SlideShare a Scribd company logo
Signals & Systems
                            Chapter 3

                  The Laplace Transform


INC212 Signals and Systems : 2 / 2554
Laplace Transform of
    unit-step Function
                                                                 ∞
                    ∞                         X (σ + jω ) = ∫ e −(σ + jω ) t dt
     X (ω ) = ∫ x(t )e          − j ωt
                                         dt                     0
                   −∞                                            1
                    ∞
                                              X (σ + jω ) = −        [e −(σ + jω ) t ]tt =∞
                                                                                         =0
                                                              σ + jω
     X (ω ) = ∫ 1⋅ e − jωt dt
                   0                                             1
                                              X (σ + jω ) = −        [ 0 − e − (σ + j ω ) 0 ]
                                                              σ + jω
                    ∞
     X (ω ) = ∫ e e     −σt − jωt
                                    dt        X (σ + jω ) =
                                                               1
                   −∞
                                                            σ + jω
                    ∞
     X (ω ) = ∫ e −(σ + jω ) t dt             σ + jω → s
                   0
                                                       1
                                              X ( s) =
                                                       s

INC212 Signals and Systems : 2 / 2554                          Chapter 3 The Laplace Transform
Laplace Transform of Signals
                                  ∞
                X ( s ) = ∫ x(t )e dt ; s = σ + jω
                                            − st
                                 −∞


    One-side transform                             x(t ) = 0; t < 0

                                        ∞
                       X ( s ) = ∫ x(t )e dt       − st
                                        0


INC212 Signals and Systems : 2 / 2554                     Chapter 3 The Laplace Transform
Laplace Transform of Signals
                           ∞                                                   1, t ≥ 0
             X ( s ) = ∫ x(t )e dt          − st
                                                              x(t ) = u (t ) = 
                           0                                                   0, t < 0
                                        ∞                            ∞
                  L[u (t )] = ∫ u (t )e dt             − st
                                                                 = ∫ (1)e − st dt
                                    −∞                              0
                                             − st ∞
                                        e                                 1
                                =−                               = −0 − (− ), s > 0
                                             s     0
                                                                          s
                              1
                 ∴ L[u (t )] = , s > 0
                              s

INC212 Signals and Systems : 2 / 2554                                   Chapter 3 The Laplace Transform
Relationship between the FT and ℒ T
    One-side transform or Forward transform
         x(t ) = 0; t < 0 ∴ s = jω ; σ = 0

                          ∞                                      ∞
           X (ω ) = ∫ x(t )e            − jω t
                                                 dt   X ( s ) = ∫ x(t )e − st dt
                          0                                      0

                                           X (ω ) = X ( s ) s = jω
                          x(t ) ↔ X ( s )
                          X ( s) = L[ x(t )] ; x(t ) = L−1[ X ( s )]

INC212 Signals and Systems : 2 / 2554                        Chapter 3 The Laplace Transform
Common ℒ T Pairs




INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
Region of Convergence (ROC)
            g1 (t ) = Aeαt u (t ); α > 0



                     ∞                           ∞                    ∞
        G1 ( s ) =   ∫
                     −∞
                       Aeαt u (t )e − st dt = A∫ e −( s −α )t dt = A∫ e (α −σ )t e − jωt dt
                                                 0                    0



                        A
         ∴ G1 ( s ) =            σ = Re( s ) > α
                      s −α


INC212 Signals and Systems : 2 / 2554                                Chapter 3 The Laplace Transform
Region of Convergence (ROC)
        g 2 (t ) = Ae −αt u (−t ) = g1 (−t ); α > 0




                     ∞                               0                     0
        G2 ( s ) =   ∫
                     −∞
                       Ae −αt u (−t )e − st dt = A ∫ e −( s +α )t dt = A ∫ e −(σ +α )t e − jωt dt
                                                    −∞                    −∞




                      A
        ∴ G2 ( s) =      = G1 (− s ) σ = Re( s ) < −α
                    s +α


INC212 Signals and Systems : 2 / 2554                                    Chapter 3 The Laplace Transform
Region of Convergence (ROC)
       Example:
             x(t ) = e − t u (t ) + e −2t u (t )


               L            ∞                                     ∞
         x(t ) ↔ X ( s ) = ∫ [e u (t ) + e u (t )]e dt = A∫ [e −( s +1) t + e −( s + 2) t ]dt
                                 −t         − 2t       − st

                            −∞                                     0




                       1    1
           ∴ X (s) =     +      σ > −1
                     s +1 s + 2


INC212 Signals and Systems : 2 / 2554                                  Chapter 3 The Laplace Transform
Region of Convergence (ROC)
       Example:
             x(t ) = e −t u (t ) + e 2t u (−t )

                            L1                             L       1
                 −t
                e u (t ) ↔      σ > −1            e u (−t ) ↔ −
                                                   2t
                                                                      σ <2
                           s +1                                   s−2


                                             L 1    1
                       −t
                   ∴ e u (t ) + e u ( −t ) ↔
                                   2t
                                                 −             −1 < σ < 2
                                             s +1 s − 2



INC212 Signals and Systems : 2 / 2554                          Chapter 3 The Laplace Transform
Properties of the                       ℒT
       Linearity

                            L                  L
                   x(t ) ↔ X ( s ) and v(t ) ↔ V ( s )

                                        L
                   ax(t ) + bv(t ) ↔ aX ( s ) + bV ( s )


INC212 Signals and Systems : 2 / 2554          Chapter 3 The Laplace Transform
Properties of the                      ℒT
       Example: Linearity                   L[u (t ) + e − t u (t )]

                                   1            −t       1
                        u (t ) ↔       and e u (t ) ↔
                                   s                   s +1
                                  −t        1       1
                        u (t ) + e u (t ) ↔ +
                                            s s +1
                                  −t         2s + 1
                        u (t ) + e u (t ) ↔
                                            s ( s + 1)

INC212 Signals and Systems : 2 / 2554            Chapter 3 The Laplace Transform
Properties of the                        ℒT
       Right Shift in Time

                              x(t ) ↔ X ( s )
                                                        − cs
                                x(t − c)u (t − c) ↔ e          X (s)



INC212 Signals and Systems : 2 / 2554           Chapter 3 The Laplace Transform
Properties of the                           ℒT
       Example: Right Shift in Time
                                     1, 0 ≤ t < c
                             x(t ) = 
                                     0, all other t

                            x(t ) = u (t ) − u (t − c)
                                               − cs             − cs
                                  1 e     1− e
              u (t ) − u (t − c) ↔ −    =
                                  s   s      s

INC212 Signals and Systems : 2 / 2554                  Chapter 3 The Laplace Transform
Properties of the ℒ T




INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
Computation of the Inverse ℒ T

                                   1 c + j∞
                                  2π j ∫c − j∞
                          x(t ) =              X ( s )e st ds




INC212 Signals and Systems : 2 / 2554                  Chapter 3 The Laplace Transform
The Inverse ℒ T using
    Partial-Fraction Expansion
               B( s)
      X ( s) =
               A( s )
                                                        Let p1, p2, …, pN
     B ( s ) = bM s M + bM −1s M −1 +  + b1s + b0      denote the roots
      A( s ) = a N s N + a N −1s N −1 +  + a1s + a0    of the equation
                                              A( s ) = 0
     The pi for i = 1, 2,
                                              A( s ) = a N ( s − p1 )( s − p2 )  ( s − p N )
     …,N are called the                                                B( s)
                                              X (s) =
     poles of X(s)                                    a N ( s − p1 )( s − p2 )  ( s − p N )


