diagonalizable. 55
  • 56.  Determining whether a matrix is diagonalizable              300 100 121 A Sol: Because A is a triangular matrix, its eigenvalues are the main diagonal entries. 3,0,1 321   These three values are distinct, so A is diagonalizable. (Thm.7.6) 56
  • 57. Finding a diagonalizing matrix for a linear transformation diagonal.istorelative formatrixthesuch thatforbasisaFind )33()( bygivennnsformatiolinear trathebeLet 3 321321321321 33 B TRB xxx,xx, xxxx,x,xxT RT:R   Sol:                113 131 111 )()()( bygivenisformatrixstandardThe 321 eTeTeTA T From Ex. 5, there are three distinct eigenvalues so A is diagonalizable. (Thm. 7.6) 3,2,2 321   57
  • 58.                     300 020 002 ][][][ ][][][ ])([)]([])([ 332211 321 321 BBB BBB BBB ppp ApApAp pTpTpTD  The matrix for T relative to this basis is )}1,1,1(),4,1,1(),1,0,1{(},,{ 321  pppB Thus, the three linearly independent eigenvectors found in Ex. 5 can be used to form the basis B. That is )1,1,1(),4,1,1(),1,0,1( 321  ppp 58