Signals & Systems
                            Chapter 3

                  The Laplace Transform


INC212 Signals and Systems : 2 / 2554
Laplace Transform of
    unit-step Function
                                                                 ∞
                    ∞                         X (σ + jω ) = ∫ e −(σ + jω ) t dt
     X (ω ) = ∫ x(t )e          − j ωt
                                         dt                     0
                   −∞                                            1
                    ∞
                                              X (σ + jω ) = −        [e −(σ + jω ) t ]tt =∞
                                                                                         =0
                                                              σ + jω
     X (ω ) = ∫ 1⋅ e − jωt dt
                   0                                             1
                                              X (σ + jω ) = −        [ 0 − e − (σ + j ω ) 0 ]
                                                              σ + jω
                    ∞
     X (ω ) = ∫ e e     −σt − jωt
                                    dt        X (σ + jω ) =
                                                               1
                   −∞
                                                            σ + jω
                    ∞
     X (ω ) = ∫ e −(σ + jω ) t dt             σ + jω → s
                   0
                                                       1
                                              X ( s) =
                                                       s

INC212 Signals and Systems : 2 / 2554                          Chapter 3 The Laplace Transform
Laplace Transform of Signals
                                  ∞
                X ( s ) = ∫ x(t )e dt ; s = σ + jω
                                            − st
                                 −∞


    One-side transform                             x(t ) = 0; t < 0

                                        ∞
                       X ( s ) = ∫ x(t )e dt       − st
                                        0


INC212 Signals and Systems : 2 / 2554                     Chapter 3 The Laplace Transform
Laplace Transform of Signals
                           ∞                                                   1, t ≥ 0
             X ( s ) = ∫ x(t )e dt          − st
                                                              x(t ) = u (t ) = 
                           0                                                   0, t < 0
                                        ∞                            ∞
                  L[u (t )] = ∫ u (t )e dt             − st
                                                                 = ∫ (1)e − st dt
                                    −∞                              0
                                             − st ∞
                                        e                                 1
                                =−                               = −0 − (− ), s > 0
                                             s     0
                                                                          s
                              1
                 ∴ L[u (t )] = , s > 0
                              s

INC212 Signals and Systems : 2 / 2554                                   Chapter 3 The Laplace Transform
Relationship between the FT and ℒ T
    One-side transform or Forward transform
         x(t ) = 0; t < 0 ∴ s = jω ; σ = 0

                          ∞                                      ∞
           X (ω ) = ∫ x(t )e            − jω t
                                                 dt   X ( s ) = ∫ x(t )e − st dt
                          0                                      0

                                           X (ω ) = X ( s ) s = jω
                          x(t ) ↔ X ( s )
                          X ( s) = L[ x(t )] ; x(t ) = L−1[ X ( s )]

INC212 Signals and Systems : 2 / 2554                        Chapter 3 The Laplace Transform
Common ℒ T Pairs




INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
Region of Convergence (ROC)
            g1 (t ) = Aeαt u (t ); α > 0



                     ∞                           ∞                    ∞
        G1 ( s ) =   ∫
                     −∞
                       Aeαt u (t )e − st dt = A∫ e −( s −α )t dt = A∫ e (α −σ )t e − jωt dt
                                                 0                    0



                        A
         ∴ G1 ( s ) =            σ = Re( s ) > α
                      s −α


INC212 Signals and Systems : 2 / 2554                                Chapter 3 The Laplace Transform
Region of Convergence (ROC)
        g 2 (t ) = Ae −αt u (−t ) = g1 (−t ); α > 0




                     ∞                               0                     0
        G2 ( s ) =   ∫
                     −∞
                       Ae −αt u (−t )e − st dt = A ∫ e −( s +α )t dt = A ∫ e −(σ +α )t e − jωt dt
                                                    −∞                    −∞




                      A
        ∴ G2 ( s) =      = G1 (− s ) σ = Re( s ) < −α
                    s +α


INC212 Signals and Systems : 2 / 2554                                    Chapter 3 The Laplace Transform
Region of Convergence (ROC)
       Example:
             x(t ) = e − t u (t ) + e −2t u (t )


               L            ∞                                     ∞
         x(t ) ↔ X ( s ) = ∫ [e u (t ) + e u (t )]e dt = A∫ [e −( s +1) t + e −( s + 2) t ]dt
                                 −t         − 2t       − st

                            −∞                                     0




                       1    1
           ∴ X (s) =     +      σ > −1
                     s +1 s + 2


INC212 Signals and Systems : 2 / 2554                                  Chapter 3 The Laplace Transform
Region of Convergence (ROC)
       Example:
             x(t ) = e −t u (t ) + e 2t u (−t )

                            L1                             L       1
                 −t
                e u (t ) ↔      σ > −1            e u (−t ) ↔ −
                                                   2t
                                                                      σ <2
                           s +1                                   s−2


                                             L 1    1
                       −t
                   ∴ e u (t ) + e u ( −t ) ↔
                                   2t
                                                 −             −1 < σ < 2
                                             s +1 s − 2



INC212 Signals and Systems : 2 / 2554                          Chapter 3 The Laplace Transform
Properties of the                       ℒT
       Linearity

                            L                  L
                   x(t ) ↔ X ( s ) and v(t ) ↔ V ( s )

                                        L
                   ax(t ) + bv(t ) ↔ aX ( s ) + bV ( s )


INC212 Signals and Systems : 2 / 2554          Chapter 3 The Laplace Transform
Properties of the                      ℒT
       Example: Linearity                   L[u (t ) + e − t u (t )]

                                   1            −t       1
                        u (t ) ↔       and e u (t ) ↔
                                   s                   s +1
                                  −t        1       1
                        u (t ) + e u (t ) ↔ +
                                            s s +1
                                  −t         2s + 1
                        u (t ) + e u (t ) ↔
                                            s ( s + 1)

INC212 Signals and Systems : 2 / 2554            Chapter 3 The Laplace Transform
Properties of the                        ℒT
       Right Shift in Time

                              x(t ) ↔ X ( s )
                                                        − cs
                                x(t − c)u (t − c) ↔ e          X (s)



INC212 Signals and Systems : 2 / 2554           Chapter 3 The Laplace Transform
Properties of the                           ℒT
       Example: Right Shift in Time
                                     1, 0 ≤ t < c
                             x(t ) = 
                                     0, all other t

