Chapter 4
The Fourier Series and
Fourier Transform
• Consider the CT signal defined by
• The frequencies `present in the signal’ are the
frequency of the component sinusoids
• The signal x(t) is completely characterized by
the set of frequencies , the set of amplitudes
, and the set of phases
Representation of Signals in Terms
of Frequency Components
1
( ) cos( ),
N
k k k
k
x t A t t
 

  

k

k

k
A k

• Consider the CT signal given by
• The signal has only three frequency
components at 1,4, and 8 rad/sec, amplitudes
and phases
• The shape of the signal x(t) depends on the
relative magnitudes of the frequency
components, specified in terms of the
amplitudes
Example: Sum of Sinusoids
1 2 3
( ) cos( ) cos(4 /3) cos(8 / 2),
x t A t A t A t
t
 
    

1 2 3
, ,
A A A 0, /3, / 2
 
1 2 3
, ,
A A A
Example: Sum of Sinusoids –Cont’d
1
2
3
0.5
1
0
A
A
A





 

1
2
3
1
0.5
0
A
A
A





 

1
2
3
1
1
0
A
A
A





 

Example: Sum of Sinusoids –Cont’d
1
2
3
0.5
1
0.5
A
A
A





 

1
2
3
1
0.5
0.5
A
A
A





 

1
2
3
1
1
1
A
A
A





 

• Plot of the amplitudes of the sinusoids
making up x(t) vs.
• Example:
Amplitude Spectrum
k
A


• Plot of the phases of the sinusoids
making up x(t) vs.
• Example:
Phase Spectrum
k



• Euler formula:
• Thus
whence
Complex Exponential Form
cos( ) sin( )
j
e j

 
 
( )
cos( ) k k
j t
k k k k
A t A e  
  
 
   
( )
1
( ) ,
k k
N
j t
k
k
x t A e t
 


 
  
 

real part
• And, recalling that where
, we can also write
• This signal contains both positive and
negative frequencies
• The negative frequencies stem from
writing the cosine in terms of complex
exponentials and have no physical meaning
Complex Exponential Form – Cont’d
( ) ( )/ 2
z z z
  
z a jb
 
( ) ( )
1
1
( ) ,
2
k k k k
N
j t j t
k k
k
x t A e A e t
   
  

 
  
 

k


• By defining
it is also
Complex Exponential Form – Cont’d
2
k
j
k
k
A
c e 

2
k
j
k
k
A
c e 

 
1
0
( ) ,
k k k
N N
j t j t j t
k k k
k N
k
k
x t c e c e c e t
  





 
   
 
 
complex exponential form
of the signal x(t)
• The amplitude spectrum of x(t) is defined as
the plot of the magnitudes versus
• The phase spectrum of x(t) is defined as the
plot of the angles versus
• This results in line spectra which are defined
for both positive and negative frequencies
• Notice: for
Line Spectra
| |
k
c


arg( )
k k
c c
 
| | | |
k k
c c
 k k
c c
  
arg( ) arg( )
k k
c c
 
1,2,
k 
Example: Line Spectra
( ) cos( ) 0.5cos(4 /3) cos(8 / 2)
x t t t t
 
    
0.
0.
• Let x(t) be a CT periodic signal with period
T, i.e.,
• Example: the rectangular pulse train
Fourier Series Representation of
Periodic Signals
( ) ( ),
x t T x t t R
   
• Then, x(t) can be expressed as
where is the fundamental
frequency (rad/sec) of the signal and
The Fourier Series
0
( ) ,
jk t
k
k
x t c e t



 

/ 2
/ 2
1
( ) , 0, 1, 2,
o
T
jk t
k
T
c x t e dt k
T



   

0 2 /T
 

is called the constant or dc component of x(t)
0
c
• The frequencies present in x(t) are
integer multiples of the fundamental
frequency
• Notice that, if the dc term is added to
and we set , the Fourier series is a
special case of the above equation where all
the frequencies are integer multiples of
The Fourier Series – Cont’d
0
k
0

0
( ) k
N
j t
k
k N
k
x t c e 


 
N  
0

0
c
• A periodic signal x(t), has a Fourier series
if it satisfies the following conditions:
1. x(t) is absolutely integrable over any
period, namely
2. x(t) has only a finite number of maxima
and minima over any period
3. x(t) has only a finite number of
discontinuities over any period
Dirichlet Conditions
| ( ) | ,
a T
a
x t dt a

   