INC212 Signals and Systems : 2 / 2554                         Chapter 3 The Laplace Transform
Distinct Poles
                            c1     c2         cN
                 X ( s) =       +       ++
                          s − p1 s − p2     s − pN
                 ci = [( s − pi ) X ( s )]s = pi , i = 1,2, , N



            x(t ) = c1e       p1t
                                    + c2 e   p2t
                                                   +  + cN e   pN t
                                                                       , t≥0


INC212 Signals and Systems : 2 / 2554                    Chapter 3 The Laplace Transform
Example: Distinct Poles
                s+2                          ci = [( s − pi ) X ( s )]s = pi , i = 1,2, , N
  X ( s) = 3
            s + 4 s 2 + 3s                                                 s+2               2
  A( s ) = s + 4 s + 3s = s ( s + 1)( s + 3) c1 = [ sX ( s )]s =0 = ( s + 1)( s + 3)
            3       2                                                                      =
                                                                                             3
                                                                                      s =0
  A( s ) = 0 = s ( s + 1)( s + 3)
                                                                                s+2              1
  p1 = 0, p2 = −1, p3 = −3                    c2 = [( s + 1) X ( s )]s = −1 =                  =
                                                                              s ( s + 3) s = −1 − 2
            c1     c2       c3
  X ( s) =     +        +                                           s+2              −1
          s − 0 s − (−1) s − (−3) c3 = [( s + 3) X ( s )]s = −3 =                  =
                                                                  s ( s + 1) s = −3 6
          c    c      c
  X ( s) = 1 + 2 + 3                           2 1 − t 1 − 3t
           s s +1 s + 3              x(t ) = − e − e , t ≥ 0
                                                            3     2          6

INC212 Signals and Systems : 2 / 2554                             Chapter 3 The Laplace Transform
Distinct Poles with 2 or More
    Poles Complex
                        c1     c1     c3         cN
              X (s) =       +      +       ++
                      s − p1 s − p1 s − p3     s − pN


       x(t ) = c1e      p1t
                              + c1e     p1t
                                              + c3e p3t +  + c N e p N t
                                              σt
      c1e   p1t
                  + c1e   p1t
                                   = 2 c1 e cos(ωt + ∠c1 )
                              σt
       x(t ) = 2 c1 e cos(ωt + ∠c1 ) + c3e                      p3 t
                                                                       +  + cN e    pN t




INC212 Signals and Systems : 2 / 2554                         Chapter 3 The Laplace Transform
Example: Distinct Poles with 2 or
    More Poles Complex
                                                   ci = [( s − pi ) X ( s)]s = p , i = 1,2,, N
               s − 2s + 1
                  2                                                             i


   X (s) = 3                                                                                    s 2 − 2s + 1
           s + 3s 2 + 4 s + 2                      c1 = [( s + 1 − j ) X ( s )]s =−1+ j   =
                                                                                            ( s + 1 + j )( s + 1) s =−1+ j
   A( s ) = s 3 + 3s 2 + 4 s + 2
          = ( s + 1 − j )( s + 1 + j )( s + 1)        −3
                                                   c1 =     + j2
                                                       2
   p1 = −1 + j , p2 = −1 − j , p3 = −1
                                                          9         5
                                                 c1 =       +4 =            ;
   X ( s) =
                 c1
                         +
                               c1
                                       +
                                           c3             4         2
            s − (−1 + j ) s − (−1 − j ) s − (−1)                           −4
                                                 ∠c1 = 180° + tan −1            = 126.87°
               c1          c1      c3                                         3
   X ( s) =          +          +
            s +1− j s +1+ j s +1                                                 s 2 − 2s + 1
                                                 c3 = [( s + 1) X ( s )]s = −1 = 2                 =4
                                                                                s + 2 s + 2 s = −1

  x(t ) = 5e −t cos(t + 126.87°) + 4e − t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                                        Chapter 3 The Laplace Transform
Repeated Poles
                B( s)            c         c2               cr        c           cN
    X (s) =            X ( s) = 1 +                ++             + r +1 +  +
                A( s )         s − p1 ( s − p1 ) 2     ( s − p1 ) r s − pr +1   s − pN
   ci = [( s − pi ) X ( s )]s = pi , i = r + 1, r + 2, , N
   cr = [( s − p1 ) r X ( s )]s = p1
                                                                 1d                           
   i = 1,2,  , r − 1                           i = 1; cr −1 =           [( s − p1 ) r X ( s )]
                                                                 1!  ds
                                                                                               s = p1
             1  di                   
   cr − i   =  i [( s − p1 ) X ( s )]
                             r
                                                              1  d2                     
             i!  ds                   s = p1 i = 2; cr − 2 =  2 [( s − p1 ) r X ( s )]
                                                              2!  ds                     s= p           1



       x(t ) = c1e p1t + c2te p1t +  + cr t r −1e p1t + cr +1e pr +1t +  + c N e p N t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                              Chapter 3 The Laplace Transform
Example: Repeated Poles
                        5s − 1                                           c1       c2      c
              X (s) = 3                                       X (s) =        +          + 3
                     s − 3s − 2                                         s + 1 ( s + 1) 2 s − 2

                1d                                  d 5s − 1             −9
         c1 =           [( s + 1) 2 X ( s )]       = [       ]       =                         = −1
                1!  ds
                                            s = −1  ds s − 2  s = −1 ( s − 2)
                                                                                  2
                                                                                         s = −1

                                             5s − 1
         c2 = [( s + 1) 2 X ( s )]s = −1 =                =2
                                             s − 2 s = −1
                                           5s − 1
         c3 = [( s − 2) X ( s )]s = 2 =                       =1
                                          ( s + 1) 2   s =2



                               x(t ) = −e − t + 2te − t + e 2t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                                       Chapter 3 The Laplace Transform
Case when M ≥ N
              B(s)
    X (s) =
              A( s )                                                           R( s)
                                                              X ( s) = Q( s) +
    B( s ) = bM s M + bM −1s M −1 +  + b1s + b0                               A( s )
    A( s ) = a N s N + a N −1s N −1 +  + a1s + a0
                                                                                             R( s)
                                                     X ( s ) = Q( s ) + V ( s ), V ( s ) =
                                                                                             A( s )
                          Q(s)
          A( s ) B( s )                              x(t ) = q (t ) + v(t )
                 A( s ) * Q ( s )                             dN
                                                     q(t );        δ (t ) ↔ s N
                 R( s)                                        dt N
                                                     v(t ); v(t ) ↔ V ( s )

INC212 Signals and Systems : 2 / 2554                              Chapter 3 The Laplace Transform
Example: Case when M ≥ N
                          s 3 + 2s − 4            20 s − 12
                X (s) = 2              = s−4+ 2
                          s + 4s − 2             s + 4s − 2
                X ( s) = Q( s) + V ( s)
                Q( s) = s − 4
                         d
                q(t ) = δ (t ) − 4δ (t )
                        dt
                           20s − 12        20.6145        0.6145
                V ( s) = 2             =            −
                         s + 4 s − 2 s + 4.4495 s − 0.4495
                v(t ) = 20.6145e − 4.4495t − 0.6145e 0.4495t , t ≥ 0
                         d
                x(t ) = δ (t ) − 4δ (t ) + 20.6145e − 4.4495t − 0.6145e 0.4495t , t ≥ 0
                        dt