                            x(t ) = u (t ) − u (t − c)
                                               − cs             − cs
                                  1 e     1− e
              u (t ) − u (t − c) ↔ −    =
                                  s   s      s

INC212 Signals and Systems : 2 / 2554                  Chapter 3 The Laplace Transform
Properties of the ℒ T




INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
Computation of the Inverse ℒ T

                                   1 c + j∞
                                  2π j ∫c − j∞
                          x(t ) =              X ( s )e st ds




INC212 Signals and Systems : 2 / 2554                  Chapter 3 The Laplace Transform
The Inverse ℒ T using
    Partial-Fraction Expansion
               B( s)
      X ( s) =
               A( s )
                                                        Let p1, p2, …, pN
     B ( s ) = bM s M + bM −1s M −1 +  + b1s + b0      denote the roots
      A( s ) = a N s N + a N −1s N −1 +  + a1s + a0    of the equation
                                              A( s ) = 0
     The pi for i = 1, 2,
                                              A( s ) = a N ( s − p1 )( s − p2 )  ( s − p N )
     …,N are called the                                                B( s)
                                              X (s) =
     poles of X(s)                                    a N ( s − p1 )( s − p2 )  ( s − p N )


INC212 Signals and Systems : 2 / 2554                         Chapter 3 The Laplace Transform
Distinct Poles
                            c1     c2         cN
                 X ( s) =       +       ++
                          s − p1 s − p2     s − pN
                 ci = [( s − pi ) X ( s )]s = pi , i = 1,2, , N



            x(t ) = c1e       p1t
                                    + c2 e   p2t
                                                   +  + cN e   pN t
                                                                       , t≥0


INC212 Signals and Systems : 2 / 2554                    Chapter 3 The Laplace Transform
Example: Distinct Poles
                s+2                          ci = [( s − pi ) X ( s )]s = pi , i = 1,2, , N
  X ( s) = 3
            s + 4 s 2 + 3s                                                 s+2               2
  A( s ) = s + 4 s + 3s = s ( s + 1)( s + 3) c1 = [ sX ( s )]s =0 = ( s + 1)( s + 3)
            3       2                                                                      =
                                                                                             3
                                                                                      s =0
  A( s ) = 0 = s ( s + 1)( s + 3)
                                                                                s+2              1
  p1 = 0, p2 = −1, p3 = −3                    c2 = [( s + 1) X ( s )]s = −1 =                  =
                                                                              s ( s + 3) s = −1 − 2
            c1     c2       c3
  X ( s) =     +        +                                           s+2              −1
          s − 0 s − (−1) s − (−3) c3 = [( s + 3) X ( s )]s = −3 =                  =
                                                                  s ( s + 1) s = −3 6
          c    c      c
  X ( s) = 1 + 2 + 3                           2 1 − t 1 − 3t
           s s +1 s + 3              x(t ) = − e − e , t ≥ 0
                                                            3     2          6

INC212 Signals and Systems : 2 / 2554                             Chapter 3 The Laplace Transform
Distinct Poles with 2 or More
    Poles Complex
                        c1     c1     c3         cN
              X (s) =       +      +       ++
                      s − p1 s − p1 s − p3     s − pN


       x(t ) = c1e      p1t
                              + c1e     p1t
                                              + c3e p3t +  + c N e p N t
                                              σt
      c1e   p1t
                  + c1e   p1t
                                   = 2 c1 e cos(ωt + ∠c1 )
                              σt
       x(t ) = 2 c1 e cos(ωt + ∠c1 ) + c3e                      p3 t
                                                                       +  + cN e    pN t




INC212 Signals and Systems : 2 / 2554                         Chapter 3 The Laplace Transform
Example: Distinct Poles with 2 or
    More Poles Complex
                                                   ci = [( s − pi ) X ( s)]s = p , i = 1,2,, N
               s − 2s + 1
                  2                                                             i


   X (s) = 3                                                                                    s 2 − 2s + 1
           s + 3s 2 + 4 s + 2                      c1 = [( s + 1 − j ) X ( s )]s =−1+ j   =
                                                                                            ( s + 1 + j )( s + 1) s =−1+ j
   A( s ) = s 3 + 3s 2 + 4 s + 2
          = ( s + 1 − j )( s + 1 + j )( s + 1)        −3
                                                   c1 =     + j2
                                                       2
   p1 = −1 + j , p2 = −1 − j , p3 = −1
                                                          9         5
                                                 c1 =       +4 =            ;
   X ( s) =
                 c1
                         +
                               c1
                                       +
                                           c3             4         2
            s − (−1 + j ) s − (−1 − j ) s − (−1)                           −4
                                                 ∠c1 = 180° + tan −1            = 126.87°
               c1          c1      c3                                         3
   X ( s) =          +          +
            s +1− j s +1+ j s +1                                                 s 2 − 2s + 1
                                                 c3 = [( s + 1) X ( s )]s = −1 = 2                 =4
                                                                                s + 2 s + 2 s = −1

  x(t ) = 5e −t cos(t + 126.87°) + 4e − t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                                        Chapter 3 The Laplace Transform
Repeated Poles
                B( s)            c         c2               cr        c           cN
    X (s) =            X ( s) = 1 +                ++             + r +1 +  +
                A( s )         s − p1 ( s − p1 ) 2     ( s − p1 ) r s − pr +1   s − pN
   ci = [( s − pi ) X ( s )]s = pi , i = r + 1, r + 2, , N
   cr = [( s − p1 ) r X ( s )]s = p1
                                                                 1d                           
   i = 1,2,  , r − 1                           i = 1; cr −1 =           [( s − p1 ) r X ( s )]
                                                                 1!  ds
                                                                                               s = p1
             1  di                   
   cr − i   =  i [( s − p1 ) X ( s )]
                             r
                                                              1  d2                     
             i!  ds                   s = p1 i = 2; cr − 2 =  2 [( s − p1 ) r X ( s )]
                                                              2!  ds                     s= p           1



       x(t ) = c1e p1t + c2te p1t +  + cr t r −1e p1t + cr +1e pr +1t +  + c N e p N t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                              Chapter 3 The Laplace Transform
Example: Repeated Poles
                        5s − 1                                           c1       c2      c
              X (s) = 3                                       X (s) =        +          + 3
                     s − 3s − 2                                         s + 1 ( s + 1) 2 s − 2