• From figure, whence
• Clearly x(t) satisfies the Dirichlet conditions and
thus has a Fourier series representation
Example: The Rectangular Pulse Train
2
T  0 2 / 2
  
 
Example: The Rectangular Pulse
Train – Cont’d
|( 1)/ 2|
1 1
( ) ( 1) ,
2
k jk t
k
k odd
x t e t
k





   

• By using Euler’s formula, we can rewrite
as
• This expression is called the trigonometric
Fourier series of x(t)
Trigonometric Fourier Series
0
( ) ,
jk t
k
k
x t c e t



 

0 0
1
( ) 2 | |cos( ),
k k
k
x t c c k t c t



    

dc component k-th harmonic
• The expression
can be rewritten as
Example: Trigonometric Fourier
Series of the Rectangular Pulse Train
|( 1)/ 2|
1 1
( ) ( 1) ,
2
k jk t
k
k odd
x t e t
k





   

( 1)/ 2
1
1 2
( ) cos ( 1) 1 ,
2 2
k
k
k odd
x t k t t
k






 
 
     
 
 
 

• Given an odd positive integer N, define the
N-th partial sum of the previous series
• According to Fourier’s theorem, it should be
Gibbs Phenomenon
( 1)/ 2
1
1 2
( ) cos ( 1) 1 ,
2 2
N
k
N
k
k odd
x t k t t
k





 
 
     
 
 
 

lim | ( ) ( ) | 0
N
N
x t x t

 
Gibbs Phenomenon – Cont’d
3 ( )
x t 9 ( )
x t
Gibbs Phenomenon – Cont’d
21( )
x t 45 ( )
x t
overshoot: about 9 % of the signal magnitude
(present even if )
N  
• Let x(t) be a periodic signal with period T
• The average power P of the signal is defined
as
• Expressing the signal as
it is also
Parseval’s Theorem
/ 2
2
/ 2
1
( )
T
T
P x t dt
T 
 
0
( ) ,
jk t
k
k
x t c e t



 

2
| |
k
k
P c


 
• We have seen that periodic signals can be
represented with the Fourier series
• Can aperiodic signals be analyzed in terms of
frequency components?
• Yes, and the Fourier transform provides the
tool for this analysis
• The major difference w.r.t. the line spectra of
periodic signals is that the spectra of
aperiodic signals are defined for all real
values of the frequency variable not just
for a discrete set of values
Fourier Transform

Frequency Content of the
Rectangular Pulse
( )
T
x t
( )
x t
( ) lim ( )
T
T
x t x t


• Since is periodic with period T, we can
write
Frequency Content of the
Rectangular Pulse – Cont’d
( )
T
x t
0
( ) ,
jk t
T k
k
x t c e t



 

where
/ 2
/ 2
1
( ) , 0, 1, 2,
o
T
jk t
k
T
c x t e dt k
T



   

• What happens to the frequency components
of as ?
• For
• For
Frequency Content of the
Rectangular Pulse – Cont’d
( )
T
x t T  
0
k 
0
1
c
T

0
k 
0 0
0
2 1
sin sin , 1, 2,
2 2
k
k k
c k
k T k
 
 
   
    
   
   
0 2 /T
 

Frequency Content of the
Rectangular Pulse – Cont’d
plots of
vs.
for
| |
k
T c
0
k
 

2,5,10
T 
• It can be easily shown that
where
Frequency Content of the
Rectangular Pulse – Cont’d
lim sinc ,
2
k
T
Tc




 
 
 
 
sin( )
sinc( )



• The Fourier transform of the rectangular
pulse x(t) is defined to be the limit of
as , i.e.,
Fourier Transform of the Rectangular
Pulse
( ) lim sinc ,
2
k
T
X Tc

 


 
  
 
 
k
Tc
T  
| ( ) |
X  arg( ( ))
X 
• The Fourier transform of the
rectangular pulse x(t) can be expressed in
terms of x(t) as follows:
Fourier Transform of the Rectangular
Pulse – Cont’d
( )
X 
1
( ) , 0, 1, 2,
o
jk t
k
c x t e dt k
T




   

( ) , 0, 1, 2,
o
jk t
k
Tc x t e dt k




   

whence
( ) 0 for / 2 and / 2
x t t T t T
   
• Now, by definition and,
since
• The inverse Fourier transform of is
Fourier Transform of the Rectangular
Pulse – Cont’d
( ) lim k
T
X Tc



0 as
k T
 
  
( ) ( ) ,
j t
X x t e dt

 



