Sec on 2.3
    Basic Differenta on Rules
          V63.0121.011: Calculus I
        Professor Ma hew Leingang
               New York University




.                                    NYUMathematics
Announcements

   Quiz 1 this week on
   1.1–1.4
   Quiz 2 March 3/4 on 1.5,
   1.6, 2.1, 2.2, 2.3
   Midterm Monday March
   7 in class
Objectives
   Understand and use
   these differen a on
   rules:
       the deriva ve of a
       constant func on (zero);
       the Constant Mul ple
       Rule;
       the Sum Rule;
       the Difference Rule;
       the deriva ves of sine
       and cosine.
Recall: the derivative

 Defini on
 Let f be a func on and a a point in the domain of f. If the limit
                         f(a + h) − f(a)       f(x) − f(a)
             f′ (a) = lim                = lim
                     h→0        h          x→a    x−a
 exists, the func on is said to be differen able at a and f′ (a) is the
 deriva ve of f at a.
The deriva ve …
    …measures the slope of the line through (a, f(a)) tangent to
    the curve y = f(x);
    …represents the instantaneous rate of change of f at a
    …produces the best possible linear approxima on to f near a.
Notation
   Newtonian nota on      Leibnizian nota on
                          dy    d         df
   f′ (x)   y′ (x)   y′            f(x)
                          dx    dx        dx
Link between the notations
                    f(x + ∆x) − f(x)       ∆y dy
        f′ (x) = lim                 = lim    =
               ∆x→0       ∆x          ∆x→0 ∆x   dx
                        dy
   Leibniz thought of      as a quo ent of “infinitesimals”
                        dx
                dy
   We think of     as represen ng a limit of (finite) difference
                dx
   quo ents, not as an actual frac on itself.
   The nota on suggests things which are true even though they
   don’t follow from the nota on per se
Outline
 Deriva ves so far
    Deriva ves of power func ons by hand
    The Power Rule
 Deriva ves of polynomials
    The Power Rule for whole number powers
    The Power Rule for constants
    The Sum Rule
    The Constant Mul ple Rule
 Deriva ves of sine and cosine
Derivative of the squaring function
 Example
 Suppose f(x) = x2 . Use the defini on of deriva ve to find f′ (x).
Derivative of the squaring function
 Example
 Suppose f(x) = x2 . Use the defini on of deriva ve to find f′ (x).

 Solu on

                       f(x + h) − f(x)
           f′ (x) = lim
                   h→0        h
Derivative of the squaring function
 Example
 Suppose f(x) = x2 . Use the defini on of deriva ve to find f′ (x).

 Solu on

            ′          f(x + h) − f(x)       (x + h)2 − x2
           f (x) = lim                 = lim
                   h→0        h          h→0       h
Derivative of the squaring function
 Example
 Suppose f(x) = x2 . Use the defini on of deriva ve to find f′ (x).

 Solu on

            ′          f(x + h) − f(x)       (x + h)2 − x2
           f (x) = lim                 = lim
                   h→0        h          h→0       h
                         + 2xh + h −  
                                    2
                       x2
                                        x2
                                         
                 = lim
                   h→0          h
Derivative of the squaring function
 Example
 Suppose f(x) = x2 . Use the defini on of deriva ve to find f′ (x).

 Solu on

            ′          f(x + h) − f(x)       (x + h)2 − x2
           f (x) = lim                 = lim
                   h→0        h          h→0       h
                         + 2xh + h −  
                       x2
                                    2
                                        x2
                                                 2x + h2
                                                   h
                                                        ¡
                 = lim                     = lim
                   h→0          h            h→0     h
Derivative of the squaring function
 Example
 Suppose f(x) = x2 . Use the defini on of deriva ve to find f′ (x).

 Solu on

            ′          f(x + h) − f(x)       (x + h)2 − x2
           f (x) = lim                 = lim
                   h→0        h          h→0       h
                         + 2xh + h −  
                       x2
                                    2
                                        x2
                                                 2x + h2
                                                   h
                                                        ¡
                 = lim                     = lim
                   h→0          h            h→0     h
                                                     
                                                     
                 = lim (2x + h) = 2x.
                   h→0
The second derivative
 If f is a func on, so is f′ , and we can seek its deriva ve.

