SlideShare a Scribd company logo
1 of 37
Chapter 6
Linear Transformations
6.1 Introduction to Linear Transformations
6.2 Matrices for Linear Transformations
6.3 Similarity
6.1 Introduction to Linear Transformations
 Function T that maps a vector space V into a vector space W:
space
vector
:
,
,
: mapping
W
V
W
V
T 

 

V: the domain of T
W: the codomain of T
1/36
 Image of v under T:
If v is in V and w is in W such that
w
v 
)
(
T
Then w is called the image of v under T .
 the range of T:
The set of all images of vectors in V.
 the preimage of w:
The set of all v in V such that T(v)=w.
2/36
 Ex 1: (A function from R2 into R2 )
2
2
: R
R
T 
)
2
,
(
)
,
( 2
1
2
1
2
1 v
v
v
v
v
v
T 


2
2
1 )
,
( R
v
v 

v
(a) Find the image of v=(-1,2). (b) Find the preimage of w=(-1,11)
Sol:
)
3
,
3
(
))
2
(
2
1
,
2
1
(
)
2
,
1
(
)
(
)
2
,
1
(
)
(












T
T
a
v
v
)
11
,
1
(
)
(
)
( 

 w
v
T
b
)
11
,
1
(
)
2
,
(
)
,
( 2
1
2
1
2
1 



 v
v
v
v
v
v
T
11
2
1
2
1
2
1






v
v
v
v
4
,
3 2
1 

 v
v Thus {(3, 4)} is the preimage of w=(-1, 11).
3/36
 Linear Transformation (L.T.):
n
nsformatio
linear tra
to
:
:
space
vector
:
,
W
V
W
V
T
W
V

V
T
T
T 



 v
u
v
u
v
u ,
),
(
)
(
)
(
(1)
R
c
cT
c
T 

 ),
(
)
(
)
2
( u
u
4/36
 Notes:
(1) A linear transformation is said to be operation preserving.
)
(
)
(
)
( v
u
v
u T
T
T 


Addition
in V
Addition
in W
)
(
)
( u
u cT
c
T 
Scalar
multiplication
in V
Scalar
multiplication
in W
(2) A linear transformation from a vector space into
itself is called a linear operator.
V
V
T 
:
5/36
 Ex 2: (Verifying a linear transformation T from R2 into R2)
Pf:
)
2
,
(
)
,
( 2
1
2
1
2
1 v
v
v
v
v
v
T 


number
real
any
:
,
in
vector
:
)
,
(
),
,
( 2
2
1
2
1 c
R
v
v
u
u 
 v
u
)
,
(
)
,
(
)
,
(
:
addition
(1)Vector
2
2
1
1
2
1
2
1 v
u
v
u
v
v
u
u 




 v
u
)
(
)
(
)
2
,
(
)
2
,
(
))
2
(
)
2
(
),
(
)
((
))
(
2
)
(
),
(
)
((
)
,
(
)
(
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
2
1
1
2
2
1
1
2
2
1
1
v
u
v
u
T
T
v
v
v
v
u
u
u
u
v
v
u
u
v
v
u
u
v
u
v
u
v
u
v
u
v
u
v
u
T
T


























6/36
)
,
(
)
,
(
tion
multiplica
Scalar
)
2
(
2
1
2
1 cu
cu
u
u
c
c 

u
)
(
)
2
,
(
)
2
,
(
)
,
(
)
(
2
1
2
1
2
1
2
1
2
1
u
u
cT
u
u
u
u
c
cu
cu
cu
cu
cu
cu
T
c
T








Therefore, T is a linear transformation.
7/36
 Ex 3: (Functions that are not linear transformations)
x
x
f
a sin
)
(
)
( 
2
)
(
)
( x
x
f
b 
1
)
(
)
( 
 x
x
f
c
)
sin(
)
sin(
)
sin( 2
1
2
1 x
x
x
x 


)
sin(
)
sin(
)
sin( 3
2
3
2







2
2
2
1
2
2
1 )
( x
x
x
x 


2
2
2
2
1
)
2
1
( 


1
)
( 2
1
2
1 


 x
x
x
x
f
2
)
1
(
)
1
(
)
(
)
( 2
1
2
1
2
1 






 x
x
x
x
x
f
x
f
)
(
)
(
)
( 2
1
2
1 x
f
x
f
x
x
f 


( ) sin is not a linear transformation
f x x
 
2
( ) is not a linear transformation
f x x
 
( ) 1 is not a linear transformation
f x x
  
8/36
 Notes: Two uses of the term “linear”.
(1) is called a linear function because its graph
is a line.
1
)
( 
 x
x
f
(2) is not a linear transformation from a vector
space R into R because it preserves neither vector
addition nor scalar multiplication.
1
)
( 
 x
x
f
9/36
 Zero transformation:
V
W
V
T 
 v
u,
,
:
V
T 

 v
v ,
0
)
(
 Identity transformation:
V
V
T 
: V
T 

 v
v
v ,
)
(
 Thm 6.1: (Properties of linear transformations)
W
V
T 
:
0
0 
)
(
(1) T
)
(
)
(
(2) v
v T
T 