 

1
( ) ( ) ,
2
j t
x t X e d t

 



 

( )
X 
• Given a signal x(t), its Fourier transform
is defined as
• A signal x(t) is said to have a Fourier
transform in the ordinary sense if the above
integral converges
The Fourier Transform in the General
Case
( )
X 
( ) ( ) ,
j t
X x t e dt

 



 

• The integral does converge if
1. the signal x(t) is “well-behaved”
2. and x(t) is absolutely integrable, namely,
• Note: well behaved means that the signal
has a finite number of discontinuities,
maxima, and minima within any finite time
interval
The Fourier Transform in the General
Case – Cont’d
| ( ) |
x t dt


 

• Consider the signal
• Clearly x(t) does not satisfy the first
requirement since
• Therefore, the constant signal does not have
a Fourier transform in the ordinary sense
• Later on, we’ll see that it has however a
Fourier transform in a generalized sense
Example: The DC or Constant Signal
( ) 1,
x t t
 
| ( ) |
x t dt dt
 
 
 
 
• Consider the signal
• Its Fourier transform is given by
Example: The Exponential Signal
( ) ( ),
bt
x T e u t b

 
( ) ( )
0 0
( ) ( )
1
bt j t
t
b j t b j t
t
X e u t e dt
e dt e
b j

 



 



   


 
    



• If , does not exist
• If , and does not
exist either in the ordinary sense
• If , it is
Example: The Exponential Signal –
Cont’d
0
b  ( )
X 
0
b  ( ) ( )
x t u t
 ( )
X 
0
b 
1
( )
X
b j




2 2
1
| ( ) |
X
b




amplitude spectrum
arg( ( )) arctan
X
b


 
   
 
phase spectrum
Example: Amplitude and Phase
Spectra of the Exponential Signal
10
( ) ( )
t
x t e u t


• Consider
• Since in general is a complex
function, by using Euler’s formula
Rectangular Form of the Fourier
Transform
( ) ( ) ,
j t
X x t e dt

 



 

( )
X 
( ) ( )
( ) ( )cos( ) ( )sin( )
R I
X x t t dt j x t t dt
 
  
 
 
 
  
 
 
 
( ) ( ) ( )
X R jI
  
 
• can be expressed in
a polar form as
where
Polar Form of the Fourier Transform
( ) | ( ) | exp( arg( ( )))
X X j X
  

( ) ( ) ( )
X R jI
  
 
2 2
| ( ) | ( ) ( )
X R I
  
 
( )
arg( ( )) arctan
( )
I
X
R



 
  
 
• If x(t) is real-valued, it is
• Moreover
whence
Fourier Transform of
Real-Valued Signals
( ) ( )
X X
 

 
( ) | ( ) | exp( arg( ( )))
X X j X
  

 
| ( ) | | ( ) | and
arg( ( )) arg( ( ))
X X
X X
 
 
 
  
Hermitian
symmetry
• Even signal:
• Odd signal:
Fourier Transforms of
Signals with Even or Odd Symmetry
( ) ( )
x t x t
 
0
( ) 2 ( )cos( )
X x t t dt
 

 
( ) ( )
x t x t
  
0
( ) 2 ( )sin( )
X j x t t dt
 

  
• Consider the even signal
• It is
Example: Fourier Transform of the
Rectangular Pulse
 
/ 2
/ 2
0
0
2 2
( ) 2 (1)cos( ) sin( ) sin
2
sinc
2
t
t
X t dt t

 
  
 





 
    
 
 
  
 

Example: Fourier Transform of the
Rectangular Pulse – Cont’d
( ) sinc
2
X

 

 
  
 
Example: Fourier Transform of the
Rectangular Pulse – Cont’d
amplitude
spectrum
phase
spectrum
• A signal x(t) is said to be bandlimited if its
Fourier transform is zero for all
where B is some positive number, called
the bandwidth of the signal
• It turns out that any bandlimited signal must
have an infinite duration in time, i.e.,
bandlimited signals cannot be time limited
Bandlimited Signals
( )
X  B
 
• If a signal x(t) is not bandlimited, it is said
to have infinite bandwidth or an infinite
spectrum
• Time-limited signals cannot be
bandlimited and thus all time-limited
signals have infinite bandwidth
• However, for any well-behaved signal x(t)
it can be proven that
whence it can be assumed that
Bandlimited Signals – Cont’d
lim ( ) 0
X




| ( ) | 0
X B
 
  
B being a convenient large number
• Given a signal x(t) with Fourier transform
, x(t) can be recomputed from
by applying the inverse Fourier transform
given by
• Transform pair
Inverse Fourier Transform
( )
X  ( )
X 
1
( ) ( ) ,
2
j t
x t X e d t