                1d                                  d 5s − 1             −9
         c1 =           [( s + 1) 2 X ( s )]       = [       ]       =                         = −1
                1!  ds
                                            s = −1  ds s − 2  s = −1 ( s − 2)
                                                                                  2
                                                                                         s = −1

                                             5s − 1
         c2 = [( s + 1) 2 X ( s )]s = −1 =                =2
                                             s − 2 s = −1
                                           5s − 1
         c3 = [( s − 2) X ( s )]s = 2 =                       =1
                                          ( s + 1) 2   s =2



                               x(t ) = −e − t + 2te − t + e 2t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                                       Chapter 3 The Laplace Transform
Case when M ≥ N
              B(s)
    X (s) =
              A( s )                                                           R( s)
                                                              X ( s) = Q( s) +
    B( s ) = bM s M + bM −1s M −1 +  + b1s + b0                               A( s )
    A( s ) = a N s N + a N −1s N −1 +  + a1s + a0
                                                                                             R( s)
                                                     X ( s ) = Q( s ) + V ( s ), V ( s ) =
                                                                                             A( s )
                          Q(s)
          A( s ) B( s )                              x(t ) = q (t ) + v(t )
                 A( s ) * Q ( s )                             dN
                                                     q(t );        δ (t ) ↔ s N
                 R( s)                                        dt N
                                                     v(t ); v(t ) ↔ V ( s )

INC212 Signals and Systems : 2 / 2554                              Chapter 3 The Laplace Transform
Example: Case when M ≥ N
                          s 3 + 2s − 4            20 s − 12
                X (s) = 2              = s−4+ 2
                          s + 4s − 2             s + 4s − 2
                X ( s) = Q( s) + V ( s)
                Q( s) = s − 4
                         d
                q(t ) = δ (t ) − 4δ (t )
                        dt
                           20s − 12        20.6145        0.6145
                V ( s) = 2             =            −
                         s + 4 s − 2 s + 4.4495 s − 0.4495
                v(t ) = 20.6145e − 4.4495t − 0.6145e 0.4495t , t ≥ 0
                         d
                x(t ) = δ (t ) − 4δ (t ) + 20.6145e − 4.4495t − 0.6145e 0.4495t , t ≥ 0
                        dt

INC212 Signals and Systems : 2 / 2554                           Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       First-Order Case
                                                           y (0 − )      b
                                                  Y ( s) =          +      X (s)
      dy (t )                                              s+a s+a
               + ay (t ) = bx(t )                            b
       dt                                         Y ( s) =         X (s)
      sY ( s ) − y (0 − ) + aY ( s ) = bX ( s )            s+a
                                                              b
      ( s + a )Y ( s ) = y (0 − ) + bX ( s )      H (s) =
                                                           s+a
                                                  Y ( s) = H ( s) X ( s)

        H(s)          Transfer Function (TF) of the system

INC212 Signals and Systems : 2 / 2554                   Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       Example: First-Order Case

                                                   dy (t ) 1             1
                                                          +    y (t ) =    x(t )
                                                    dt      RC          RC

                                                   y (0 − )   1 RC
                                        Y ( s) =            +
                                                 s + 1 RC ( s + 1 RC ) s
               y (0 − )   1 RC
     Y (s) =            +      X (s)               y (0 − )  1  1 RC
             s + 1 RC s + 1 RC          Y ( s) =            + −
                                                 s + 1 RC s s + 1 RC
                                        y (t ) = y (0 − )e −(1 RC ) t + 1 − e −(1 RC ) t , t ≥ 0
INC212 Signals and Systems : 2 / 2554                      Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       Second-Order Case
  d 2 y (t )       dy (t )                  dx(t )
        2
             + a1          + a0 y (t ) = b1         + b0 x(t )
     dt              dt                       dt
                                        [                  ]
  s 2Y ( s ) − y (0 − ) s − y (0 − ) + a1 sY ( s ) − y (0 − ) + a0Y ( s ) = b1sX ( s ) + b0 X ( s )
                            
          y (0 − ) s + y (0 − ) + a1 y (0 − )
                                                 b1s + b0
  Y (s) =                                     + 2           X ( s)
                    s + a1s + a0
                     2
                                               s + a1s + a0

         If initial condition = 0 :
                       b1s + b0                      b1s + b0
             Y (s) = 2           X ( s) ; H ( s) = 2
                    s + a1s + a0                  s + a1s + a0

INC212 Signals and Systems : 2 / 2554                             Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       Example: Second-Order Case
        x(t) = u(t) so that X(s) = 1/s; initial cond. = 0
      d 2 y (t )    dy (t )
           2
                 +6         + 8 y (t ) = 2 x(t )
        dt           dt
                     2
      H (s) = 2                                                               2       1
                 s + 6s + 8                      Y (s) = H (s) X (s) =
                                                                        s 2 + 6s + 8 s
                                                        0.25 0.5 0.25
                                              Y (s) =        −         +
                                                          s    s+2 s+4
                                              y (t ) = 0.25 − 0.5e − 2t + 0.25e − 4t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                         Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       Example: Second-Order Case                                   y (0 − ) = 1
        x(t) = u(t) with the initial condition
                                                                     y (0 − ) = 2
                                                                     
                                   s +8           2        1
                  Y ( s) = 2                 + 2
                              s + 6s + 8 s + 6s + 8 s
                                s 2 + 8s + 2
                           =
                              s ( s 2 + 6 s + 8)
                            0.25 2.5 1.75
                  Y ( s) =          +        −
                              s       s+2 s+4
                  y (t ) = 0.25 + 2.5e − 2t − 1.75e − 4t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                    Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
        Nth-Order Case
  d N y (t ) N −1 d i y (t ) M d i x(t )            C (s) B(s)
       N
            + ∑ ai      i
                            = ∑ bi    i
                                         ; Y ( s) =       +       X (s)
    dt        i =0  dt        i =0 dt               A( s ) A( s )
  B ( s ) = bM s M + bM −1s M −1 +  + b1s + b0 ;    A( s ) = s N + a N −1s N −1 +  + a1s + a0
  C ( s ) = y ( 0 − ) s + y ( 0 − ) + a1 y ( 0 − )
                          