INC212 Signals and Systems : 2 / 2554                           Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       First-Order Case
                                                           y (0 − )      b
                                                  Y ( s) =          +      X (s)
      dy (t )                                              s+a s+a
               + ay (t ) = bx(t )                            b
       dt                                         Y ( s) =         X (s)
      sY ( s ) − y (0 − ) + aY ( s ) = bX ( s )            s+a
                                                              b
      ( s + a )Y ( s ) = y (0 − ) + bX ( s )      H (s) =
                                                           s+a
                                                  Y ( s) = H ( s) X ( s)

        H(s)          Transfer Function (TF) of the system

INC212 Signals and Systems : 2 / 2554                   Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       Example: First-Order Case

                                                   dy (t ) 1             1
                                                          +    y (t ) =    x(t )
                                                    dt      RC          RC

                                                   y (0 − )   1 RC
                                        Y ( s) =            +
                                                 s + 1 RC ( s + 1 RC ) s
               y (0 − )   1 RC
     Y (s) =            +      X (s)               y (0 − )  1  1 RC
             s + 1 RC s + 1 RC          Y ( s) =            + −
                                                 s + 1 RC s s + 1 RC
                                        y (t ) = y (0 − )e −(1 RC ) t + 1 − e −(1 RC ) t , t ≥ 0
INC212 Signals and Systems : 2 / 2554                      Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       Second-Order Case
  d 2 y (t )       dy (t )                  dx(t )
        2
             + a1          + a0 y (t ) = b1         + b0 x(t )
     dt              dt                       dt
                                        [                  ]
  s 2Y ( s ) − y (0 − ) s − y (0 − ) + a1 sY ( s ) − y (0 − ) + a0Y ( s ) = b1sX ( s ) + b0 X ( s )
                            
          y (0 − ) s + y (0 − ) + a1 y (0 − )
                                                 b1s + b0
  Y (s) =                                     + 2           X ( s)
                    s + a1s + a0
                     2
                                               s + a1s + a0

         If initial condition = 0 :
                       b1s + b0                      b1s + b0
             Y (s) = 2           X ( s) ; H ( s) = 2
                    s + a1s + a0                  s + a1s + a0

INC212 Signals and Systems : 2 / 2554                             Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       Example: Second-Order Case
        x(t) = u(t) so that X(s) = 1/s; initial cond. = 0
      d 2 y (t )    dy (t )
           2
                 +6         + 8 y (t ) = 2 x(t )
        dt           dt
                     2
      H (s) = 2                                                               2       1
                 s + 6s + 8                      Y (s) = H (s) X (s) =
                                                                        s 2 + 6s + 8 s
                                                        0.25 0.5 0.25
                                              Y (s) =        −         +
                                                          s    s+2 s+4
                                              y (t ) = 0.25 − 0.5e − 2t + 0.25e − 4t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                         Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
       Example: Second-Order Case                                   y (0 − ) = 1
        x(t) = u(t) with the initial condition
                                                                     y (0 − ) = 2
                                                                     
                                   s +8           2        1
                  Y ( s) = 2                 + 2
                              s + 6s + 8 s + 6s + 8 s
                                s 2 + 8s + 2
                           =
                              s ( s 2 + 6 s + 8)
                            0.25 2.5 1.75
                  Y ( s) =          +        −
                              s       s+2 s+4
                  y (t ) = 0.25 + 2.5e − 2t − 1.75e − 4t , t ≥ 0

INC212 Signals and Systems : 2 / 2554                    Chapter 3 The Laplace Transform
Transform of the I/O
    Differential Equation
        Nth-Order Case
  d N y (t ) N −1 d i y (t ) M d i x(t )            C (s) B(s)
       N
            + ∑ ai      i
                            = ∑ bi    i
                                         ; Y ( s) =       +       X (s)
    dt        i =0  dt        i =0 dt               A( s ) A( s )
  B ( s ) = bM s M + bM −1s M −1 +  + b1s + b0 ;    A( s ) = s N + a N −1s N −1 +  + a1s + a0
  C ( s ) = y ( 0 − ) s + y ( 0 − ) + a1 y ( 0 − )
                          

                         B( s)            bM s M +  + b1s + b0
                 Y (s) =        X (s) = N         N −1
                                                                  X (s)
                         A( s )        s + a N −1s +  + a1s + a0
                            bM s M +  + b1s + b0
                  H (s) = N
                         s + a N −1s N −1 +  + a1s + a0

INC212 Signals and Systems : 2 / 2554                           Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
                                        t
         y (t ) = h(t ) ∗ x(t ) = ∫ h(λ ) x(t − λ )dλ , t ≥ 0
                                        0

         Y ( s) = H ( s) X ( s)
         h(t ) ↔ H ( s )
                 Y (s)
         H (s) =
                 X (s)


INC212 Signals and Systems : 2 / 2554       Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
       Example: Determining the TF
  y (t ) = 2 − 3e −t + e −2t cos 2t , t ≥ 0         2      3           s+2
                                                       −       +
            2     3           s+2                    s s + 1 ( s + 2) 2 + 4
  Y (s) = −           +                     H (s) =
            s s + 1 ( s + 2) + 4 2                                1
                                                                s +1
               1                                    2( s + 1)        ( s + 1)( s + 2)
  X (s) =                                         =           −3+
             s +1                                        s            ( s + 2) 2 + 4
                                                    [2( s + 1) − 3s ][( s + 2) 2 + 4] + s ( s + 1)( s + 2)
                                                  =
                                                                      s[( s + 2) 2 + 4]
                                                     s 2 + 2s + 16
                                                  = 3
                                                    s + 4 s 2 + 8s



INC212 Signals and Systems : 2 / 2554                                 Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
       Finite-Dimensional Systems

           bM s M + bM −1s M −1 +  + b1s + b0
   H ( s) = N
            s + a N −1s N −1 +  + a1s + a0
   ( s N + a N −1s N −1 +  + a1s + a0 )Y ( s ) = (bM s M + bM −1s M −1 +  + b1s + b0 ) X ( s )
   d N y (t ) N −1 d i y (t ) M d i x(t )
        N
             + ∑ ai      i
                             = ∑ bi
     dt        i =0  dt        i =0 dt i




INC212 Signals and Systems : 2 / 2554                           Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
       Poles and zeros of a Systems
                         bM s M + bM −1s M −1 +  + b1s + b0
                 H ( s) = N
                          s + a N −1s N −1 +  + a1s + a0
                          bM ( s − z1 )( s − z 2 )  ( s − z M )
                 H ( s) =
                           ( s − p1 )( s − p2 )  ( s − p N )
      zi : “zeros of H (s)” or “zeros of system”
      pi : “poles of H (s)” or “poles of system”
      N : “number of poles of system” or “order N of system”

INC212 Signals and Systems : 2 / 2554                 Chapter 3 The Laplace Transform
Transform of the I/O
    Convolution Integral
       Example: Third-Order System
              2 s 2 + 12 s + 20
  H ( s) = 3
           s + 6 s 2 + 10s + 8
               2( s + 3 − j )( s + 3 + j )
  H ( s) =
           ( s + 4)( s + 1 − j )( s + 1 + j )
  z1 = −3 + j and z1 = −3 − j
   p1 = −4,      p 2 = −1 + j ,     p3 = −1 − j




INC212 Signals and Systems : 2 / 2554             Chapter 3 The Laplace Transform
Exercises
       Sketch the pole-zero plot and ROC for
        these signals.
                 x(t ) = e −8t u (t )
                 x(t ) = e 3t cos(20πt )u (−t )
                x(t ) = e 2t u (−t ) − e −5t u (t )