 



 

( ) ( )
x t X 

Properties of the Fourier Transform
• Linearity:
• Left or Right Shift in Time:
• Time Scaling:
( ) ( )
x t X 
 ( ) ( )
y t Y 

( ) ( ) ( ) ( )
x t y t X Y
     
  
0
0
( ) ( ) j t
x t t X e 
 
 
1
( )
x at X
a a

 
  
 
Properties of the Fourier Transform
• Time Reversal:
• Multiplication by a Power of t:
• Multiplication by a Complex Exponential:
( ) ( )
x t X 
  
( ) ( ) ( )
n
n n
n
d
t x t j X
d



0
0
( ) ( )
j t
x t e X

 
 
Properties of the Fourier Transform
• Multiplication by a Sinusoid (Modulation):
• Differentiation in the Time Domain:
 
0 0 0
( )sin( ) ( ) ( )
2
j
x t t X X
    
   
 
0 0 0
1
( )cos( ) ( ) ( )
2
x t t X X
    
   
( ) ( ) ( )
n
n
n
d
x t j X
dt
 

Properties of the Fourier Transform
• Integration in the Time Domain:
• Convolution in the Time Domain:
• Multiplication in the Time Domain:
1
( ) ( ) (0) ( )
t
x d X X
j
     


 

( ) ( ) ( ) ( )
x t y t X Y
 
 
( ) ( ) ( ) ( )
x t y t X Y
 
 
Properties of the Fourier Transform
• Parseval’s Theorem:
• Duality:
1
( ) ( ) ( ) ( )
2
x t y t dt X Y d
  



 
2 2
1
| ( ) | | ( ) |
2
x t dt X d
 


 
( ) ( )
y t x t

if
( ) 2 ( )
X t x
 
 
Properties of the Fourier Transform -
Summary
Example: Linearity
4 2
( ) ( ) ( )
x t p t p t
 
2
( ) 4sinc 2sinc
X
 

 
   
 
   
   
Example: Time Shift
2
( ) ( 1)
x t p t
 
( ) 2sinc j
X e 




 
  
 
Example: Time Scaling
2 ( )
p t
2 (2 )
p t
2sinc


 
 
 
sinc
2


 
 
 
time compression frequency expansion

time expansion frequency compression

1
a 
0 1
a
 
Example: Multiplication in Time
2
( ) ( )
x t tp t

2
sin cos sin
( ) 2sinc 2 2
d d
X j j j
d d
    

    
  
   
  
   
 
   
 
Example: Multiplication in Time –
Cont’d
2
cos sin
( ) 2
X j
  




Example: Multiplication by a Sinusoid
0
( ) ( )cos( )
x t p t t
 
 sinusoidal
burst
0 0
1 ( ) ( )
( ) sinc sinc
2 2 2
X
     
  
 
 
 
   
 
   
 
   
 
Example: Multiplication by a
Sinusoid – Cont’d
0 0
1 ( ) ( )
( ) sinc sinc
2 2 2
X
     
  
 
 
 
   
 
   
 
   
 
0 60 /sec
0.5
rad







Example: Integration in the Time
Domain
2 | |
( ) 1 ( )
t
v t p t


 
 
 
 
( )
( )
dv t
x t
dt

Example: Integration in the Time
Domain – Cont’d
• The Fourier transform of x(t) can be easily
found to be
• Now, by using the integration property, it is
( ) sinc 2sin
4 4
X j
 


  
   
    
  
   
  
2
1
( ) ( ) (0) ( ) sinc
2 4
V X X
j
 
    
 
 
    
 
Example: Integration in the Time
Domain – Cont’d
2
( ) sinc
2 4
V
 


 
  
 
• Fourier transform of
• Applying the duality property
Generalized Fourier Transform
( )
t

( ) 1
j t
t e dt

 

 ( ) 1
t
 

( ) 1, 2 ( )
x t t  
  
generalized Fourier transform
of the constant signal ( ) 1,
x t t
 
Generalized Fourier Transform of
Sinusoidal Signals
 
0 0 0
cos( ) ( ) ( )
t
       
   
 