)
(
)
(
)
(
(3) v
u
v
u T
T
T 


)
(
)
(
)
(
)
(
)
(
Then
If
(4)
2
2
1
1
2
2
1
1
2
2
1
1
n
n
n
n
n
n
v
T
c
v
T
c
v
T
c
v
c
v
c
v
c
T
T
v
c
v
c
v
c















v
v
10/36
 Ex 4: (Linear transformations and bases)
Let be a linear transformation such that
3
3
: R
R
T 
)
4
,
1
,
2
(
)
0
,
0
,
1
( 

T
)
2
,
5
,
1
(
)
0
,
1
,
0
( 

T
)
1
,
3
,
0
(
)
1
,
0
,
0
( 
T
Sol:
)
1
,
0
,
0
(
2
)
0
,
1
,
0
(
3
)
0
,
0
,
1
(
2
)
2
,
3
,
2
( 



)
0
,
7
,
7
(
)
1
,
3
,
0
(
2
)
2
,
5
,
1
(
3
)
4
,
1
,
2
(
2
)
1
,
0
,
0
(
2
)
0
,
1
,
0
(
3
)
0
,
0
,
1
(
2
)
2
,
3
,
2
(










T
T
T
T
T (T is a L.T.)
Find T(2, 3, -2).
11/36
 Ex 5: (A linear transformation defined by a matrix)
The function is defined as
3
2
: R
R
T  

















2
1
2
1
1
2
0
3
)
(
v
v
A
T v
v
3
2
into
form
n
nsformatio
linear tra
a
is
that
Show
(b)
)
1
,
2
(
where
,
)
(
Find
(a)
R
R
T
T 

v
v
Sol: )
1
,
2
(
)
( 

v
a




























0
3
6
1
2
2
1
1
2
0
3
)
( v
v A
T
)
0
,
3
,
6
(
)
1
,
2
( 

T
vector
2
R vector
3
R
)
(
)
(
)
(
)
(
)
( v
u
v
u
v
u
v
u T
T
A
A
A
T
b 






)
(
)
(
)
(
)
( u
u
u
u cT
A
c
c
A
c
T 


(vector addition)
(scalar multiplication)
12/36
 Thm 6.2: (The linear transformation given by a matrix)
Let A be an mn matrix. The function T defined by
v
v A
T 
)
(
is a linear transformation from Rn into Rm.
 Note:















































n
mn
m
m
n
n
n
n
n
mn
m
m
n
n
v
a
v
a
v
a
v
a
v
a
v
a
v
a
v
a
v
a
v
v
v
a
a
a
a
a
a
a
a
a
A











2
2
1
1
2
2
22
1
21
1
2
12
1
11
2
1
2
1
2
22
21
1
12
11
v
v
v A
T 
)
(
m
n
R
R
T 

:
vector
n
R vector
m
R
13/36
Show that the L.T. given by the matrix
has the property that it rotates every vector in R2
counterclockwise about the origin through the angle .
 Ex 7: (Rotation in the plane)
2
2
: R
R
T 





 





cos
sin
sin
cos
A
Sol:
)
sin
,
cos
(
)
,
( 
 r
r
y
x
v 
 (polar coordinates)
r: the length of v
:the angle from the positive
x-axis counterclockwise to
the vector v
14/36





























 












 


)
sin(
)
cos(
sin
cos
cos
sin
sin
sin
cos
cos
sin
cos
cos
sin
sin
cos
cos
sin
sin
cos
)
(






















r
r
r
r
r
r
r
r
y
x
A
T v
v
r:the length of T(v)
 +:the angle from the positive x-axis counterclockwise to
the vector T(v)
Thus, T(v) is the vector that results from rotating the vector v
counterclockwise through the angle .
15/36
is called a projection in R3.
 Ex 8: (A projection in R3)
The linear transformation is given by
3
3
: R
R
T 









0
0
0
0
1
0
0
0
1
A
16/36
Show that T is a linear transformation.
 Ex 9: (A linear transformation from Mmn into Mn m )
)
:
(
)
( m
n
n
m
T
M
M
T
A
A
T 
 

Sol:
n
m
M
B
A 

,
)
(
)
(
)
(
)
( B
T
A
T
B
A
B
A
B
A
T T
T
T







)
(
)
(
)
( A
cT
cA
cA
cA
T T
T



Therefore, T is a linear transformation from Mmn into Mn m.
17/36
Keywords in Section 6.1:
 function: ‫دالة‬
 domain: ‫مجال‬
 codomain: ‫مقابل‬ ‫مجال‬
 image of v under T: ‫التحويل‬ ‫تحت‬ ‫صورة‬
 range of T: T ‫مدى‬
 preimage of w:
 linear transformation: ‫خطي‬ ‫تحويل‬
 linear operator: ‫خطي‬ ‫مؤثر‬
 zero transformation: ‫صفري‬ ‫تحويل‬
 identity transformation: ‫محايد‬ ‫تحويل‬
v
T
18/36
6.2 Matrices for Linear Transformations
)
4
3
,
2
3
,
2
(
)
,
,
(
)
1
( 3
2
3
2
1
3
2
1
3
2
1 x
x
x
x
x
x
x
x
x
x
x
T 