                         B( s)            bM s M +  + b1s + b0
                 Y (s) =        X (s) = N         N −1
                                                                  X (s)
                         A( s )        s + a N −1s +  + a1s + a0
                            bM s M +  + b1s + b0
                  H (s) = N
                         s + a N −1s N −1 +  + a1s + a0

INC212 Signals and Systems : 2 / 2554                           Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
                                        t
         y (t ) = h(t ) ∗ x(t ) = ∫ h(λ ) x(t − λ )dλ , t ≥ 0
                                        0

         Y ( s) = H ( s) X ( s)
         h(t ) ↔ H ( s )
                 Y (s)
         H (s) =
                 X (s)


INC212 Signals and Systems : 2 / 2554       Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
       Example: Determining the TF
  y (t ) = 2 − 3e −t + e −2t cos 2t , t ≥ 0         2      3           s+2
                                                       −       +
            2     3           s+2                    s s + 1 ( s + 2) 2 + 4
  Y (s) = −           +                     H (s) =
            s s + 1 ( s + 2) + 4 2                                1
                                                                s +1
               1                                    2( s + 1)        ( s + 1)( s + 2)
  X (s) =                                         =           −3+
             s +1                                        s            ( s + 2) 2 + 4
                                                    [2( s + 1) − 3s ][( s + 2) 2 + 4] + s ( s + 1)( s + 2)
                                                  =
                                                                      s[( s + 2) 2 + 4]
                                                     s 2 + 2s + 16
                                                  = 3
                                                    s + 4 s 2 + 8s



INC212 Signals and Systems : 2 / 2554                                 Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
       Finite-Dimensional Systems

           bM s M + bM −1s M −1 +  + b1s + b0
   H ( s) = N
            s + a N −1s N −1 +  + a1s + a0
   ( s N + a N −1s N −1 +  + a1s + a0 )Y ( s ) = (bM s M + bM −1s M −1 +  + b1s + b0 ) X ( s )
   d N y (t ) N −1 d i y (t ) M d i x(t )
        N
             + ∑ ai      i
                             = ∑ bi
     dt        i =0  dt        i =0 dt i




INC212 Signals and Systems : 2 / 2554                           Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
       Poles and zeros of a Systems
                         bM s M + bM −1s M −1 +  + b1s + b0
                 H ( s) = N
                          s + a N −1s N −1 +  + a1s + a0
                          bM ( s − z1 )( s − z 2 )  ( s − z M )
                 H ( s) =
                           ( s − p1 )( s − p2 )  ( s − p N )
      zi : “zeros of H (s)” or “zeros of system”
      pi : “poles of H (s)” or “poles of system”
      N : “number of poles of system” or “order N of system”

INC212 Signals and Systems : 2 / 2554                 Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
       Example: Third-Order System
              2 s 2 + 12 s + 20
  H ( s) = 3
           s + 6 s 2 + 10s + 8
               2( s + 3 − j )( s + 3 + j )
  H ( s) =
           ( s + 4)( s + 1 − j )( s + 1 + j )
  z1 = −3 + j and z1 = −3 − j
   p1 = −4,      p 2 = −1 + j ,     p3 = −1 − j




INC212 Signals and Systems : 2 / 2554             Chapter 3 The Laplace Transform
Exercises
       Sketch the pole-zero plot and ROC for
        these signals.
                 x(t ) = e −8t u (t )
                 x(t ) = e 3t cos(20πt )u (−t )
                x(t ) = e 2t u (−t ) − e −5t u (t )




INC212 Signals and Systems : 2 / 2554                  Chapter 3 The Laplace Transform
Exercises
       Using the time-shifting property, find
        the LT of these signals.
                 x(t ) = u (t ) − u (t − 1)

                 x(t ) = 3e −3(t − 2)u (t − 2)
                 x(t ) = 3e −3t u (t − 2)
                 x(t ) = 5 sin(π (t − 1))u (t − 1)



INC212 Signals and Systems : 2 / 2554                 Chapter 3 The Laplace Transform
Exercises
       Find the inverse LT of these functions.
                           24                            20
               X ( s) =                     X (s) =
                        s ( s + 8)                    s 2 + 4s + 3

                         s2                           s
               X ( s) = 2                   X ( s) = 2
                       s − 4s + 4                   s + 4s + 4

                           5                          2s
               X ( s) = 2                   X ( s) = 2
                       s + 6 s + 73                 s + 2 s + 13


INC212 Signals and Systems : 2 / 2554         Chapter 3 The Laplace Transform
INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
Direct Construction of the TF
       RLC Circuits




                                        dv(t ) 1
                                              = i (t )
                                         dt    C
           v(t ) = Ri (t )                                                       di (t )
                                                             1        v(t ) = L
                                        sV ( s ) − v(0) = I ( s )                 dt
           V ( s ) = RI ( s )                                C
                                                   1           1      V ( s ) = LsI ( s ) − Li (0)
                                        V (s) =      I ( s ) + v(0)
                                                  Cs           s

INC212 Signals and Systems : 2 / 2554                             Chapter 3 The Laplace Transform
Direct Construction of the TF
       Series and Parallel Connection




                             Z1 ( s )                                  Z 2 (s)
          V1 ( s ) =                        V ( s)   I1 ( s ) =                        I ( s)
                       Z1 ( s ) + Z 2 ( s )                       Z1 ( s ) + Z 2 ( s )
                            Z 2 (s)                                     Z1 ( s )
          V2 ( s ) =                        V ( s)   I 2 (s) =                         I ( s)
                       Z1 ( s ) + Z 2 ( s )                       Z1 ( s ) + Z 2 ( s )

INC212 Signals and Systems : 2 / 2554                        Chapter 3 The Laplace Transform
Direct Construction of the TF
       Example: Series RLC Circuit




   Output = VC(s)                                     Output = VR(s)
                          1 Cs                                                R
           Vc ( s ) =                 X ( s)               VR ( s ) =                  X (s)
                     Ls + R + (1 Cs )                                 Ls + R + (1 Cs )
                             1 LC                                             ( R L) s
                   = 2                       X ( s)                = 2                       X ( s)
                     s + ( R L) s + (1 LC )                           s + ( R L) s + (1 LC )
                           1 LC                                            ( R L) s
           H ( s) = 2                                      H ( s) = 2
                   s + ( R L) s + (1 LC )                          s + ( R L) s + (1 LC )