INC212 Signals and Systems : 2 / 2554                  Chapter 3 The Laplace Transform
Exercises
       Using the time-shifting property, find
        the LT of these signals.
                 x(t ) = u (t ) − u (t − 1)

                 x(t ) = 3e −3(t − 2)u (t − 2)
                 x(t ) = 3e −3t u (t − 2)
                 x(t ) = 5 sin(π (t − 1))u (t − 1)



INC212 Signals and Systems : 2 / 2554                 Chapter 3 The Laplace Transform
Exercises
       Find the inverse LT of these functions.
                           24                            20
               X ( s) =                     X (s) =
                        s ( s + 8)                    s 2 + 4s + 3

                         s2                           s
               X ( s) = 2                   X ( s) = 2
                       s − 4s + 4                   s + 4s + 4

                           5                          2s
               X ( s) = 2                   X ( s) = 2
                       s + 6 s + 73                 s + 2 s + 13


INC212 Signals and Systems : 2 / 2554         Chapter 3 The Laplace Transform
INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
Direct Construction of the TF
       RLC Circuits




                                        dv(t ) 1
                                              = i (t )
                                         dt    C
           v(t ) = Ri (t )                                                       di (t )
                                                             1        v(t ) = L
                                        sV ( s ) − v(0) = I ( s )                 dt
           V ( s ) = RI ( s )                                C
                                                   1           1      V ( s ) = LsI ( s ) − Li (0)
                                        V (s) =      I ( s ) + v(0)
                                                  Cs           s

INC212 Signals and Systems : 2 / 2554                             Chapter 3 The Laplace Transform
Direct Construction of the TF
       Series and Parallel Connection




                             Z1 ( s )                                  Z 2 (s)
          V1 ( s ) =                        V ( s)   I1 ( s ) =                        I ( s)
                       Z1 ( s ) + Z 2 ( s )                       Z1 ( s ) + Z 2 ( s )
                            Z 2 (s)                                     Z1 ( s )
          V2 ( s ) =                        V ( s)   I 2 (s) =                         I ( s)
                       Z1 ( s ) + Z 2 ( s )                       Z1 ( s ) + Z 2 ( s )

INC212 Signals and Systems : 2 / 2554                        Chapter 3 The Laplace Transform
Direct Construction of the TF
       Example: Series RLC Circuit




   Output = VC(s)                                     Output = VR(s)
                          1 Cs                                                R
           Vc ( s ) =                 X ( s)               VR ( s ) =                  X (s)
                     Ls + R + (1 Cs )                                 Ls + R + (1 Cs )
                             1 LC                                             ( R L) s
                   = 2                       X ( s)                = 2                       X ( s)
                     s + ( R L) s + (1 LC )                           s + ( R L) s + (1 LC )
                           1 LC                                            ( R L) s
           H ( s) = 2                                      H ( s) = 2
                   s + ( R L) s + (1 LC )                          s + ( R L) s + (1 LC )


INC212 Signals and Systems : 2 / 2554                            Chapter 3 The Laplace Transform
Direct Construction of the TF
       Interconnections of Integrators




INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
Direct Construction of the TF
                                         sQ1 ( s) = −4Q1 ( s ) + X ( s)
       Example:                         Q1 ( s) =
                                                     1
                                                    s+4
                                                           X (s)

                                         sQ2 ( s ) = Q1 ( s) − 3Q2 ( s) + X ( s )
                                                        1
                                         Q2 ( s ) =         [Q1 ( s ) + X ( s )]
                                                     s+3
                                                        1  1            
                                                  =                  + 1 X ( s )
                                                     s +3 s +4 
                                                           s+5
                                                  =                     X ( s)
                                                     ( s + 3)( s + 4)
                                         Y ( s ) = Q2 ( s ) + X ( s )
                                                          s+5
                                                 =                     X ( s) + X ( s)
                                                   ( s + 3)( s + 4)
                                                    s 2 + 8s + 17
                                                 =                     X ( s)
                                                   ( s + 3)( s + 4)
                                                   s 2 + 8s + 17 s 2 + 8s + 17
                                         H ( s) =                 =
                                                  ( s + 3)( s + 4) s 2 + 7 s + 12


INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform
TF of Block Diagrams
       Parallel Interconnection

                                        Y ( s ) = Y1 ( s ) + Y2 ( s )
                                        Y1 ( s ) = H1 ( s ) X ( s )
                                        Y2 ( s ) = H 2 ( s ) X ( s )


                                        Y ( s ) = H1 ( s ) X ( s ) + H 2 ( s) X ( s)
                                                = ( H1 ( s ) + H 2 ( s )) X ( s )
                                        H ( s) = H1 ( s) + H 2 ( s )


INC212 Signals and Systems : 2 / 2554                 Chapter 3 The Laplace Transform
TF of Block Diagrams
       Series Connection



                      Y1 ( s ) = H1 ( s ) X ( s )
                      Y2 ( s ) = H 2 ( s )Y1 ( s )
                      Y ( s ) = Y2 ( s ) = H 2 ( s ) H1 ( s ) X ( s )
                       H ( s ) = H 2 ( s ) H1 ( s ) = H1 ( s ) H 2 ( s )

INC212 Signals and Systems : 2 / 2554                    Chapter 3 The Laplace Transform
TF of Block Diagrams
       Feedback Connection                     Y ( s) = H1 ( s) X 1 ( s)
                                                X 1 ( s ) = X ( s ) − Y2 ( s )
                                                          = X ( s ) − H 2 ( s )Y ( s )
                                                Y ( s ) = H1 ( s )[ X ( s ) − H 2 ( s )Y ( s )]
                                                               H1 ( s )
                                                Y (s) =                        X (s)
                                                          1 + H1 ( s) H 2 ( s)
                                                             H1 ( s)
                                                H (s) =
                                                        1 + H1 ( s) H 2 ( s)
                            H1 ( s)
             H (s) =
                       1 − H1 ( s ) H 2 ( s )


INC212 Signals and Systems : 2 / 2554                       Chapter 3 The Laplace Transform
INC212 Signals and Systems : 2 / 2554   Chapter 3 The Laplace Transform

More Related Content

What's hot

Laplace equation
Laplace equationLaplace equation
Laplace equation
alexkhan129
 
M1 unit viii-jntuworld
M1 unit viii-jntuworldM1 unit viii-jntuworld
M1 unit viii-jntuworldmrecedu
 
Lecture10 Signal and Systems
Lecture10 Signal and SystemsLecture10 Signal and Systems
Lecture10 Signal and Systems
babak danyal
 
Concept of-complex-frequency
Concept of-complex-frequencyConcept of-complex-frequency
Concept of-complex-frequencyVishal Thakur
 
Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
Dhaval Shukla
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
Jayanshu Gundaniya
 
Lecture 23 loop transfer function
Lecture 23 loop transfer functionLecture 23 loop transfer function
Lecture 23 loop transfer function
bennedy ningthoukhongjam
 
Unit v laplace transform(formula)
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)Babu Rao
 
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
Waqas Afzal
 
signal and system Dirac delta functions (1)
signal and system Dirac delta functions (1)signal and system Dirac delta functions (1)
signal and system Dirac delta functions (1)
iqbal ahmad
 
Tf
TfTf
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
Simen Li
 
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Alessandro Palmeri
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis
宗翰 謝
 
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
Sukhvinder Singh
 
Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]
Asafak Husain
 
Linear transformation and application
Linear transformation and applicationLinear transformation and application
Linear transformation and application
shreyansp
 

What's hot (20)