 Three reasons for matrix representation of a linear transformation:





















3
2
1
4
3
0
2
3
1
1
1
2
)
(
)
2
(
x
x
x
A
T x
x
 It is simpler to write.
 It is simpler to read.
 It is more easily adapted for computer use.
 Two representations of the linear transformation T:R3→R3 :
19/36
 Thm 6.10: (Standard matrix for a linear transformation)
such that
on
ansformati
linear trt
a
be
:
Let m
n
R
R
T 
,
)
(
,
,
)
(
,
)
( 2
1
2
22
12
2
1
21
11
1







































mn
n
n
n
m
m a
a
a
e
T
a
a
a
e
T
a
a
a
e
T




)
(
to
correspond
columns
se
matrix who
Then the i
e
T
n
n
m
.
for
matrix
standard
the
called
is
A
.
in
every
for
)
(
such that
is
T
R
A
T n
v
v
v 
 














mn
m
m
n
n
n
a
a
a
a
a
a
a
a
a
e
T
e
T
e
T
A








2
1
2
22
21
1
12
11
2
1 )
(
)
(
)
(
20/36
Pf:
n
n
n
e
v
e
v
e
v
v
v
v
















 
 2
2
1
1
2
1
v
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
L.T.
a
is
2
2
1
1
2
2
1
1
2
2
1
1
n
n
n
n
n
n
e
T
v
e
T
v
e
T
v
e
v
T
e
v
T
e
v
T
e
v
e
v
e
v
T
T
T
















v















































n
mn
m
m
n
n
n
n
n
mn
m
m
n
n
v
a
v
a
v
a
v
a
v
a
v
a
v
a
v
a
v
a
v
v
v
a
a
a
a
a
a
a
a
a
A












2
2
1
1
2
2
22
1
21
1
2
12
1
11
2
1
2
1
2
22
21
1
12
11
v
21/36
)
(
)
(
)
( 2
2
1
1
2
1
2
22
12
2
1
21
11
1
n
n
mn
n
n
n
m
m
e
T
v
e
T
v
e
T
v
a
a
a
v
a
a
a
v
a
a
a
v

















































n
R
A
T in
each
for
)
(
Therefore, v
v
v 
22/36
 Ex 1: (Finding the standard matrix of a linear transformation)
by
define
:
L.T.
for the
matrix
standard
the
Find 2
3
R
R
T 
)
2
,
2
(
)
,
,
( y
x
y
x
z
y
x
T 


Sol:
)
2
,
1
(
)
0
,
0
,
1
(
)
( 1 
T
e
T
)
1
,
2
(
)
0
,
1
,
0
(
)
( 2 

T
e
T
)
0
,
0
(
)
1
,
0
,
0
(
)
( 3 
 T
e
T
2
1
)
0
0
1
(
)
( 1 














 T
e
T
1
2
)
0
1
0
(
)
( 2 














 T
e
T
0
0
)
1
0
0
(
)
( 3 














 T
e
T
Vector Notation Matrix Notation
23/36
 





 


0
1
2
0
2
1
)
(
)
(
)
( 3
2
1 e
T
e
T
e
T
A
 Note:
z
y
x
z
y
x
A
0
1
2
0
2
1
0
1
2
0
2
1











 























 









y
x
y
x
z
y
x
z
y
x
A
2
2
0
1
2
0
2
1
)
2
,
2
(
)
,
,
(
i.e. y
x
y
x
z
y
x
T 


 Check:
24/36
 Ex 2: (Finding the standard matrix of a linear transformation)
.
for
matrix
standard
the
Find
axis.
-
x
the
onto
in
point
each
projecting
by
given
is
:
n
nsformatio
linear tra
The
2
2
2
T
R
R
R
T 
Sol:
)
0
,
(
)
,
( x
y
x
T 
    








0
0
0
1
)
1
,
0
(
)
0
,
1
(
)
(
)
( 2
1 T
T
e
T
e
T
A
 Notes:
(1) The standard matrix for the zero transformation from Rn into Rm
is the mn zero matrix.
(2) The standard matrix for the zero transformation from Rn into Rn
is the nn identity matrix In
25/36
 Ex 3: (The standard matrix of a composition)
s.t.
into
from
L.T.
be
and
Let 3
3
2
1 R
R
T
T
)
,
0
,
2
(
)
,
,
(
1 z
x
y
x
z
y
x
T 


)
,
z
,
(
)
,
,
(
2 y
y
x
z
y
x
T 

,
'
and
ns
compositio
for the
matrices
standard
the
Find
2
1
1
2 T
T
T
T
T
T 
 

Sol:
)
for
matrix
standard
(
1
0
1
0
0
0
0
1
2
1
1 T
A











)
for
matrix
standard
(
0
1
0
1
0
0
0
1
1
2
2 T
A









 

26/36
1
2
for
matrix
standard
The T
T
T 

2
1
'
for
matrix
standard
The T
T
T 

























 


0
0
0
1
0
1
0
1
2
1
0
1
0
0
0
0
1
2
0
1
0
1
0
0
0
1
1
1
2 A
A
A









 










 