0 0 0
sin( ) ( ) ( )
t j
       
   
Fourier Transform of Periodic Signals
• Let x(t) be a periodic signal with period T;
as such, it can be represented with its
Fourier transform
• Since , it is
0
0
2 ( )
j t
e 
  
 
0
( ) jk t
k
k
x t c e 


  0 2 /T
 

0
( ) 2 ( )
k
k
X c k
    


 

• Since
using the integration property, it is
Fourier Transform of
the Unit-Step Function
( ) ( )
t
u t d
  

 
1
( ) ( ) ( )
t
u t d
j
    


  

Common Fourier Transform Pairs

Ch4 (1)_fourier series, fourier transform

  • 1.
    Chapter 4 The FourierSeries and Fourier Transform
  • 2.
    • Consider theCT signal defined by • The frequencies `present in the signal’ are the frequency of the component sinusoids • The signal x(t) is completely characterized by the set of frequencies , the set of amplitudes , and the set of phases Representation of Signals in Terms of Frequency Components 1 ( ) cos( ), N k k k k x t A t t        k  k  k A k 
  • 3.
    • Consider theCT signal given by • The signal has only three frequency components at 1,4, and 8 rad/sec, amplitudes and phases • The shape of the signal x(t) depends on the relative magnitudes of the frequency components, specified in terms of the amplitudes Example: Sum of Sinusoids 1 2 3 ( ) cos( ) cos(4 /3) cos(8 / 2), x t A t A t A t t         1 2 3 , , A A A 0, /3, / 2   1 2 3 , , A A A
  • 4.
    Example: Sum ofSinusoids –Cont’d 1 2 3 0.5 1 0 A A A         1 2 3 1 0.5 0 A A A         1 2 3 1 1 0 A A A        
  • 5.
    Example: Sum ofSinusoids –Cont’d 1 2 3 0.5 1 0.5 A A A         1 2 3 1 0.5 0.5 A A A         1 2 3 1 1 1 A A A        
  • 6.
    • Plot ofthe amplitudes of the sinusoids making up x(t) vs. • Example: Amplitude Spectrum k A  
  • 7.
    • Plot ofthe phases of the sinusoids making up x(t) vs. • Example: Phase Spectrum k   
  • 8.
    • Euler formula: •Thus whence Complex Exponential Form cos( ) sin( ) j e j      ( ) cos( ) k k j t k k k k A t A e            ( ) 1 ( ) , k k N j t k k x t A e t             real part
  • 9.
    • And, recallingthat where , we can also write • This signal contains both positive and negative frequencies • The negative frequencies stem from writing the cosine in terms of complex exponentials and have no physical meaning Complex Exponential Form – Cont’d ( ) ( )/ 2 z z z    z a jb   ( ) ( ) 1 1 ( ) , 2 k k k k N j t j t k k k x t A e A e t                 k  
  • 10.
    • By defining itis also Complex Exponential Form – Cont’d 2 k j k k A c e   2 k j k k A c e     1 0 ( ) , k k k N N j t j t j t k k k k N k k x t c e c e c e t                   complex exponential form of the signal x(t)
  • 11.
    • The amplitudespectrum of x(t) is defined as the plot of the magnitudes versus • The phase spectrum of x(t) is defined as the plot of the angles versus • This results in line spectra which are defined for both positive and negative frequencies • Notice: for Line Spectra | | k c   arg( ) k k c c   | | | | k k c c  k k c c    arg( ) arg( ) k k c c   1,2, k 
  • 12.
    Example: Line Spectra () cos( ) 0.5cos(4 /3) cos(8 / 2) x t t t t        0. 0.
  • 13.
    • Let x(t)be a CT periodic signal with period T, i.e., • Example: the rectangular pulse train Fourier Series Representation of Periodic Signals ( ) ( ), x t T x t t R    
  • 14.
    • Then, x(t)can be expressed as where is the fundamental frequency (rad/sec) of the signal and The Fourier Series 0 ( ) , jk t k k x t c e t       / 2 / 2 1 ( ) , 0, 1, 2, o T jk t k T c x t e dt k T         0 2 /T    is called the constant or dc component of x(t) 0 c
  • 15.
    • The frequenciespresent in x(t) are integer multiples of the fundamental frequency • Notice that, if the dc term is added to and we set , the Fourier series is a special case of the above equation where all the frequencies are integer multiples of The Fourier Series – Cont’d 0 k 0  0 ( ) k N j t k k N k x t c e      N   0  0 c