Laplace equation
Laplace equationLaplace equation
Laplace equation
 
M1 unit viii-jntuworld
M1 unit viii-jntuworldM1 unit viii-jntuworld
M1 unit viii-jntuworld
 
Lecture10 Signal and Systems
Lecture10 Signal and SystemsLecture10 Signal and Systems
Lecture10 Signal and Systems
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Concept of-complex-frequency
Concept of-complex-frequencyConcept of-complex-frequency
Concept of-complex-frequency
 
Control chap10
Control chap10Control chap10
Control chap10
 
Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
 
Lecture 23 loop transfer function
Lecture 23 loop transfer functionLecture 23 loop transfer function
Lecture 23 loop transfer function
 
Unit v laplace transform(formula)
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)
 
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
 
signal and system Dirac delta functions (1)
signal and system Dirac delta functions (1)signal and system Dirac delta functions (1)
signal and system Dirac delta functions (1)
 
Tf
TfTf
Tf
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
 
residue
residueresidue
residue
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis
 
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
 
Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]
 
Linear transformation and application
Linear transformation and applicationLinear transformation and application
Linear transformation and application
 

Viewers also liked

Laplace Transform And Its Applications
Laplace Transform And Its ApplicationsLaplace Transform And Its Applications
Laplace Transform And Its Applications
Smit Shah
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
taha25
 
Chapter 2 Laplace Transform
Chapter 2 Laplace TransformChapter 2 Laplace Transform
Chapter 2 Laplace TransformZakiah Saad
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
Chandra Kundu
 
Laplace transform and its applications
Laplace transform and its applicationsLaplace transform and its applications
Laplace transform and its applications
Nisarg Shah
 
Signals and systems( chapter 1)
Signals and systems( chapter 1)Signals and systems( chapter 1)
Signals and systems( chapter 1)Fariza Zahari
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
Edhole.com
 
Logics of the laplace transform
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transformTarun Gehlot
 
sampling theorem | Communication Systems
sampling theorem | Communication Systemssampling theorem | Communication Systems
sampling theorem | Communication Systems
Learn By Watch
 
Dsp U Lec02 Data Converters
Dsp U   Lec02 Data ConvertersDsp U   Lec02 Data Converters
Dsp U Lec02 Data Converters
taha25
 
Dsp U Lec03 Analogue To Digital Converters
Dsp U   Lec03 Analogue To Digital ConvertersDsp U   Lec03 Analogue To Digital Converters
Dsp U Lec03 Analogue To Digital Converters
taha25
 
Laplace
LaplaceLaplace
Dsp U Lec08 Fir Filter Design
Dsp U   Lec08 Fir Filter DesignDsp U   Lec08 Fir Filter Design
Dsp U Lec08 Fir Filter Design
taha25
 
Dsp U Lec01 Real Time Dsp Systems
Dsp U   Lec01 Real Time Dsp SystemsDsp U   Lec01 Real Time Dsp Systems
Dsp U Lec01 Real Time Dsp Systems
taha25
 
Bab 1-kontrak kuliah pte
Bab 1-kontrak kuliah pteBab 1-kontrak kuliah pte
Bab 1-kontrak kuliah pte
kartiria sonata
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
Jaydrath Sindhav
 
Dsp U Lec06 The Z Transform And Its Application
Dsp U   Lec06 The Z Transform And Its ApplicationDsp U   Lec06 The Z Transform And Its Application
Dsp U Lec06 The Z Transform And Its Application
taha25
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
taha25
 

Viewers also liked (20)

Laplace Transform And Its Applications
Laplace Transform And Its ApplicationsLaplace Transform And Its Applications
Laplace Transform And Its Applications
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
 
Chapter 2 Laplace Transform
Chapter 2 Laplace TransformChapter 2 Laplace Transform
Chapter 2 Laplace Transform
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
Laplace transform and its applications
Laplace transform and its applicationsLaplace transform and its applications
Laplace transform and its applications
 
Signals and systems( chapter 1)
Signals and systems( chapter 1)Signals and systems( chapter 1)
Signals and systems( chapter 1)
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
 
05 weekly report (9 may 2012)
05 weekly report (9 may 2012)05 weekly report (9 may 2012)
05 weekly report (9 may 2012)
 
Logics of the laplace transform
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transform
 
sampling theorem | Communication Systems
sampling theorem | Communication Systemssampling theorem | Communication Systems
sampling theorem | Communication Systems
 
Dsp U Lec02 Data Converters
Dsp U   Lec02 Data ConvertersDsp U   Lec02 Data Converters
Dsp U Lec02 Data Converters
 
Dsp U Lec03 Analogue To Digital Converters
Dsp U   Lec03 Analogue To Digital ConvertersDsp U   Lec03 Analogue To Digital Converters
Dsp U Lec03 Analogue To Digital Converters
 
Laplace
LaplaceLaplace
Laplace
 
Chapter6 sampling
Chapter6 samplingChapter6 sampling
Chapter6 sampling
 
Dsp U Lec08 Fir Filter Design
Dsp U   Lec08 Fir Filter DesignDsp U   Lec08 Fir Filter Design
Dsp U Lec08 Fir Filter Design
 
Dsp U Lec01 Real Time Dsp Systems
Dsp U   Lec01 Real Time Dsp SystemsDsp U   Lec01 Real Time Dsp Systems
Dsp U Lec01 Real Time Dsp Systems
 
Bab 1-kontrak kuliah pte
Bab 1-kontrak kuliah pteBab 1-kontrak kuliah pte
Bab 1-kontrak kuliah pte
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
 
Dsp U Lec06 The Z Transform And Its Application
Dsp U   Lec06 The Z Transform And Its ApplicationDsp U   Lec06 The Z Transform And Its Application
Dsp U Lec06 The Z Transform And Its Application
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 

Similar to Chapter3 laplace

Tele3113 wk11wed
Tele3113 wk11wedTele3113 wk11wed
Tele3113 wk11wedVin Voro
 
Wide sense stationary process in digital communication
Wide sense stationary process in digital communicationWide sense stationary process in digital communication
Wide sense stationary process in digital communication
VitthalGavhane1
 
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...Alexander Decker
 
Final Present Pap1on relibility
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibility
ketan gajjar
 
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...Alexander Decker
 
160511 hasegawa lab_seminar
160511 hasegawa lab_seminar160511 hasegawa lab_seminar
160511 hasegawa lab_seminar
Tomohiro Koana
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Chiheb Ben Hammouda
 
11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...Alexander Decker
 
Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...
Alexander Decker
 
501 lecture8
501 lecture8501 lecture8
501 lecture8
Vladmir Tavares
 
Cash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap FuturesCash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap Futures
Clarus Financial Technology
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
SEENET-MTP
 
Balanced homodyne detection
Balanced homodyne detectionBalanced homodyne detection
Balanced homodyne detectionwtyru1989
 
Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009
Sean Meyn
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
joni joy
 
Laplace table
Laplace tableLaplace table
Laplace table
noori734
 
Laplace table
Laplace tableLaplace table
Laplace tableprathsel
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
Edhole.com
 

Similar to Chapter3 laplace (20)

Tele3113 wk11wed
Tele3113 wk11wedTele3113 wk11wed
Tele3113 wk11wed
 
Midsem sol 2013
Midsem sol 2013Midsem sol 2013
Midsem sol 2013
 
Wide sense stationary process in digital communication
Wide sense stationary process in digital communicationWide sense stationary process in digital communication
Wide sense stationary process in digital communication
 
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
 
Chapter4 tf
Chapter4 tfChapter4 tf
Chapter4 tf
 
Final Present Pap1on relibility
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibility
 
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
 
160511 hasegawa lab_seminar
160511 hasegawa lab_seminar160511 hasegawa lab_seminar
160511 hasegawa lab_seminar
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...
 
Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...
 
501 lecture8
501 lecture8501 lecture8
501 lecture8
 
Cash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap FuturesCash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap Futures
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
 
Balanced homodyne detection
Balanced homodyne detectionBalanced homodyne detection
Balanced homodyne detection
 
Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
 

Recently uploaded

Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
Mohammed Sikander
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
Group Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana BuscigliopptxGroup Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana Buscigliopptx
ArianaBusciglio
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
deeptiverma2406
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 

Recently uploaded (20)

Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
Group Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana BuscigliopptxGroup Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana Buscigliopptx
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 

Chapter3 laplace

  • 1. Signals & Systems Chapter 3 The Laplace Transform INC212 Signals and Systems : 2 / 2554
  • 2. Laplace Transform of unit-step Function ∞ ∞ X (σ + jω ) = ∫ e −(σ + jω ) t dt X (ω ) = ∫ x(t )e − j ωt dt 0 −∞ 1 ∞ X (σ + jω ) = − [e −(σ + jω ) t ]tt =∞ =0 σ + jω X (ω ) = ∫ 1⋅ e − jωt dt 0 1 X (σ + jω ) = − [ 0 − e − (σ + j ω ) 0 ] σ + jω ∞ X (ω ) = ∫ e e −σt − jωt dt X (σ + jω ) = 1 −∞ σ + jω ∞ X (ω ) = ∫ e −(σ + jω ) t dt σ + jω → s 0 1 X ( s) = s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 3. Laplace Transform of Signals ∞ X ( s ) = ∫ x(t )e dt ; s = σ + jω − st −∞ One-side transform x(t ) = 0; t < 0 ∞ X ( s ) = ∫ x(t )e dt − st 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 4. Laplace Transform of Signals ∞ 1, t ≥ 0 X ( s ) = ∫ x(t )e dt − st x(t ) = u (t ) =  0 0, t < 0 ∞ ∞ L[u (t )] = ∫ u (t )e dt − st = ∫ (1)e − st dt −∞ 0 − st ∞ e 1 =− = −0 − (− ), s > 0 s 0 s 1 ∴ L[u (t )] = , s > 0 s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 5. Relationship between the FT and ℒ T One-side transform or Forward transform x(t ) = 0; t < 0 ∴ s = jω ; σ = 0 ∞ ∞ X (ω ) = ∫ x(t )e − jω t dt X ( s ) = ∫ x(t )e − st dt 0 0 X (ω ) = X ( s ) s = jω x(t ) ↔ X ( s ) X ( s) = L[ x(t )] ; x(t ) = L−1[ X ( s )] INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 6. Common ℒ T Pairs INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 7. Region of Convergence (ROC)  g1 (t ) = Aeαt u (t ); α > 0 ∞ ∞ ∞ G1 ( s ) = ∫ −∞ Aeαt u (t )e − st dt = A∫ e −( s −α )t dt = A∫ e (α −σ )t e − jωt dt 0 0 A ∴ G1 ( s ) = σ = Re( s ) > α s −α INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 8. Region of Convergence (ROC)  g 2 (t ) = Ae −αt u (−t ) = g1 (−t ); α > 0 ∞ 0 0 G2 ( s ) = ∫ −∞ Ae −αt u (−t )e − st dt = A ∫ e −( s +α )t dt = A ∫ e −(σ +α )t e − jωt dt −∞ −∞ A ∴ G2 ( s) = = G1 (− s ) σ = Re( s ) < −α s +α INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 9. Region of Convergence (ROC)  Example: x(t ) = e − t u (t ) + e −2t u (t ) L ∞ ∞ x(t ) ↔ X ( s ) = ∫ [e u (t ) + e u (t )]e dt = A∫ [e −( s +1) t + e −( s + 2) t ]dt −t − 2t − st −∞ 0 1 1 ∴ X (s) = + σ > −1 s +1 s + 2 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 10. Region of Convergence (ROC)  Example: x(t ) = e −t u (t ) + e 2t u (−t ) L1 L 1 −t e u (t ) ↔ σ > −1 e u (−t ) ↔ − 2t σ <2 s +1 s−2 L 1 1 −t ∴ e u (t ) + e u ( −t ) ↔ 2t − −1 < σ < 2 s +1 s − 2 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 11. Properties of the ℒT  Linearity L L x(t ) ↔ X ( s ) and v(t ) ↔ V ( s ) L ax(t ) + bv(t ) ↔ aX ( s ) + bV ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 12. Properties of the ℒT  Example: Linearity L[u (t ) + e − t u (t )] 1 −t 1 u (t ) ↔ and e u (t ) ↔ s s +1 −t 1 1 u (t ) + e u (t ) ↔ + s s +1 −t 2s + 1 u (t ) + e u (t ) ↔ s ( s + 1) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 13. Properties of the ℒT  Right Shift in Time x(t ) ↔ X ( s ) − cs x(t − c)u (t − c) ↔ e X (s) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 14. Properties of the ℒT  Example: Right Shift in Time 1, 0 ≤ t < c x(t ) =  0, all other t x(t ) = u (t ) − u (t − c) − cs − cs 1 e 1− e u (t ) − u (t − c) ↔ − = s s s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 15. Properties of the ℒ T INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 16. Computation of the Inverse ℒ T 1 c + j∞ 2π j ∫c − j∞ x(t ) = X ( s )e st ds INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 17. The Inverse ℒ T using Partial-Fraction Expansion B( s) X ( s) = A( s ) Let p1, p2, …, pN B ( s ) = bM s M + bM −1s M −1 +  + b1s + b0 denote the roots A( s ) = a N s N + a N −1s N −1 +  + a1s + a0 of the equation A( s ) = 0 The pi for i = 1, 2, A( s ) = a N ( s − p1 )( s − p2 )  ( s − p N ) …,N are called the B( s) X (s) = poles of X(s) a N ( s − p1 )( s − p2 )  ( s − p N ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 18. Distinct Poles c1 c2 cN X ( s) = + ++ s − p1 s − p2 s − pN ci = [( s − pi ) X ( s )]s = pi , i = 1,2, , N x(t ) = c1e p1t + c2 e p2t +  + cN e pN t , t≥0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 19. Example: Distinct Poles s+2 ci = [( s − pi ) X ( s )]s = pi , i = 1,2, , N X ( s) = 3 s + 4 s 2 + 3s s+2 