0
0
1
0
0
0
1
2
2
0
1
0
1
0
0
0
1
1
1
0
1
0
0
0
0
1
2
' 2
1A
A
A
27/36
 Inverse linear transformation:
in
every
for
s.t.
L.T.
are
:
and
:
If 2
1
n
n
n
n
n
R
R
R
T
R
R
T v


))
(
(
and
))
(
( 2
1
1
2 v
v
v
v 
 T
T
T
T
invertible
be
to
said
is
and
of
inverse
the
called
is
Then 1
1
2 T
T
T
 Note:
If the transformation T is invertible, then the inverse is
unique and denoted by T–1 .
28/36
 Ex 5: (Finding a matrix relative to nonstandard bases)
by
defined
L.T.
a
be
:
Let 2
2
R
R
T 
)
2
,
(
)
,
( 2
1
2
1
2
1 x
x
x
x
x
x
T 


)}
1
,
0
(
),
0
,
1
{(
'
and
)}
1
,
1
(
),
2
,
1
{(
basis
the
to
relative
of
matrix
the
Find


 B
B
T
Sol:
)
1
,
0
(
3
)
0
,
1
(
0
)
3
,
0
(
)
1
,
1
(
)
1
,
0
(
0
)
0
,
1
(
3
)
0
,
3
(
)
2
,
1
(








T
T
    















3
0
)
1
,
1
(
,
0
3
)
2
,
1
( '
' B
B T
T
'
and
to
relative
for
matrix
the B
B
T
   
  








3
0
0
3
)
2
,
1
(
)
2
,
1
( '
' B
B T
T
A
29/36
 Ex 6:
)
1
,
2
(
where
),
(
find
to
matrix
the
use
5,
Example
in
given
:
L.T.
For the 2
2


v
v
T
A
R
R
T
Sol:
)
1
,
1
(
1
)
2
,
1
(
1
)
1
,
2
( 



v
  








1
1
B
v
    























3
3
1
1
3
0
0
3
)
( ' B
B A
T v
v
)
3
,
3
(
)
1
,
0
(
3
)
0
,
1
(
3
)
( 


 v
T )}
1
,
0
(
),
0
,
1
{(
'
B
)}
1
,
1
(
),
2
,
1
{( 

B
)
3
,
3
(
)
1
2(2)
,
1
2
(
)
1
,
2
( 



T
 Check:
30/36
Keywords in Section 6.2:
 standard matrix for T: ‫الخطي‬ ‫للتحويل‬ ‫األساسية‬ ‫المصفوفة‬
 composition of linear transformations: ‫الخطية‬ ‫للتحويالت‬ ‫تركيب‬
 inverse linear transformation: ‫عكسي‬ ‫خطي‬ ‫تحويل‬
 matrix of T relative to the bases B and B‘ :
‫الخطي‬ ‫التحويل‬ ‫مصفوفة‬
T
‫لألساس‬ ‫بالنسبة‬
B
‫و‬
B’
 matrix of T relative to the basis B:
‫الخطي‬ ‫التحويل‬ ‫مصفوفة‬
T
‫لألساس‬ ‫بالنسبة‬
B
T
31/36
6.3 Similarity
 Ex 4: (Similar matrices)
similar
are
2
1
2
3
'
and
3
1
2
2
)
( 
















 A
A
a







 
1
0
1
1
where
,
'
because 1
P
AP
P
A
similar
are
3
1
1
2
'
and
7
3
7
2
)
( 















 A
A
b









 
1
2
2
3
where
,
'
because 1
P
AP
P
A
32/36
 Ex 5: (A comparison of two matrices for a linear transformation)
basis.
standard
the
to
relative
:
for
matrix
the
is
2
0
0
0
1
3
0
3
1
Suppose 3
3
R
R
T
A 












)}
1
,
0
,
0
(
),
0
,
1
,
1
(
),
0
,
1
,
1
{(
'
basis
the
to
relative
for
matrix
the
Find


B
T
Sol:
     
 














1
0
0
0
1
1
0
1
1
)
1
,
0
,
0
(
)
0
,
1
,
1
(
)
0
,
1
,
1
(
matrix
standard
the
to
from
matrix
n
transitio
The
B
B
B
P
B'










 
1
0
0
0
0
2
1
2
1
2
1
2
1
1
P
33/36















































 
2
0
0
0
2
0
0
0
4
1
0
0
0
1
1
0
1
1
2
0
0
0
1
3
0
3
1
1
0
0
0
0
'
:
'
to
relative
of
matrix
2
1
2
1
2
1
2
1
1
AP
P
A
B
T
34/36
 Notes: Computational advantages of diagonal matrices:













n
d
d
d
D







0
0
0
0
0
0
2
1













k
n
k
k
k
d
d
d
D







0
0
0
0
0
0
)
1
( 2
1
D
DT

)
2
(
0
,
0
0
0
0
0
0
)
3
(
1
1
1
1 2
1















i
d
d
d
d
D
n







35/36
Keywords in Section 6.3:
 matrix of T relative to B:
‫الخطي‬ ‫التحويل‬ ‫مصفوفة‬
T
‫لألساس‬ ‫بالنسبة‬
B
 matrix of T relative to B' :
‫الخطي‬ ‫التحويل‬ ‫مصفوفة‬
T
‫لألساس‬ ‫بالنسبة‬
B’
 transition matrix from B' to B :
‫األساس‬ ‫من‬ ‫االنتقال‬ ‫مصفوفة‬
B’
‫الى‬
B
 transition matrix from B to B' :
‫األساس‬ ‫من‬ ‫االنتقال‬ ‫مصفوفة‬
B
‫الى‬
B’
 similar matrix:
‫مماثلة‬ ‫مصفوفة‬
36/36