                                 f′′ = (f′ )′

 It measures the rate of change of the rate of change!
The second derivative
 If f is a func on, so is f′ , and we can seek its deriva ve.

                                 f′′ = (f′ )′

 It measures the rate of change of the rate of change! Leibnizian
 nota on:
                       d2 y     d2           d2 f
                                    f(x)
                       dx2     dx2           dx2
The squaring function and its derivatives

        y



        .     x
The squaring function and its derivatives

        y



        .   f   x
The squaring function and its derivatives

        y
            f′
                         f increasing =⇒ f′ ≥ 0
                         f decreasing =⇒ f′ ≤ 0
        .        f   x   horizontal tangent at 0
                         =⇒ f′ (0) = 0
The squaring function and its derivatives

        y
            f′
                     f′′   f increasing =⇒ f′ ≥ 0
                           f decreasing =⇒ f′ ≤ 0
        .        f   x     horizontal tangent at 0
                           =⇒ f′ (0) = 0
Derivative of the cubing function
 Example
 Suppose f(x) = x3 . Use the defini on of deriva ve to find f′ (x).
Derivative of the cubing function
 Example
 Suppose f(x) = x3 . Use the defini on of deriva ve to find f′ (x).

 Solu on

   ′           f(x + h) − f(x)       (x + h)3 − x3
   f (x) = lim                 = lim
           h→0        h          h→0       h
Derivative of the cubing function
 Example
 Suppose f(x) = x3 . Use the defini on of deriva ve to find f′ (x).

 Solu on

   ′           f(x + h) − f(x)       (x + h)3 − x3
   f (x) = lim                 = lim
           h→0        h          h→0       h
                 x3
                  
                   +   3x2 h + 3xh2 + h3 −  3
                                           x 
        = lim
           h→0                 h
Derivative of the cubing function
 Example
 Suppose f(x) = x3 . Use the defini on of deriva ve to find f′ (x).

 Solu on

   ′           f(x + h) − f(x)       (x + h)3 − x3
   f (x) = lim                 = lim
           h→0        h          h→0       h
                                                                        1     2
                                                                       !
                                                                       ¡      !
                                                                              ¡
                 x3
                  
                   +
                        2       2
                       3x h + 3xh + h   3
                                            −  3
                                              x            3x2 +
                                                              h
                                                                      ¡
                                                                    3xh2 +    ¡
                                                                             h3
        = lim                                      = lim
           h→0                h                      h→0            h
Derivative of the cubing function
 Example
 Suppose f(x) = x3 . Use the defini on of deriva ve to find f′ (x).

 Solu on

   ′           f(x + h) − f(x)       (x + h)3 − x3
   f (x) = lim                 = lim
           h→0        h          h→0       h
                                                                    1     2
                                                                   !
                                                                   ¡      !
                                                                          ¡
                 x3
                       2       2
                  3x h + 3xh + h
                   +
                                    3
                                        −  3
                                          x            3x2 +
                                                          h
                                                                  ¡
                                                                3xh2 +    ¡
                                                                         h3
        = lim                                  = lim
          h→0
              ( 2        h )                     h→0            h
                                                                
                                                                
        = lim 3x + 3xh + h2 = 3x2 .
           h→0
The cubing function and its derivatives


          y



          .       x
The cubing function and its derivatives


          y


              f
          .       x
The cubing function and its derivatives
                         No ce that f is increasing,
          y              and f′  0 except
              f′         f′ (0) = 0

              f
          .        x
The cubing function and its derivatives
                           No ce that f is increasing,
          y                and f′  0 except
              f′′ f′       f′ (0) = 0

                  f
          .            x
The cubing function and its derivatives
                           No ce that f is increasing,
          y                and f′  0 except
              f′′ f′       f′ (0) = 0
                           No ce also that the
                  f        tangent line to the graph
          .            x   of f at (0, 0) crosses the
                           graph (contrary to a
                           popular “defini on” of
                           the tangent line)
Derivative of the square root
 Example
                  √
 Suppose f(x) =       x = x1/2 . Fnd f′ (x) with the defini on.
Derivative of the square root
 Example
                  √
 Suppose f(x) =       x = x1/2 . Fnd f′ (x) with the defini on.