2 A( s ) = s + 4 s + 3s = s ( s + 1)( s + 3) c1 = [ sX ( s )]s =0 = ( s + 1)( s + 3) 3 2 = 3 s =0 A( s ) = 0 = s ( s + 1)( s + 3) s+2 1 p1 = 0, p2 = −1, p3 = −3 c2 = [( s + 1) X ( s )]s = −1 = = s ( s + 3) s = −1 − 2 c1 c2 c3 X ( s) = + + s+2 −1 s − 0 s − (−1) s − (−3) c3 = [( s + 3) X ( s )]s = −3 = = s ( s + 1) s = −3 6 c c c X ( s) = 1 + 2 + 3 2 1 − t 1 − 3t s s +1 s + 3 x(t ) = − e − e , t ≥ 0 3 2 6 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 20. Distinct Poles with 2 or More Poles Complex c1 c1 c3 cN X (s) = + + ++ s − p1 s − p1 s − p3 s − pN x(t ) = c1e p1t + c1e p1t + c3e p3t +  + c N e p N t σt c1e p1t + c1e p1t = 2 c1 e cos(ωt + ∠c1 ) σt x(t ) = 2 c1 e cos(ωt + ∠c1 ) + c3e p3 t +  + cN e pN t INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 21. Example: Distinct Poles with 2 or More Poles Complex ci = [( s − pi ) X ( s)]s = p , i = 1,2,, N s − 2s + 1 2 i X (s) = 3 s 2 − 2s + 1 s + 3s 2 + 4 s + 2 c1 = [( s + 1 − j ) X ( s )]s =−1+ j = ( s + 1 + j )( s + 1) s =−1+ j A( s ) = s 3 + 3s 2 + 4 s + 2 = ( s + 1 − j )( s + 1 + j )( s + 1) −3 c1 = + j2 2 p1 = −1 + j , p2 = −1 − j , p3 = −1 9 5 c1 = +4 = ; X ( s) = c1 + c1 + c3 4 2 s − (−1 + j ) s − (−1 − j ) s − (−1) −4 ∠c1 = 180° + tan −1 = 126.87° c1 c1 c3 3 X ( s) = + + s +1− j s +1+ j s +1 s 2 − 2s + 1 c3 = [( s + 1) X ( s )]s = −1 = 2 =4 s + 2 s + 2 s = −1 x(t ) = 5e −t cos(t + 126.87°) + 4e − t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 22. Repeated Poles B( s) c c2 cr c cN X (s) = X ( s) = 1 + ++ + r +1 +  + A( s ) s − p1 ( s − p1 ) 2 ( s − p1 ) r s − pr +1 s − pN ci = [( s − pi ) X ( s )]s = pi , i = r + 1, r + 2, , N cr = [( s − p1 ) r X ( s )]s = p1 1d  i = 1,2,  , r − 1 i = 1; cr −1 = [( s − p1 ) r X ( s )] 1!  ds   s = p1 1  di  cr − i =  i [( s − p1 ) X ( s )] r 1  d2  i!  ds  s = p1 i = 2; cr − 2 =  2 [( s − p1 ) r X ( s )] 2!  ds  s= p 1 x(t ) = c1e p1t + c2te p1t +  + cr t r −1e p1t + cr +1e pr +1t +  + c N e p N t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 23. Example: Repeated Poles 5s − 1 c1 c2 c X (s) = 3 X (s) = + + 3 s − 3s − 2 s + 1 ( s + 1) 2 s − 2 1d   d 5s − 1  −9 c1 = [( s + 1) 2 X ( s )] = [ ] = = −1 1!  ds   s = −1  ds s − 2  s = −1 ( s − 2) 2 s = −1 5s − 1 c2 = [( s + 1) 2 X ( s )]s = −1 = =2 s − 2 s = −1 5s − 1 c3 = [( s − 2) X ( s )]s = 2 = =1 ( s + 1) 2 s =2 x(t ) = −e − t + 2te − t + e 2t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 24. Case when M ≥ N B(s) X (s) = A( s ) R( s) X ( s) = Q( s) + B( s ) = bM s M + bM −1s M −1 +  + b1s + b0 A( s ) A( s ) = a N s N + a N −1s N −1 +  + a1s + a0 R( s) X ( s ) = Q( s ) + V ( s ), V ( s ) = A( s ) Q(s) A( s ) B( s ) x(t ) = q (t ) + v(t ) A( s ) * Q ( s ) dN q(t ); δ (t ) ↔ s N R( s) dt N v(t ); v(t ) ↔ V ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 25. Example: Case when M ≥ N s 3 + 2s − 4 20 s − 12 X (s) = 2 = s−4+ 2 s + 4s − 2 s + 4s − 2 X ( s) = Q( s) + V ( s) Q( s) = s − 4 d q(t ) = δ (t ) − 4δ (t ) dt 20s − 12 20.6145 0.6145 V ( s) = 2 = − s + 4 s − 2 s + 4.4495 s − 0.4495 v(t ) = 20.6145e − 4.4495t − 0.6145e 0.4495t , t ≥ 0 d x(t ) = δ (t ) − 4δ (t ) + 20.6145e − 4.4495t − 0.6145e 0.4495t , t ≥ 0 dt INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 26. Transform of the I/O Differential Equation  First-Order Case y (0 − ) b Y ( s) = + X (s) dy (t ) s+a s+a + ay (t ) = bx(t ) b dt Y ( s) = X (s) sY ( s ) − y (0 − ) + aY ( s ) = bX ( s ) s+a b ( s + a )Y ( s ) = y (0 − ) + bX ( s ) H (s) = s+a Y ( s) = H ( s) X ( s) H(s) Transfer Function (TF) of the system INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 27. Transform of the I/O Differential Equation  Example: First-Order Case dy (t ) 1 1 + y (t ) = x(t ) dt RC RC y (0 − ) 1 RC Y ( s) = + s + 1 RC ( s + 1 RC ) s y (0 − ) 1 RC Y (s) = + X (s) y (0 − ) 1 1 RC s + 1 RC s + 1 RC Y ( s) = + − s + 1 RC s s + 1 RC y (t ) = y (0 − )e −(1 RC ) t + 1 − e −(1 RC ) t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 28. Transform of the I/O Differential Equation  Second-Order Case d 2 y (t ) dy (t ) dx(t ) 2 + a1 + a0 y (t ) = b1 + b0 x(t ) dt dt dt [ ] s 2Y ( s ) − y (0 − ) s − y (0 − ) + a1 sY ( s ) − y (0 − ) + a0Y ( s ) = b1sX ( s ) + b0 X ( s )  y (0 − ) s + y (0 − ) + a1 y (0 − )  b1s + b0 Y (s) = + 2 X ( s) s + a1s + a0 2 s + a1s + a0 If initial condition = 0 : b1s + b0 b1s + b0 Y (s) = 2 X ( s) ; H ( s) = 2 s + a1s + a0 s + a1s + a0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 29. Transform of the I/O Differential Equation  Example: Second-Order Case x(t) = u(t) so that X(s) = 1/s; initial cond. = 0 d 2 y (t ) dy (t ) 2 +6 + 8 y (t ) = 2 x(t ) dt dt 2 H (s) = 2 2 1 s + 6s + 8 Y (s) = H (s) X (s) = s 2 + 6s + 8 s 0.25 0.5 0.25 Y (s) = − + s s+2 s+4 y (t ) = 0.25 − 0.5e − 2t + 0.25e − 4t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 30. Transform of the I/O Differential Equation  Example: Second-Order Case y (0 − ) = 1 x(t) = u(t) with the initial condition y (0 − ) = 2  s +8 2 1 Y ( s) = 2 + 2 s + 6s + 8 s + 6s + 8 s s 2 + 8s + 2 = s ( s 2 + 6 s + 8) 0.25 2.5 1.75 Y ( s) = + − s s+2 s+4 y (t ) = 0.25 + 2.5e − 2t − 1.75e − 4t , t ≥ 0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 31. Transform of the I/O Differential Equation  Nth-Order Case d N y (t ) N −1 d i y (t ) M d i x(t ) C (s) B(s) N + ∑ ai i = ∑ bi i ; Y ( s) = + X (s) dt i =0 dt i =0 dt A( s ) A( s ) B ( s ) = bM s M + bM −1s M −1 +  + b1s + b0 ; A( s ) = s