More Related Content

Similar to nabil-201-chap-06.ppt

Lec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeingLec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeingShehzadAhmed90
 
linear tranformation- VC&LA
linear tranformation- VC&LAlinear tranformation- VC&LA
linear tranformation- VC&LAKaushal Patel
 
chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentslipsa91
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformNimithaSoman
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsLily Rose
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comAbu Bakar Soomro
 
BEC- 26 control systems_unit-II
BEC- 26 control systems_unit-IIBEC- 26 control systems_unit-II
BEC- 26 control systems_unit-IIShadab Siddiqui
 
12.5. vector valued functions
12.5. vector valued functions12.5. vector valued functions
12.5. vector valued functionsmath267
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...Waqas Afzal
 
Computer graphics
Computer graphicsComputer graphics
Computer graphicsBala Murali
 
LECT 1 Part 2 - The Transmission Line Theory.pptx
LECT 1 Part 2 - The Transmission Line Theory.pptxLECT 1 Part 2 - The Transmission Line Theory.pptx
LECT 1 Part 2 - The Transmission Line Theory.pptxahmedmohamedn92
 
Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...
Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...
Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...Yong Heui Cho
 
Plotting position and velocity
Plotting position and velocityPlotting position and velocity
Plotting position and velocityabidraza88
 
dc motor control and DC drives Control -
dc motor control and DC drives Control -dc motor control and DC drives Control -
dc motor control and DC drives Control -yarrammastanamma
 
Linear transformation vcla (160920107003)
Linear transformation vcla (160920107003)Linear transformation vcla (160920107003)
Linear transformation vcla (160920107003)Prashant odhavani
 
lecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptlecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptHebaEng
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transformAmr E. Mohamed
 

Similar to nabil-201-chap-06.ppt (20)

Lec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeingLec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeing
 
linear tranformation- VC&LA
linear tranformation- VC&LAlinear tranformation- VC&LA
linear tranformation- VC&LA
 
chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for students
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transforms
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
 
BEC- 26 control systems_unit-II
BEC- 26 control systems_unit-IIBEC- 26 control systems_unit-II
BEC- 26 control systems_unit-II
 
12.5. vector valued functions
12.5. vector valued functions12.5. vector valued functions
12.5. vector valued functions
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...
 
Computer graphics
Computer graphicsComputer graphics
Computer graphics
 
LECT 1 Part 2 - The Transmission Line Theory.pptx
LECT 1 Part 2 - The Transmission Line Theory.pptxLECT 1 Part 2 - The Transmission Line Theory.pptx
LECT 1 Part 2 - The Transmission Line Theory.pptx
 
Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...
Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...
Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...
 
Online Signals and Systems Assignment Help
Online Signals and Systems Assignment HelpOnline Signals and Systems Assignment Help
Online Signals and Systems Assignment Help
 
Signals and System Assignment Help
Signals and System Assignment HelpSignals and System Assignment Help
Signals and System Assignment Help
 
Plotting position and velocity
Plotting position and velocityPlotting position and velocity
Plotting position and velocity
 
dc motor control and DC drives Control -
dc motor control and DC drives Control -dc motor control and DC drives Control -
dc motor control and DC drives Control -
 
Vectors and Kinematics
Vectors and KinematicsVectors and Kinematics
Vectors and Kinematics
 
Linear transformation vcla (160920107003)
Linear transformation vcla (160920107003)Linear transformation vcla (160920107003)
Linear transformation vcla (160920107003)
 
lecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptlecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).ppt
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
 

Recently uploaded

Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 

Recently uploaded (20)

Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 

nabil-201-chap-06.ppt

  • 1. Chapter 6 Linear Transformations 6.1 Introduction to Linear Transformations 6.2 Matrices for Linear Transformations 6.3 Similarity
  • 2. 6.1 Introduction to Linear Transformations  Function T that maps a vector space V into a vector space W: space vector : , , : mapping W V W V T      V: the domain of T W: the codomain of T 1/36
  • 3.  Image of v under T: If v is in V and w is in W such that w v  ) ( T Then w is called the image of v under T .  the range of T: The set of all images of vectors in V.  the preimage of w: The set of all v in V such that T(v)=w. 2/36
  • 4.  Ex 1: (A function from R2 into R2 ) 2 2 : R R T  ) 2 , ( ) , ( 2 1 2 1 2 1 v v v v v v T    2 2 1 ) , ( R v v   v (a) Find the image of v=(-1,2). (b) Find the preimage of w=(-1,11) Sol: ) 3 , 3 ( )) 2 ( 2 1 , 2 1 ( ) 2 , 1 ( ) ( ) 2 , 1 ( ) (             T T a v v ) 11 , 1 ( ) ( ) (    w v T b ) 11 , 1 ( ) 2 , ( ) , ( 2 1 2 1 2 1      v v v v v v T 11 2 1 2 1 2 1       v v v v 4 , 3 2 1    v v Thus {(3, 4)} is the preimage of w=(-1, 11). 3/36
  • 5.  Linear Transformation (L.T.): n nsformatio linear tra to : : space vector : , W V W V T W V  V T T T      v u v u v u , ), ( ) ( ) ( (1) R c cT c T    ), ( ) ( ) 2 ( u u 4/36
  • 6.  Notes: (1) A linear transformation is said to be operation preserving. ) ( ) ( ) ( v u v u T T T    Addition in V Addition in W ) ( ) ( u u cT c T  Scalar multiplication in V Scalar multiplication in W (2) A linear transformation from a vector space into itself is called a linear operator. V V T  : 5/36
  • 7.  Ex 2: (Verifying a linear transformation T from R2 into R2) Pf: ) 2 , ( ) , ( 2 1 2 1 2 1 v v v v v v T    number real any : , in vector : ) , ( ), , ( 2 2 1 2 1 c R v v u u   v u ) , ( ) , ( ) , ( : addition (1)Vector 2 2 1 1 2 1 2 1 v u v u v v u u       v u ) ( ) ( ) 2 , ( ) 2 , ( )) 2 ( ) 2 ( ), ( ) (( )) ( 2 ) ( ), ( ) (( ) , ( ) ( 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 v u v u T T v v v v u u u u v v u u v v u u v u v u v u v u v u v u T T                           6/36
  • 9.  Ex 3: (Functions that are not linear transformations) x x f a sin ) ( ) (  2 ) ( ) ( x x f b  1 ) ( ) (   x x f c ) sin( ) sin( ) sin( 2 1 2 1 x x x x    ) sin( ) sin( ) sin( 3 2 3 2        2 2 2 1 2 2 1 ) ( x x x x    2 2 2 2 1 ) 2 1 (    1 ) ( 2 1 2 1     x x x x f 2 ) 1 ( ) 1 ( ) ( ) ( 2 1 2 1 2 1         x x x x x f x f ) ( ) ( ) ( 2 1 2 1 x f x f x x f    ( ) sin is not a linear transformation f x x   2 ( ) is not a linear transformation f x x   ( ) 1 is not a linear transformation f x x    8/36
  • 10.  Notes: Two uses of the term “linear”. (1) is called a linear function because its graph is a line. 1 ) (   x x f (2) is not a linear transformation from a vector space R into R because it preserves neither vector addition nor scalar multiplication. 1 ) (   x x f 9/36
  • 11.  Zero transformation: V W V T   v u, , : V T    v v , 0 ) (  Identity transformation: V V T  : V T    v v v , ) (  Thm 6.1: (Properties of linear transformations) W V T  : 0 0  ) ( (1) T ) ( ) ( (2) v v T T    ) ( ) ( ) ( (3) v u v u T T T    ) ( ) ( ) ( ) ( ) ( Then If (4) 2 2 1 1 2 2 1 1 2 2 1 1 n n n n n n v T c v T c v T c v c v c v c T T v c v c v c                v v 10/36
  • 12.  Ex 4: (Linear transformations and bases) Let be a linear transformation such that 3 3 : R R T  ) 4 , 1 , 2 ( ) 0 , 0 , 1 (   T ) 2 , 5 , 1 ( ) 0 , 1 , 0 (   T ) 1 , 3 , 0 ( ) 1 , 0 , 0 (  T Sol: ) 1 , 0 , 0 ( 2 ) 0 , 1 , 0 ( 3 ) 0 , 0 , 1 ( 2 ) 2 , 3 , 2 (     ) 0 , 7 , 7 ( ) 1 , 3 , 0 ( 2 ) 2 , 5 , 1 ( 3 ) 4 , 1 , 2 ( 2 ) 1 , 0 , 0 ( 2 ) 0 , 1 , 0 ( 3 ) 0 , 0 , 1 ( 2 ) 2 , 3 , 2 (           T T T T T (T is a L.T.) Find T(2, 3, -2). 11/36