INC212 Signals and Systems : 2 / 2554                            Chapter 3 The Laplace Transform
Direct Construction of the TF
       Interconnections of Integrators




INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
Direct Construction of the TF
                                         sQ1 ( s) = −4Q1 ( s ) + X ( s)
       Example:                         Q1 ( s) =
                                                     1
                                                    s+4
                                                           X (s)

                                         sQ2 ( s ) = Q1 ( s) − 3Q2 ( s) + X ( s )
                                                        1
                                         Q2 ( s ) =         [Q1 ( s ) + X ( s )]
                                                     s+3
                                                        1  1            
                                                  =                  + 1 X ( s )
                                                     s +3 s +4 
                                                           s+5
                                                  =                     X ( s)
                                                     ( s + 3)( s + 4)
                                         Y ( s ) = Q2 ( s ) + X ( s )
                                                          s+5
                                                 =                     X ( s) + X ( s)
                                                   ( s + 3)( s + 4)
                                                    s 2 + 8s + 17
                                                 =                     X ( s)
                                                   ( s + 3)( s + 4)
                                                   s 2 + 8s + 17 s 2 + 8s + 17
                                         H ( s) =                 =
                                                  ( s + 3)( s + 4) s 2 + 7 s + 12


INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
TF of Block Diagrams
       Parallel Interconnection

                                        Y ( s ) = Y1 ( s ) + Y2 ( s )
                                        Y1 ( s ) = H1 ( s ) X ( s )
                                        Y2 ( s ) = H 2 ( s ) X ( s )


                                        Y ( s ) = H1 ( s ) X ( s ) + H 2 ( s) X ( s)
                                                = ( H1 ( s ) + H 2 ( s )) X ( s )
                                        H ( s) = H1 ( s) + H 2 ( s )


INC212 Signals and Systems : 2 / 2554                 Chapter 3 The Laplace Transform
TF of Block Diagrams
       Series Connection



                      Y1 ( s ) = H1 ( s ) X ( s )
                      Y2 ( s ) = H 2 ( s )Y1 ( s )
                      Y ( s ) = Y2 ( s ) = H 2 ( s ) H1 ( s ) X ( s )
                       H ( s ) = H 2 ( s ) H1 ( s ) = H1 ( s ) H 2 ( s )

INC212 Signals and Systems : 2 / 2554                    Chapter 3 The Laplace Transform
TF of Block Diagrams
       Feedback Connection                     Y ( s) = H1 ( s) X 1 ( s)
                                                X 1 ( s ) = X ( s ) − Y2 ( s )
                                                          = X ( s ) − H 2 ( s )Y ( s )
                                                Y ( s ) = H1 ( s )[ X ( s ) − H 2 ( s )Y ( s )]
                                                               H1 ( s )
                                                Y (s) =                        X (s)
                                                          1 + H1 ( s) H 2 ( s)
                                                             H1 ( s)
                                                H (s) =
                                                        1 + H1 ( s) H 2 ( s)
                            H1 ( s)
             H (s) =
                       1 − H1 ( s ) H 2 ( s )


INC212 Signals and Systems : 2 / 2554                       Chapter 3 The Laplace Transform
INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform

Chapter3 laplace

  • 1.
    Signals & Systems Chapter 3 The Laplace Transform INC212 Signals and Systems : 2 / 2554
  • 2.
    Laplace Transform of unit-step Function ∞ ∞ X (σ + jω ) = ∫ e −(σ + jω ) t dt X (ω ) = ∫ x(t )e − j ωt dt 0 −∞ 1 ∞ X (σ + jω ) = − [e −(σ + jω ) t ]tt =∞ =0 σ + jω X (ω ) = ∫ 1⋅ e − jωt dt 0 1 X (σ + jω ) = − [ 0 − e − (σ + j ω ) 0 ] σ + jω ∞ X (ω ) = ∫ e e −σt − jωt dt X (σ + jω ) = 1 −∞ σ + jω ∞ X (ω ) = ∫ e −(σ + jω ) t dt σ + jω → s 0 1 X ( s) = s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 3.
    Laplace Transform ofSignals ∞ X ( s ) = ∫ x(t )e dt ; s = σ + jω − st −∞ One-side transform x(t ) = 0; t < 0 ∞ X ( s ) = ∫ x(t )e dt − st 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 4.
    Laplace Transform ofSignals ∞ 1, t ≥ 0 X ( s ) = ∫ x(t )e dt − st x(t ) = u (t ) =  0 0, t < 0 ∞ ∞ L[u (t )] = ∫ u (t )e dt − st = ∫ (1)e − st dt −∞ 0 − st ∞ e 1 =− = −0 − (− ), s > 0 s 0 s 1 ∴ L[u (t )] = , s > 0 s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 5.
    Relationship between theFT and ℒ T One-side transform or Forward transform x(t ) = 0; t < 0 ∴ s = jω ; σ = 0 ∞ ∞ X (ω ) = ∫ x(t )e − jω t dt X ( s ) = ∫ x(t )e − st dt 0 0 X (ω ) = X ( s ) s = jω x(t ) ↔ X ( s ) X ( s) = L[ x(t )] ; x(t ) = L−1[ X ( s )] INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 6.
    Common ℒ TPairs INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 7.
    Region of Convergence(ROC)  g1 (t ) = Aeαt u (t ); α > 0 ∞ ∞ ∞ G1 ( s ) = ∫ −∞ Aeαt u (t )e − st dt = A∫ e −( s −α )t dt = A∫ e (α −σ )t e − jωt dt 0 0 A ∴ G1 ( s ) = σ = Re( s ) > α s −α INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 8.
    Region of Convergence(ROC)  g 2 (t ) = Ae −αt u (−t ) = g1 (−t ); α > 0 ∞ 0 0 G2 ( s ) = ∫ −∞ Ae −αt u (−t )e − st dt = A ∫ e −( s +α )t dt = A ∫ e −(σ +α )t e − jωt dt −∞ −∞ A ∴ G2 ( s) = = G1 (− s ) σ = Re( s ) < −α s +α INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 9.
    Region of Convergence(ROC)  Example: x(t ) = e − t u (t ) + e −2t u (t ) L ∞ ∞ x(t ) ↔ X ( s ) = ∫ [e u (t ) + e u (t )]e dt = A∫ [e −( s +1) t + e −( s + 2) t ]dt −t − 2t − st −∞ 0 1 1 ∴ X (s) = + σ > −1 s +1 s + 2 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 10.
    Region of Convergence(ROC)  Example: x(t ) = e −t u (t ) + e 2t u (−t ) L1 L 1 −t e u (t ) ↔ σ > −1 e u (−t ) ↔ − 2t σ <2 s +1 s−2 L 1 1 −t ∴ e u (t ) + e u ( −t ) ↔ 2t − −1 < σ < 2 s +1 s − 2 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 11.
    Properties of the ℒT  Linearity L L x(t ) ↔ X ( s ) and v(t ) ↔ V ( s ) L ax(t ) + bv(t ) ↔ aX ( s ) + bV ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 12.
    Properties of the ℒT  Example: Linearity L[u (t ) + e − t u (t )] 1 −t 1 u (t ) ↔ and e u (t ) ↔ s s +1 −t 1 1 u (t ) + e u (t ) ↔ + s s +1 −t 2s + 1 u (t ) + e u (t ) ↔ s ( s + 1) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 13.
    Properties of the ℒT  Right Shift in Time x(t ) ↔ X ( s ) − cs x(t − c)u (t − c) ↔ e X (s) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 14.
    Properties of the ℒT  Example: Right Shift in Time 1, 0 ≤ t < c x(t ) =  0, all other t x(t ) = u (t ) − u (t − c) − cs − cs 1 e 1− e u (t ) − u (t − c) ↔ − = s s s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 15.
    Properties of theℒ T INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 16.
    Computation of theInverse ℒ T 1 c + j∞ 2π j ∫c − j∞ x(t ) = X ( s )e st ds INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 17.
    The Inverse ℒT using Partial-Fraction Expansion B( s) X ( s) = A( s ) Let p1, p2, …, pN B ( s ) = bM s M + bM −1s M −1 +  + b1s + b0 denote the roots A( s ) = a N s N + a N −1s N −1 +  + a1s + a0 of the equation A( s ) = 0 The pi for i = 1, 2, A( s ) = a N ( s − p1 )( s − p2 )  ( s − p N ) …,N are called the B( s) X (s) = poles of X(s) a N ( s − p1 )( s − p2 )  ( s − p N ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 18.
    Distinct Poles c1 c2 cN X ( s) = + ++ s − p1 s − p2 s − pN ci = [( s − pi ) X ( s )]s = pi , i = 1,2, , N x(t ) = c1e p1t + c2 e p2t +  + cN e pN t , t≥0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 19.
    Example: Distinct Poles s+2 ci = [( s − pi ) X ( s )]s = pi , i = 1,2, , N X ( s) = 3 s + 4 s 2 + 3s s+2 2 A( s ) = s + 4 s + 3s = s ( s + 1)( s + 3) c1 = [ sX ( s )]s =0 = ( s + 1)( s + 3) 3 2 = 3 s =0 A( s ) = 0 = s ( s + 1)( s + 3) s+2 1 p1 = 0, p2 = −1, p3 = −3 c2 = [( s + 1) X ( s )]s = −1 = = s ( s + 3) s = −1 − 2 c1 c2 c3 X ( s) = + + s+2 −1 s − 0 s − (−1) s − (−3) c3 = [( s + 3) X ( s )]s = −3 = = s ( s + 1) s = −3 6 c c c X ( s) = 1 + 2 + 3 2 1 − t 1 − 3t s s +1 s + 3 x(t ) = − e − e , t ≥ 0 3 2 6 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 20.
    Distinct Poles with2 or More Poles Complex c1 c1 c3 cN X (s) = + + ++ s − p1 s − p1 s − p3 s − pN x(t ) = c1e p1t + c1e p1t + c3e p3t +  + c N e p N t σt c1e p1t + c1e p1t = 2 c1 e cos(ωt + ∠c1 ) σt x(t ) = 2 c1 e cos(ωt + ∠c1 ) + c3e p3 t +  + cN e pN t INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 21.