N + a N −1s N −1 +  + a1s + a0 C ( s ) = y ( 0 − ) s + y ( 0 − ) + a1 y ( 0 − )  B( s) bM s M +  + b1s + b0 Y (s) = X (s) = N N −1 X (s) A( s ) s + a N −1s +  + a1s + a0 bM s M +  + b1s + b0 H (s) = N s + a N −1s N −1 +  + a1s + a0 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 32. Transform of the I/O Convolution Integral t y (t ) = h(t ) ∗ x(t ) = ∫ h(λ ) x(t − λ )dλ , t ≥ 0 0 Y ( s) = H ( s) X ( s) h(t ) ↔ H ( s ) Y (s) H (s) = X (s) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 33. Transform of the I/O Convolution Integral  Example: Determining the TF y (t ) = 2 − 3e −t + e −2t cos 2t , t ≥ 0 2 3 s+2 − + 2 3 s+2 s s + 1 ( s + 2) 2 + 4 Y (s) = − + H (s) = s s + 1 ( s + 2) + 4 2 1 s +1 1 2( s + 1) ( s + 1)( s + 2) X (s) = = −3+ s +1 s ( s + 2) 2 + 4 [2( s + 1) − 3s ][( s + 2) 2 + 4] + s ( s + 1)( s + 2) = s[( s + 2) 2 + 4] s 2 + 2s + 16 = 3 s + 4 s 2 + 8s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 34. Transform of the I/O Convolution Integral  Finite-Dimensional Systems bM s M + bM −1s M −1 +  + b1s + b0 H ( s) = N s + a N −1s N −1 +  + a1s + a0 ( s N + a N −1s N −1 +  + a1s + a0 )Y ( s ) = (bM s M + bM −1s M −1 +  + b1s + b0 ) X ( s ) d N y (t ) N −1 d i y (t ) M d i x(t ) N + ∑ ai i = ∑ bi dt i =0 dt i =0 dt i INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 35. Transform of the I/O Convolution Integral  Poles and zeros of a Systems bM s M + bM −1s M −1 +  + b1s + b0 H ( s) = N s + a N −1s N −1 +  + a1s + a0 bM ( s − z1 )( s − z 2 )  ( s − z M ) H ( s) = ( s − p1 )( s − p2 )  ( s − p N ) zi : “zeros of H (s)” or “zeros of system” pi : “poles of H (s)” or “poles of system” N : “number of poles of system” or “order N of system” INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 36. Transform of the I/O Convolution Integral  Example: Third-Order System 2 s 2 + 12 s + 20 H ( s) = 3 s + 6 s 2 + 10s + 8 2( s + 3 − j )( s + 3 + j ) H ( s) = ( s + 4)( s + 1 − j )( s + 1 + j ) z1 = −3 + j and z1 = −3 − j p1 = −4, p 2 = −1 + j , p3 = −1 − j INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 37. Exercises  Sketch the pole-zero plot and ROC for these signals.  x(t ) = e −8t u (t )  x(t ) = e 3t cos(20πt )u (−t )  x(t ) = e 2t u (−t ) − e −5t u (t ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 38. Exercises  Using the time-shifting property, find the LT of these signals.  x(t ) = u (t ) − u (t − 1)  x(t ) = 3e −3(t − 2)u (t − 2)  x(t ) = 3e −3t u (t − 2)  x(t ) = 5 sin(π (t − 1))u (t − 1) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 39. Exercises  Find the inverse LT of these functions.  24  20 X ( s) = X (s) = s ( s + 8) s 2 + 4s + 3  s2  s X ( s) = 2 X ( s) = 2 s − 4s + 4 s + 4s + 4  5  2s X ( s) = 2 X ( s) = 2 s + 6 s + 73 s + 2 s + 13 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 40. INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 41. Direct Construction of the TF  RLC Circuits dv(t ) 1 = i (t ) dt C v(t ) = Ri (t ) di (t ) 1 v(t ) = L sV ( s ) − v(0) = I ( s ) dt V ( s ) = RI ( s ) C 1 1 V ( s ) = LsI ( s ) − Li (0) V (s) = I ( s ) + v(0) Cs s INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 42. Direct Construction of the TF  Series and Parallel Connection Z1 ( s ) Z 2 (s) V1 ( s ) = V ( s) I1 ( s ) = I ( s) Z1 ( s ) + Z 2 ( s ) Z1 ( s ) + Z 2 ( s ) Z 2 (s) Z1 ( s ) V2 ( s ) = V ( s) I 2 (s) = I ( s) Z1 ( s ) + Z 2 ( s ) Z1 ( s ) + Z 2 ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 43. Direct Construction of the TF  Example: Series RLC Circuit Output = VC(s) Output = VR(s) 1 Cs R Vc ( s ) = X ( s) VR ( s ) = X (s) Ls + R + (1 Cs ) Ls + R + (1 Cs ) 1 LC ( R L) s = 2 X ( s) = 2 X ( s) s + ( R L) s + (1 LC ) s + ( R L) s + (1 LC ) 1 LC ( R L) s H ( s) = 2 H ( s) = 2 s + ( R L) s + (1 LC ) s + ( R L) s + (1 LC ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 44. Direct Construction of the TF  Interconnections of Integrators INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 45. Direct Construction of the TF sQ1 ( s) = −4Q1 ( s ) + X ( s)  Example: Q1 ( s) = 1 s+4 X (s) sQ2 ( s ) = Q1 ( s) − 3Q2 ( s) + X ( s ) 1 Q2 ( s ) = [Q1 ( s ) + X ( s )] s+3 1  1  =  + 1 X ( s ) s +3 s +4  s+5 = X ( s) ( s + 3)( s + 4) Y ( s ) = Q2 ( s ) + X ( s ) s+5 = X ( s) + X ( s) ( s + 3)( s + 4) s 2 + 8s + 17 = X ( s) ( s + 3)( s + 4) s 2 + 8s + 17 s 2 + 8s + 17 H ( s) = = ( s + 3)( s + 4) s 2 + 7 s + 12 INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 46. TF of Block Diagrams  Parallel Interconnection Y ( s ) = Y1 ( s ) + Y2 ( s ) Y1 ( s ) = H1 ( s ) X ( s ) Y2 ( s ) = H 2 ( s ) X ( s ) Y ( s ) = H1 ( s ) X ( s ) + H 2 ( s) X ( s) = ( H1 ( s ) + H 2 ( s )) X ( s ) H ( s) = H1 ( s) + H 2 ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 47. TF of Block Diagrams  Series Connection Y1 ( s ) = H1 ( s ) X ( s ) Y2 ( s ) = H 2 ( s )Y1 ( s ) Y ( s ) = Y2 ( s ) = H 2 ( s ) H1 ( s ) X ( s ) H ( s ) = H 2 ( s ) H1 ( s ) = H1 ( s ) H 2 ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 48. TF of Block Diagrams  Feedback Connection Y ( s) = H1 ( s) X 1 ( s) X 1 ( s ) = X ( s ) − Y2 ( s ) = X ( s ) − H 2 ( s )Y ( s ) Y ( s ) = H1 ( s )[ X ( s ) − H 2 ( s )Y ( s )] H1 ( s ) Y (s) = X (s) 1 + H1 ( s) H 2 ( s) H1 ( s) H (s) = 1 + H1 ( s) H 2 ( s) H1 ( s) H (s) = 1 − H1 ( s ) H 2 ( s ) INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform
  • 49. INC212 Signals and Systems : 2 / 2554 Chapter 3 The Laplace Transform