  • 16.
    • A periodicsignal x(t), has a Fourier series if it satisfies the following conditions: 1. x(t) is absolutely integrable over any period, namely 2. x(t) has only a finite number of maxima and minima over any period 3. x(t) has only a finite number of discontinuities over any period Dirichlet Conditions | ( ) | , a T a x t dt a      
  • 17.
    • From figure,whence • Clearly x(t) satisfies the Dirichlet conditions and thus has a Fourier series representation Example: The Rectangular Pulse Train 2 T  0 2 / 2     
  • 18.
    Example: The RectangularPulse Train – Cont’d |( 1)/ 2| 1 1 ( ) ( 1) , 2 k jk t k k odd x t e t k          
  • 19.
    • By usingEuler’s formula, we can rewrite as • This expression is called the trigonometric Fourier series of x(t) Trigonometric Fourier Series 0 ( ) , jk t k k x t c e t       0 0 1 ( ) 2 | |cos( ), k k k x t c c k t c t          dc component k-th harmonic
  • 20.
    • The expression canbe rewritten as Example: Trigonometric Fourier Series of the Rectangular Pulse Train |( 1)/ 2| 1 1 ( ) ( 1) , 2 k jk t k k odd x t e t k           ( 1)/ 2 1 1 2 ( ) cos ( 1) 1 , 2 2 k k k odd x t k t t k                       
  • 21.
    • Given anodd positive integer N, define the N-th partial sum of the previous series • According to Fourier’s theorem, it should be Gibbs Phenomenon ( 1)/ 2 1 1 2 ( ) cos ( 1) 1 , 2 2 N k N k k odd x t k t t k                       lim | ( ) ( ) | 0 N N x t x t   
  • 22.
    Gibbs Phenomenon –Cont’d 3 ( ) x t 9 ( ) x t
  • 23.
    Gibbs Phenomenon –Cont’d 21( ) x t 45 ( ) x t overshoot: about 9 % of the signal magnitude (present even if ) N  
  • 24.
    • Let x(t)be a periodic signal with period T • The average power P of the signal is defined as • Expressing the signal as it is also Parseval’s Theorem / 2 2 / 2 1 ( ) T T P x t dt T    0 ( ) , jk t k k x t c e t       2 | | k k P c    
  • 25.
    • We haveseen that periodic signals can be represented with the Fourier series • Can aperiodic signals be analyzed in terms of frequency components? • Yes, and the Fourier transform provides the tool for this analysis • The major difference w.r.t. the line spectra of periodic signals is that the spectra of aperiodic signals are defined for all real values of the frequency variable not just for a discrete set of values Fourier Transform 
  • 26.
    Frequency Content ofthe Rectangular Pulse ( ) T x t ( ) x t ( ) lim ( ) T T x t x t  
  • 27.
    • Since isperiodic with period T, we can write Frequency Content of the Rectangular Pulse – Cont’d ( ) T x t 0 ( ) , jk t T k k x t c e t       where / 2 / 2 1 ( ) , 0, 1, 2, o T jk t k T c x t e dt k T        
  • 28.
    • What happensto the frequency components of as ? • For • For Frequency Content of the Rectangular Pulse – Cont’d ( ) T x t T   0 k  0 1 c T  0 k  0 0 0 2 1 sin sin , 1, 2, 2 2 k k k c k k T k                      0 2 /T   
  • 29.
    Frequency Content ofthe Rectangular Pulse – Cont’d plots of vs. for | | k T c 0 k    2,5,10 T 
  • 30.
    • It canbe easily shown that where Frequency Content of the Rectangular Pulse – Cont’d lim sinc , 2 k T Tc             sin( ) sinc( )   
  • 31.
    • The Fouriertransform of the rectangular pulse x(t) is defined to be the limit of as , i.e., Fourier Transform of the Rectangular Pulse ( ) lim sinc , 2 k T X Tc               k Tc T   | ( ) | X  arg( ( )) X 
  • 32.
    • The Fouriertransform of the rectangular pulse x(t) can be expressed in terms of x(t) as follows: Fourier Transform of the Rectangular Pulse – Cont’d ( ) X  1 ( ) , 0, 1, 2, o jk t k c x t e dt k T          ( ) , 0, 1, 2, o jk t k Tc x t e dt k          whence ( ) 0 for / 2 and / 2 x t t T t T    