 Solu on
                                            √          √
           ′        f(x + h) − f(x)             x+h−    x
        f (x) = lim                 = lim
                h→0        h          h→0         h
Derivative of the square root
 Example
                  √
 Suppose f(x) =       x = x1/2 . Fnd f′ (x) with the defini on.

 Solu on
                                          √      √
           ′        f(x + h) − f(x)         x+h− x
        f (x) = lim                 = lim
                h→0
                    √      h          h→0      h
                              √ √            √
                      x+h− x         x+h+ x
              = lim                ·√        √
                h→0       h          x+h+ x
Derivative of the square root
 Example
                  √
 Suppose f(x) =       x = x1/2 . Fnd f′ (x) with the defini on.

 Solu on
                                          √      √
           ′        f(x + h) − f(x)         x+h− x
        f (x) = lim                 = lim
                h→0
                    √       h         h→0      h
                               √ √           √
                      x+h− x          x+h+ x
              = lim                ·√        √
                h→0        h          x+h+ x
                        (x + h) − x
                         ¡        ¡
              = lim (√            √ )
                h→0 h     x+h+ x
Derivative of the square root
 Example
                  √
 Suppose f(x) =       x = x1/2 . Fnd f′ (x) with the defini on.

 Solu on
                                          √       √
           ′        f(x + h) − f(x)         x+h− x
        f (x) = lim                 = lim
                h→0
                    √       h         h→0       h
                               √ √            √
                      x+h− x         x+h+ x
              = lim                ·√         √
                h→0        h         x+h+ x
                        (x + h) − x
                         ¡        ¡               h
                                                  
              = lim (√            √ ) = lim (√      √ )
                h→0 h     x+h+ x             h x+h+ x
                                         h→0
Derivative of the square root
 Example
                  √
 Suppose f(x) =       x = x1/2 . Fnd f′ (x) with the defini on.

 Solu on
                                          √       √
           ′        f(x + h) − f(x)         x+h− x
        f (x) = lim                 = lim
                h→0
                    √       h         h→0       h
                               √ √            √
                      x+h− x         x+h+ x
              = lim                ·√         √
                h→0        h         x+h+ x
                        (x + h) − x
                         ¡        ¡               h
                                                        1
              = lim (√            √ ) = lim (√      √ )= √
                h→0 h     x+h+ x             h x+h+ x
                                         h→0           2 x
The square root and its derivatives

     y



     .       x
The square root and its derivatives

     y

         f
     .       x
The square root and its derivatives

     y

         f                Here lim+ f′ (x) = ∞ and f
                               x→0
             f′           is not differen able at 0
     .            x
The square root and its derivatives

     y

         f                Here lim+ f′ (x) = ∞ and f
                               x→0
             f′           is not differen able at 0
     .            x
                          No ce also lim f′ (x) = 0
                                     x→∞
Derivative of the cube root
 Example
                  √
 Suppose f(x) =   3
                      x = x1/3 . Find f′ (x).
Derivative of the cube root
 Example
                  √
 Suppose f(x) =   3
                      x = x1/3 . Find f′ (x).

 Solu on
                   f(x + h) − f(x)       (x + h)1/3 − x1/3
       f′ (x) = lim                = lim
               h→0        h          h→0         h
Derivative of the cube root
 Example
                  √
 Suppose f(x) =   3
                      x = x1/3 . Find f′ (x).

 Solu on
                  f(x + h) − f(x)         (x + h)1/3 − x1/3
       f′ (x) = lim               = lim
              h→0        h            h→0         h
                  (x + h) − x
                         1/3    1/3
                                       (x + h) + (x + h)1/3 x1/3 + x2/3
                                              2/3
            = lim                   ·
              h→0         h            (x + h)2/3 + (x + h)1/3 x1/3 + x2/3
Derivative of the cube root
 Example
                  √
 Suppose f(x) =   3
                      x = x1/3 . Find f′ (x).