    Example: Distinct Poleswith 2 or More Poles Complex ci = [( s − pi ) X ( s)]s = p , i = 1,2,, N s − 2s + 1 2 i X (s) = 3 s 2 − 2s + 1 s + 3s 2 + 4 s + 2 c1 = [( s + 1 − j ) X ( s )]s =−1+ j = ( s + 1 + j )( s + 1) s =−1+ j A( s ) = s 3 + 3s 2 + 4 s + 2 = ( s + 1 − j )( s + 1 + j )( s + 1) −3 c1 = + j2 2 p1 = −1 + j , p2 = −1 − j , p3 = −1 9 5 c1 = +4 = ; X ( s) = c1 + c1 + c3 4 2 s − (−1 + j ) s − (−1 − j ) s − (−1) −4 ∠c1 = 180° + tan −1 = 126.87° c1 c1 c3 3 X ( s) = + + s +1− j s +1+ j s +1 s 2 − 2s + 1 c3 = [( s + 1) X ( s )]s = −1 = 2 =4 s + 2 s + 2 s = −1 x(t ) = 5e −t cos(t + 126.87°) + 4e − t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 22.
    Repeated Poles B( s) c c2 cr c cN X (s) = X ( s) = 1 + ++ + r +1 +  + A( s ) s − p1 ( s − p1 ) 2 ( s − p1 ) r s − pr +1 s − pN ci = [( s − pi ) X ( s )]s = pi , i = r + 1, r + 2, , N cr = [( s − p1 ) r X ( s )]s = p1 1d  i = 1,2,  , r − 1 i = 1; cr −1 = [( s − p1 ) r X ( s )] 1!  ds   s = p1 1  di  cr − i =  i [( s − p1 ) X ( s )] r 1  d2  i!  ds  s = p1 i = 2; cr − 2 =  2 [( s − p1 ) r X ( s )] 2!  ds  s= p 1 x(t ) = c1e p1t + c2te p1t +  + cr t r −1e p1t + cr +1e pr +1t +  + c N e p N t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 23.
    Example: Repeated Poles 5s − 1 c1 c2 c X (s) = 3 X (s) = + + 3 s − 3s − 2 s + 1 ( s + 1) 2 s − 2 1d   d 5s − 1  −9 c1 = [( s + 1) 2 X ( s )] = [ ] = = −1 1!  ds   s = −1  ds s − 2  s = −1 ( s − 2) 2 s = −1 5s − 1 c2 = [( s + 1) 2 X ( s )]s = −1 = =2 s − 2 s = −1 5s − 1 c3 = [( s − 2) X ( s )]s = 2 = =1 ( s + 1) 2 s =2 x(t ) = −e − t + 2te − t + e 2t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 24.
    Case when M≥ N B(s) X (s) = A( s ) R( s) X ( s) = Q( s) + B( s ) = bM s M + bM −1s M −1 +  + b1s + b0 A( s ) A( s ) = a N s N + a N −1s N −1 +  + a1s + a0 R( s) X ( s ) = Q( s ) + V ( s ), V ( s ) = A( s ) Q(s) A( s ) B( s ) x(t ) = q (t ) + v(t ) A( s ) * Q ( s ) dN q(t ); δ (t ) ↔ s N R( s) dt N v(t ); v(t ) ↔ V ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 25.
    Example: Case whenM ≥ N s 3 + 2s − 4 20 s − 12 X (s) = 2 = s−4+ 2 s + 4s − 2 s + 4s − 2 X ( s) = Q( s) + V ( s) Q( s) = s − 4 d q(t ) = δ (t ) − 4δ (t ) dt 20s − 12 20.6145 0.6145 V ( s) = 2 = − s + 4 s − 2 s + 4.4495 s − 0.4495 v(t ) = 20.6145e − 4.4495t − 0.6145e 0.4495t , t ≥ 0 d x(t ) = δ (t ) − 4δ (t ) + 20.6145e − 4.4495t − 0.6145e 0.4495t , t ≥ 0 dt INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 26.
    Transform of theI/O Differential Equation  First-Order Case y (0 − ) b Y ( s) = + X (s) dy (t ) s+a s+a + ay (t ) = bx(t ) b dt Y ( s) = X (s) sY ( s ) − y (0 − ) + aY ( s ) = bX ( s ) s+a b ( s + a )Y ( s ) = y (0 − ) + bX ( s ) H (s) = s+a Y ( s) = H ( s) X ( s) H(s) Transfer Function (TF) of the system INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 27.
    Transform of theI/O Differential Equation  Example: First-Order Case dy (t ) 1 1 + y (t ) = x(t ) dt RC RC y (0 − ) 1 RC Y ( s) = + s + 1 RC ( s + 1 RC ) s y (0 − ) 1 RC Y (s) = + X (s) y (0 − ) 1 1 RC s + 1 RC s + 1 RC Y ( s) = + − s + 1 RC s s + 1 RC y (t ) = y (0 − )e −(1 RC ) t + 1 − e −(1 RC ) t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 28.
    Transform of theI/O Differential Equation  Second-Order Case d 2 y (t ) dy (t ) dx(t ) 2 + a1 + a0 y (t ) = b1 + b0 x(t ) dt dt dt [ ] s 2Y ( s ) − y (0 − ) s − y (0 − ) + a1 sY ( s ) − y (0 − ) + a0Y ( s ) = b1sX ( s ) + b0 X ( s )  y (0 − ) s + y (0 − ) + a1 y (0 − )  b1s + b0 Y (s) = + 2 X ( s) s + a1s + a0 2 s + a1s + a0 If initial condition = 0 : b1s + b0 b1s + b0 Y (s) = 2 X ( s) ; H ( s) = 2 s + a1s + a0 s + a1s + a0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 29.
    Transform of theI/O Differential Equation  Example: Second-Order Case x(t) = u(t) so that X(s) = 1/s; initial cond. = 0 d 2 y (t ) dy (t ) 2 +6 + 8 y (t ) = 2 x(t ) dt dt 2 H (s) = 2 2 1 s + 6s + 8 Y (s) = H (s) X (s) = s 2 + 6s + 8 s 0.25 0.5 0.25 Y (s) = − + s s+2 s+4 y (t ) = 0.25 − 0.5e − 2t + 0.25e − 4t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 30.
    Transform of theI/O Differential Equation  Example: Second-Order Case y (0 − ) = 1 x(t) = u(t) with the initial condition y (0 − ) = 2  s +8 2 1 Y ( s) = 2 + 2 s + 6s + 8 s + 6s + 8 s s 2 + 8s + 2 = s ( s 2 + 6 s + 8) 0.25 2.5 1.75 Y ( s) = + − s s+2 s+4 y (t ) = 0.25 + 2.5e − 2t − 1.75e − 4t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 31.
    Transform of theI/O Differential Equation  Nth-Order Case d N y (t ) N −1 d i y (t ) M d i x(t ) C (s) B(s) N + ∑ ai i = ∑ bi i ; Y ( s) = + X (s) dt i =0 dt i =0 dt A( s ) A( s ) B ( s ) = bM s M + bM −1s M −1 +  + b1s + b0 ; A( s ) = s N + a N −1s N −1 +  + a1s + a0 C ( s ) = y ( 0 − ) s + y ( 0 − ) + a1 y ( 0 − )  B( s) bM s M +  + b1s + b0 Y (s) = X (s) = N N −1 X (s) A( s ) s + a N −1s +  + a1s + a0 bM s M +  + b1s + b0 H (s) = N s + a N −1s N −1 +  + a1s + a0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 32.
    Transform of theI/O Convolution Integral t y (t ) = h(t ) ∗ x(t ) = ∫ h(λ ) x(t − λ )dλ , t ≥ 0 0 Y ( s) = H ( s) X ( s) h(t ) ↔ H ( s ) Y (s) H (s) = X (s) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 33.