  • 33.
    • Now, bydefinition and, since • The inverse Fourier transform of is Fourier Transform of the Rectangular Pulse – Cont’d ( ) lim k T X Tc    0 as k T      ( ) ( ) , j t X x t e dt          1 ( ) ( ) , 2 j t x t X e d t          ( ) X 
  • 34.
    • Given asignal x(t), its Fourier transform is defined as • A signal x(t) is said to have a Fourier transform in the ordinary sense if the above integral converges The Fourier Transform in the General Case ( ) X  ( ) ( ) , j t X x t e dt         
  • 35.
    • The integraldoes converge if 1. the signal x(t) is “well-behaved” 2. and x(t) is absolutely integrable, namely, • Note: well behaved means that the signal has a finite number of discontinuities, maxima, and minima within any finite time interval The Fourier Transform in the General Case – Cont’d | ( ) | x t dt     
  • 36.
    • Consider thesignal • Clearly x(t) does not satisfy the first requirement since • Therefore, the constant signal does not have a Fourier transform in the ordinary sense • Later on, we’ll see that it has however a Fourier transform in a generalized sense Example: The DC or Constant Signal ( ) 1, x t t   | ( ) | x t dt dt        
  • 37.
    • Consider thesignal • Its Fourier transform is given by Example: The Exponential Signal ( ) ( ), bt x T e u t b    ( ) ( ) 0 0 ( ) ( ) 1 bt j t t b j t b j t t X e u t e dt e dt e b j                           
  • 38.
    • If ,does not exist • If , and does not exist either in the ordinary sense • If , it is Example: The Exponential Signal – Cont’d 0 b  ( ) X  0 b  ( ) ( ) x t u t  ( ) X  0 b  1 ( ) X b j     2 2 1 | ( ) | X b     amplitude spectrum arg( ( )) arctan X b           phase spectrum
  • 39.
    Example: Amplitude andPhase Spectra of the Exponential Signal 10 ( ) ( ) t x t e u t  
  • 40.
    • Consider • Sincein general is a complex function, by using Euler’s formula Rectangular Form of the Fourier Transform ( ) ( ) , j t X x t e dt          ( ) X  ( ) ( ) ( ) ( )cos( ) ( )sin( ) R I X x t t dt j x t t dt                     ( ) ( ) ( ) X R jI     
  • 41.
    • can beexpressed in a polar form as where Polar Form of the Fourier Transform ( ) | ( ) | exp( arg( ( ))) X X j X     ( ) ( ) ( ) X R jI      2 2 | ( ) | ( ) ( ) X R I      ( ) arg( ( )) arctan ( ) I X R          
  • 42.
    • If x(t)is real-valued, it is • Moreover whence Fourier Transform of Real-Valued Signals ( ) ( ) X X      ( ) | ( ) | exp( arg( ( ))) X X j X       | ( ) | | ( ) | and arg( ( )) arg( ( )) X X X X          Hermitian symmetry
  • 43.
    • Even signal: •Odd signal: Fourier Transforms of Signals with Even or Odd Symmetry ( ) ( ) x t x t   0 ( ) 2 ( )cos( ) X x t t dt      ( ) ( ) x t x t    0 ( ) 2 ( )sin( ) X j x t t dt      
  • 44.
    • Consider theeven signal • It is Example: Fourier Transform of the Rectangular Pulse   / 2 / 2 0 0 2 2 ( ) 2 (1)cos( ) sin( ) sin 2 sinc 2 t t X t dt t                              
  • 45.
    Example: Fourier Transformof the Rectangular Pulse – Cont’d ( ) sinc 2 X           
  • 46.
    Example: Fourier Transformof the Rectangular Pulse – Cont’d amplitude spectrum phase spectrum
  • 47.
    • A signalx(t) is said to be bandlimited if its Fourier transform is zero for all where B is some positive number, called the bandwidth of the signal • It turns out that any bandlimited signal must have an infinite duration in time, i.e., bandlimited signals cannot be time limited Bandlimited Signals ( ) X  B  
  • 48.
    • If asignal x(t) is not bandlimited, it is said to have infinite bandwidth or an infinite spectrum • Time-limited signals cannot be bandlimited and thus all time-limited signals have infinite bandwidth • However, for any well-behaved signal x(t) it can be proven that whence it can be assumed that Bandlimited Signals – Cont’d lim ( ) 0 X     | ( ) | 0 X B      B being a convenient large number