  • 13.  Ex 5: (A linear transformation defined by a matrix) The function is defined as 3 2 : R R T                    2 1 2 1 1 2 0 3 ) ( v v A T v v 3 2 into form n nsformatio linear tra a is that Show (b) ) 1 , 2 ( where , ) ( Find (a) R R T T   v v Sol: ) 1 , 2 ( ) (   v a                             0 3 6 1 2 2 1 1 2 0 3 ) ( v v A T ) 0 , 3 , 6 ( ) 1 , 2 (   T vector 2 R vector 3 R ) ( ) ( ) ( ) ( ) ( v u v u v u v u T T A A A T b        ) ( ) ( ) ( ) ( u u u u cT A c c A c T    (vector addition) (scalar multiplication) 12/36
  • 14.  Thm 6.2: (The linear transformation given by a matrix) Let A be an mn matrix. The function T defined by v v A T  ) ( is a linear transformation from Rn into Rm.  Note:                                                n mn m m n n n n n mn m m n n v a v a v a v a v a v a v a v a v a v v v a a a a a a a a a A            2 2 1 1 2 2 22 1 21 1 2 12 1 11 2 1 2 1 2 22 21 1 12 11 v v v A T  ) ( m n R R T   : vector n R vector m R 13/36
  • 15. Show that the L.T. given by the matrix has the property that it rotates every vector in R2 counterclockwise about the origin through the angle .  Ex 7: (Rotation in the plane) 2 2 : R R T              cos sin sin cos A Sol: ) sin , cos ( ) , (   r r y x v   (polar coordinates) r: the length of v :the angle from the positive x-axis counterclockwise to the vector v 14/36
  • 17. is called a projection in R3.  Ex 8: (A projection in R3) The linear transformation is given by 3 3 : R R T           0 0 0 0 1 0 0 0 1 A 16/36
  • 18. Show that T is a linear transformation.  Ex 9: (A linear transformation from Mmn into Mn m ) ) : ( ) ( m n n m T M M T A A T     Sol: n m M B A   , ) ( ) ( ) ( ) ( B T A T B A B A B A T T T T        ) ( ) ( ) ( A cT cA cA cA T T T    Therefore, T is a linear transformation from Mmn into Mn m. 17/36
  • 19. Keywords in Section 6.1:  function: ‫دالة‬  domain: ‫مجال‬  codomain: ‫مقابل‬ ‫مجال‬  image of v under T: ‫التحويل‬ ‫تحت‬ ‫صورة‬  range of T: T ‫مدى‬  preimage of w:  linear transformation: ‫خطي‬ ‫تحويل‬  linear operator: ‫خطي‬ ‫مؤثر‬  zero transformation: ‫صفري‬ ‫تحويل‬  identity transformation: ‫محايد‬ ‫تحويل‬ v T 18/36
  • 20. 6.2 Matrices for Linear Transformations ) 4 3 , 2 3 , 2 ( ) , , ( ) 1 ( 3 2 3 2 1 3 2 1 3 2 1 x x x x x x x x x x x T         Three reasons for matrix representation of a linear transformation:                      3 2 1 4 3 0 2 3 1 1 1 2 ) ( ) 2 ( x x x A T x x  It is simpler to write.  It is simpler to read.  It is more easily adapted for computer use.  Two representations of the linear transformation T:R3→R3 : 19/36
  • 21.  Thm 6.10: (Standard matrix for a linear transformation) such that on ansformati linear trt a be : Let m n R R T  , ) ( , , ) ( , ) ( 2 1 2 22 12 2 1 21 11 1                                        mn n n n m m a a a e T a a a e T a a a e T     ) ( to correspond columns se matrix who Then the i e T n n m . for matrix standard the called is A . in every for ) ( such that is T R A T n v v v                  mn m m n n n a a a a a a a a a e T e T e T A         2 1 2 22 21 1 12 11 2 1 ) ( ) ( ) ( 20/36
  • 24.  Ex 1: (Finding the standard matrix of a linear transformation) by define : L.T. for the matrix standard the Find 2 3 R R T  ) 2 , 2 ( ) , , ( y x y x z y x T    Sol: ) 2 , 1 ( ) 0 , 0 , 1 ( ) ( 1  T e T ) 1 , 2 ( ) 0 , 1 , 0 ( ) ( 2   T e T ) 0 , 0 ( ) 1 , 0 , 0 ( ) ( 3   T e T 2 1 ) 0 0 1 ( ) ( 1                 T e T 1 2 ) 0 1 0 ( ) ( 2                 T e T 0 0 ) 1 0 0 ( ) ( 3                 T e T Vector Notation Matrix Notation 23/36
  • 25.            0 1 2 0 2 1 ) ( ) ( ) ( 3 2 1 e T e T e T A  Note: z y x z y x A 0 1 2 0 2 1 0 1 2 0 2 1                                                y x y x z y x z y x A 2 2 0 1 2 0 2 1 ) 2 , 2 ( ) , , ( i.e. y x y x z y x T     Check: 24/36
  • 26.  Ex 2: (Finding the standard matrix of a linear transformation) . for matrix standard the Find axis. - x the onto in point each projecting by given is : n nsformatio linear tra The 2 2 2 T R R R T  Sol: ) 0 , ( ) , ( x y x T               0 0 0 1 ) 1 , 0 ( ) 0 , 1 ( ) ( ) ( 2 1 T T e T e T A  Notes: (1) The standard matrix for the zero transformation from Rn into Rm is the mn zero matrix. (2) The standard matrix for the zero transformation from Rn into Rn is the nn identity matrix In 25/36