    Transform of theI/O Convolution Integral  Example: Determining the TF y (t ) = 2 − 3e −t + e −2t cos 2t , t ≥ 0 2 3 s+2 − + 2 3 s+2 s s + 1 ( s + 2) 2 + 4 Y (s) = − + H (s) = s s + 1 ( s + 2) + 4 2 1 s +1 1 2( s + 1) ( s + 1)( s + 2) X (s) = = −3+ s +1 s ( s + 2) 2 + 4 [2( s + 1) − 3s ][( s + 2) 2 + 4] + s ( s + 1)( s + 2) = s[( s + 2) 2 + 4] s 2 + 2s + 16 = 3 s + 4 s 2 + 8s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 34.
    Transform of theI/O Convolution Integral  Finite-Dimensional Systems bM s M + bM −1s M −1 +  + b1s + b0 H ( s) = N s + a N −1s N −1 +  + a1s + a0 ( s N + a N −1s N −1 +  + a1s + a0 )Y ( s ) = (bM s M + bM −1s M −1 +  + b1s + b0 ) X ( s ) d N y (t ) N −1 d i y (t ) M d i x(t ) N + ∑ ai i = ∑ bi dt i =0 dt i =0 dt i INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 35.
    Transform of theI/O Convolution Integral  Poles and zeros of a Systems bM s M + bM −1s M −1 +  + b1s + b0 H ( s) = N s + a N −1s N −1 +  + a1s + a0 bM ( s − z1 )( s − z 2 )  ( s − z M ) H ( s) = ( s − p1 )( s − p2 )  ( s − p N ) zi : “zeros of H (s)” or “zeros of system” pi : “poles of H (s)” or “poles of system” N : “number of poles of system” or “order N of system” INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 36.
    Transform of theI/O Convolution Integral  Example: Third-Order System 2 s 2 + 12 s + 20 H ( s) = 3 s + 6 s 2 + 10s + 8 2( s + 3 − j )( s + 3 + j ) H ( s) = ( s + 4)( s + 1 − j )( s + 1 + j ) z1 = −3 + j and z1 = −3 − j p1 = −4, p 2 = −1 + j , p3 = −1 − j INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 37.
    Exercises  Sketch the pole-zero plot and ROC for these signals.  x(t ) = e −8t u (t )  x(t ) = e 3t cos(20πt )u (−t )  x(t ) = e 2t u (−t ) − e −5t u (t ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 38.
    Exercises  Using the time-shifting property, find the LT of these signals.  x(t ) = u (t ) − u (t − 1)  x(t ) = 3e −3(t − 2)u (t − 2)  x(t ) = 3e −3t u (t − 2)  x(t ) = 5 sin(π (t − 1))u (t − 1) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 39.
    Exercises  Find the inverse LT of these functions.  24  20 X ( s) = X (s) = s ( s + 8) s 2 + 4s + 3  s2  s X ( s) = 2 X ( s) = 2 s − 4s + 4 s + 4s + 4  5  2s X ( s) = 2 X ( s) = 2 s + 6 s + 73 s + 2 s + 13 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 40.
    INC212 Signals andSystems : 2 / 2554 Chapter 3 The Laplace Transform
  • 41.
    Direct Construction ofthe TF  RLC Circuits dv(t ) 1 = i (t ) dt C v(t ) = Ri (t ) di (t ) 1 v(t ) = L sV ( s ) − v(0) = I ( s ) dt V ( s ) = RI ( s ) C 1 1 V ( s ) = LsI ( s ) − Li (0) V (s) = I ( s ) + v(0) Cs s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 42.
    Direct Construction ofthe TF  Series and Parallel Connection Z1 ( s ) Z 2 (s) V1 ( s ) = V ( s) I1 ( s ) = I ( s) Z1 ( s ) + Z 2 ( s ) Z1 ( s ) + Z 2 ( s ) Z 2 (s) Z1 ( s ) V2 ( s ) = V ( s) I 2 (s) = I ( s) Z1 ( s ) + Z 2 ( s ) Z1 ( s ) + Z 2 ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 43.
    Direct Construction ofthe TF  Example: Series RLC Circuit Output = VC(s) Output = VR(s) 1 Cs R Vc ( s ) = X ( s) VR ( s ) = X (s) Ls + R + (1 Cs ) Ls + R + (1 Cs ) 1 LC ( R L) s = 2 X ( s) = 2 X ( s) s + ( R L) s + (1 LC ) s + ( R L) s + (1 LC ) 1 LC ( R L) s H ( s) = 2 H ( s) = 2 s + ( R L) s + (1 LC ) s + ( R L) s + (1 LC ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 44.
    Direct Construction ofthe TF  Interconnections of Integrators INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 45.
    Direct Construction ofthe TF sQ1 ( s) = −4Q1 ( s ) + X ( s)  Example: Q1 ( s) = 1 s+4 X (s) sQ2 ( s ) = Q1 ( s) − 3Q2 ( s) + X ( s ) 1 Q2 ( s ) = [Q1 ( s ) + X ( s )] s+3 1  1  =  + 1 X ( s ) s +3 s +4  s+5 = X ( s) ( s + 3)( s + 4) Y ( s ) = Q2 ( s ) + X ( s ) s+5 = X ( s) + X ( s) ( s + 3)( s + 4) s 2 + 8s + 17 = X ( s) ( s + 3)( s + 4) s 2 + 8s + 17 s 2 + 8s + 17 H ( s) = = ( s + 3)( s + 4) s 2 + 7 s + 12 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 46.
    TF of BlockDiagrams  Parallel Interconnection Y ( s ) = Y1 ( s ) + Y2 ( s ) Y1 ( s ) = H1 ( s ) X ( s ) Y2 ( s ) = H 2 ( s ) X ( s ) Y ( s ) = H1 ( s ) X ( s ) + H 2 ( s) X ( s) = ( H1 ( s ) + H 2 ( s )) X ( s ) H ( s) = H1 ( s) + H 2 ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 47.
    TF of BlockDiagrams  Series Connection Y1 ( s ) = H1 ( s ) X ( s ) Y2 ( s ) = H 2 ( s )Y1 ( s ) Y ( s ) = Y2 ( s ) = H 2 ( s ) H1 ( s ) X ( s ) H ( s ) = H 2 ( s ) H1 ( s ) = H1 ( s ) H 2 ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 48.
    TF of BlockDiagrams  Feedback Connection Y ( s) = H1 ( s) X 1 ( s) X 1 ( s ) = X ( s ) − Y2 ( s ) = X ( s ) − H 2 ( s )Y ( s ) Y ( s ) = H1 ( s )[ X ( s ) − H 2 ( s )Y ( s )] H1 ( s ) Y (s) = X (s) 1 + H1 ( s) H 2 ( s) H1 ( s) H (s) = 1 + H1 ( s) H 2 ( s) H1 ( s) H (s) = 1 − H1 ( s ) H 2 ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 49.
    INC212 Signals andSystems : 2 / 2554 Chapter 3 The Laplace Transform