  • 49.
    • Given asignal x(t) with Fourier transform , x(t) can be recomputed from by applying the inverse Fourier transform given by • Transform pair Inverse Fourier Transform ( ) X  ( ) X  1 ( ) ( ) , 2 j t x t X e d t          ( ) ( ) x t X  
  • 50.
    Properties of theFourier Transform • Linearity: • Left or Right Shift in Time: • Time Scaling: ( ) ( ) x t X   ( ) ( ) y t Y   ( ) ( ) ( ) ( ) x t y t X Y          0 0 ( ) ( ) j t x t t X e      1 ( ) x at X a a        
  • 51.
    Properties of theFourier Transform • Time Reversal: • Multiplication by a Power of t: • Multiplication by a Complex Exponential: ( ) ( ) x t X     ( ) ( ) ( ) n n n n d t x t j X d    0 0 ( ) ( ) j t x t e X     
  • 52.
    Properties of theFourier Transform • Multiplication by a Sinusoid (Modulation): • Differentiation in the Time Domain:   0 0 0 ( )sin( ) ( ) ( ) 2 j x t t X X            0 0 0 1 ( )cos( ) ( ) ( ) 2 x t t X X          ( ) ( ) ( ) n n n d x t j X dt   
  • 53.
    Properties of theFourier Transform • Integration in the Time Domain: • Convolution in the Time Domain: • Multiplication in the Time Domain: 1 ( ) ( ) (0) ( ) t x d X X j            ( ) ( ) ( ) ( ) x t y t X Y     ( ) ( ) ( ) ( ) x t y t X Y    
  • 54.
    Properties of theFourier Transform • Parseval’s Theorem: • Duality: 1 ( ) ( ) ( ) ( ) 2 x t y t dt X Y d         2 2 1 | ( ) | | ( ) | 2 x t dt X d       ( ) ( ) y t x t  if ( ) 2 ( ) X t x    
  • 55.
    Properties of theFourier Transform - Summary
  • 56.
    Example: Linearity 4 2 () ( ) ( ) x t p t p t   2 ( ) 4sinc 2sinc X                   
  • 57.
    Example: Time Shift 2 () ( 1) x t p t   ( ) 2sinc j X e            
  • 58.
    Example: Time Scaling 2( ) p t 2 (2 ) p t 2sinc         sinc 2         time compression frequency expansion  time expansion frequency compression  1 a  0 1 a  
  • 59.
    Example: Multiplication inTime 2 ( ) ( ) x t tp t  2 sin cos sin ( ) 2sinc 2 2 d d X j j j d d                                 
  • 60.
    Example: Multiplication inTime – Cont’d 2 cos sin ( ) 2 X j       
  • 61.
    Example: Multiplication bya Sinusoid 0 ( ) ( )cos( ) x t p t t    sinusoidal burst 0 0 1 ( ) ( ) ( ) sinc sinc 2 2 2 X                                 
  • 62.
    Example: Multiplication bya Sinusoid – Cont’d 0 0 1 ( ) ( ) ( ) sinc sinc 2 2 2 X                                  0 60 /sec 0.5 rad       
  • 63.
    Example: Integration inthe Time Domain 2 | | ( ) 1 ( ) t v t p t           ( ) ( ) dv t x t dt 
  • 64.
    Example: Integration inthe Time Domain – Cont’d • The Fourier transform of x(t) can be easily found to be • Now, by using the integration property, it is ( ) sinc 2sin 4 4 X j                           2 1 ( ) ( ) (0) ( ) sinc 2 4 V X X j                  
  • 65.
    Example: Integration inthe Time Domain – Cont’d 2 ( ) sinc 2 4 V           
  • 66.
    • Fourier transformof • Applying the duality property Generalized Fourier Transform ( ) t  ( ) 1 j t t e dt      ( ) 1 t    ( ) 1, 2 ( ) x t t      generalized Fourier transform of the constant signal ( ) 1, x t t  
  • 67.
    Generalized Fourier Transformof Sinusoidal Signals   0 0 0 cos( ) ( ) ( ) t               0 0 0 sin( ) ( ) ( ) t j            
  • 68.
    Fourier Transform ofPeriodic Signals • Let x(t) be a periodic signal with period T; as such, it can be represented with its Fourier transform • Since , it is 0 0 2 ( ) j t e       0 ( ) jk t k k x t c e      0 2 /T    0 ( ) 2 ( ) k k X c k          
  • 69.
    • Since using theintegration property, it is Fourier Transform of the Unit-Step Function ( ) ( ) t u t d       1 ( ) ( ) ( ) t u t d j           
  • 70.