  • 27.  Ex 3: (The standard matrix of a composition) s.t. into from L.T. be and Let 3 3 2 1 R R T T ) , 0 , 2 ( ) , , ( 1 z x y x z y x T    ) , z , ( ) , , ( 2 y y x z y x T   , ' and ns compositio for the matrices standard the Find 2 1 1 2 T T T T T T     Sol: ) for matrix standard ( 1 0 1 0 0 0 0 1 2 1 1 T A            ) for matrix standard ( 0 1 0 1 0 0 0 1 1 2 2 T A             26/36
  • 28. 1 2 for matrix standard The T T T   2 1 ' for matrix standard The T T T                               0 0 0 1 0 1 0 1 2 1 0 1 0 0 0 0 1 2 0 1 0 1 0 0 0 1 1 1 2 A A A                                    0 0 1 0 0 0 1 2 2 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 2 ' 2 1A A A 27/36
  • 29.  Inverse linear transformation: in every for s.t. L.T. are : and : If 2 1 n n n n n R R R T R R T v   )) ( ( and )) ( ( 2 1 1 2 v v v v   T T T T invertible be to said is and of inverse the called is Then 1 1 2 T T T  Note: If the transformation T is invertible, then the inverse is unique and denoted by T–1 . 28/36
  • 30.  Ex 5: (Finding a matrix relative to nonstandard bases) by defined L.T. a be : Let 2 2 R R T  ) 2 , ( ) , ( 2 1 2 1 2 1 x x x x x x T    )} 1 , 0 ( ), 0 , 1 {( ' and )} 1 , 1 ( ), 2 , 1 {( basis the to relative of matrix the Find    B B T Sol: ) 1 , 0 ( 3 ) 0 , 1 ( 0 ) 3 , 0 ( ) 1 , 1 ( ) 1 , 0 ( 0 ) 0 , 1 ( 3 ) 0 , 3 ( ) 2 , 1 (         T T                     3 0 ) 1 , 1 ( , 0 3 ) 2 , 1 ( ' ' B B T T ' and to relative for matrix the B B T                3 0 0 3 ) 2 , 1 ( ) 2 , 1 ( ' ' B B T T A 29/36
  • 31.  Ex 6: ) 1 , 2 ( where ), ( find to matrix the use 5, Example in given : L.T. For the 2 2   v v T A R R T Sol: ) 1 , 1 ( 1 ) 2 , 1 ( 1 ) 1 , 2 (     v            1 1 B v                             3 3 1 1 3 0 0 3 ) ( ' B B A T v v ) 3 , 3 ( ) 1 , 0 ( 3 ) 0 , 1 ( 3 ) (     v T )} 1 , 0 ( ), 0 , 1 {( ' B )} 1 , 1 ( ), 2 , 1 {(   B ) 3 , 3 ( ) 1 2(2) , 1 2 ( ) 1 , 2 (     T  Check: 30/36
  • 32. Keywords in Section 6.2:  standard matrix for T: ‫الخطي‬ ‫للتحويل‬ ‫األساسية‬ ‫المصفوفة‬  composition of linear transformations: ‫الخطية‬ ‫للتحويالت‬ ‫تركيب‬  inverse linear transformation: ‫عكسي‬ ‫خطي‬ ‫تحويل‬  matrix of T relative to the bases B and B‘ : ‫الخطي‬ ‫التحويل‬ ‫مصفوفة‬ T ‫لألساس‬ ‫بالنسبة‬ B ‫و‬ B’  matrix of T relative to the basis B: ‫الخطي‬ ‫التحويل‬ ‫مصفوفة‬ T ‫لألساس‬ ‫بالنسبة‬ B T 31/36
  • 33. 6.3 Similarity  Ex 4: (Similar matrices) similar are 2 1 2 3 ' and 3 1 2 2 ) (                   A A a          1 0 1 1 where , ' because 1 P AP P A similar are 3 1 1 2 ' and 7 3 7 2 ) (                  A A b            1 2 2 3 where , ' because 1 P AP P A 32/36
  • 34.  Ex 5: (A comparison of two matrices for a linear transformation) basis. standard the to relative : for matrix the is 2 0 0 0 1 3 0 3 1 Suppose 3 3 R R T A              )} 1 , 0 , 0 ( ), 0 , 1 , 1 ( ), 0 , 1 , 1 {( ' basis the to relative for matrix the Find   B T Sol:                       1 0 0 0 1 1 0 1 1 ) 1 , 0 , 0 ( ) 0 , 1 , 1 ( ) 0 , 1 , 1 ( matrix standard the to from matrix n transitio The B B B P B'             1 0 0 0 0 2 1 2 1 2 1 2 1 1 P 33/36
  • 36.  Notes: Computational advantages of diagonal matrices:              n d d d D        0 0 0 0 0 0 2 1              k n k k k d d d D        0 0 0 0 0 0 ) 1 ( 2 1 D DT  ) 2 ( 0 , 0 0 0 0 0 0 ) 3 ( 1 1 1 1 2 1                i d d d d D n        35/36
  • 37. Keywords in Section 6.3:  matrix of T relative to B: ‫الخطي‬ ‫التحويل‬ ‫مصفوفة‬ T ‫لألساس‬ ‫بالنسبة‬ B  matrix of T relative to B' : ‫الخطي‬ ‫التحويل‬ ‫مصفوفة‬ T ‫لألساس‬ ‫بالنسبة‬ B’  transition matrix from B' to B : ‫األساس‬ ‫من‬ ‫االنتقال‬ ‫مصفوفة‬ B’ ‫الى‬ B  transition matrix from B to B' : ‫األساس‬ ‫من‬ ‫االنتقال‬ ‫مصفوفة‬ B ‫الى‬ B’  similar matrix: ‫مماثلة‬ ‫مصفوفة‬ 36/36