 Solu on
                  f(x + h) − f(x)          (x + h)1/3 − x1/3
       f′ (x) = lim                = lim
              h→0        h             h→0         h
                  (x + h) − x
                         1/3     1/3
                                        (x + h) + (x + h)1/3 x1/3 + x2/3
                                               2/3
            = lim                    ·
              h→0         h             (x + h)2/3 + (x + h)1/3 x1/3 + x2/3
                                (x + h) − x
                                 ¡          ¡
            = lim            2/3 + (x + h)1/3 x1/3 + x2/3 )
              h→0 h ((x + h)
Derivative of the cube root
 Example
                  √
 Suppose f(x) =   3
                      x = x1/3 . Find f′ (x).

 Solu on
                  f(x + h) − f(x)          (x + h)1/3 − x1/3
       f′ (x) = lim                = lim
              h→0        h             h→0         h
                  (x + h) − x
                         1/3     1/3
                                        (x + h) + (x + h)1/3 x1/3 + x2/3
                                               2/3
            = lim                    ·
              h→0         h             (x + h)2/3 + (x + h)1/3 x1/3 + x2/3
                                (x + h) − x
                                 ¡          ¡
            = lim            2/3 + (x + h)1/3 x1/3 + x2/3 )
              h→0 h ((x + h)

                                     h
                                     
            = lim            2/3 + (x + h)1/3 x1/3 + x2/3 )
              h→0  ((x + h)
                  h
Derivative of the cube root
 Example
                  √
 Suppose f(x) =   3
                      x = x1/3 . Find f′ (x).

 Solu on
                  f(x + h) − f(x)          (x + h)1/3 − x1/3
       f′ (x) = lim                = lim
              h→0        h             h→0         h
                  (x + h) − x
                         1/3     1/3
                                        (x + h) + (x + h)1/3 x1/3 + x2/3
                                               2/3
            = lim                    ·
              h→0         h             (x + h)2/3 + (x + h)1/3 x1/3 + x2/3
                                (x + h) − x
                                 ¡          ¡
            = lim            2/3 + (x + h)1/3 x1/3 + x2/3 )
              h→0 h ((x + h)

                                     h
                                                                1
            = lim            2/3 + (x + h)1/3 x1/3 + x2/3 )
                                                            = 2/3
              h→0  ((x + h)
                  h                                           3x
The cube root and its derivative

         y



          .       x
The cube root and its derivative

         y

              f
          .       x
The cube root and its derivative

         y
                           Here lim f′ (x) = ∞ and f
              f                  x→0
                           is not differen able at 0
                  f′
          .            x
The cube root and its derivative

         y
                           Here lim f′ (x) = ∞ and f
              f                  x→0
                           is not differen able at 0
                  f′
          .            x   No ce also
                             lim f′ (x) = 0
                           x→±∞
One more
 Example
 Suppose f(x) = x2/3 . Use the defini on of deriva ve to find f′ (x).
One more
 Example
 Suppose f(x) = x2/3 . Use the defini on of deriva ve to find f′ (x).

 Solu on
                       f(x + h) − f(x)       (x + h)2/3 − x2/3
           f′ (x) = lim                = lim
                   h→0        h          h→0         h
One more
 Example
 Suppose f(x) = x2/3 . Use the defini on of deriva ve to find f′ (x).

 Solu on
                      f(x + h) − f(x)       (x + h)2/3 − x2/3
           f′ (x) = lim               = lim
                  h→0        h          h→0         h
                                    1/3 (                   )
                      (x + h) − x
                             1/3
                = lim                  · (x + h) + x
                                                 1/3    1/3
                  h→0         h
One more
 Example
 Suppose f(x) = x2/3 . Use the defini on of deriva ve to find f′ (x).

 Solu on
                      f(x + h) − f(x)       (x + h)2/3 − x2/3
           f′ (x) = lim               = lim
                  h→0        h          h→0         h
                                    1/3 (                   )
                      (x + h) − x
                              1/3
                = lim                  · (x + h) + x
                                                 1/3    1/3
                  h→0
                         (     h)
                  1 −2/3
                = 3x       2x1/3
One more
 Example
 Suppose f(x) = x2/3 . Use the defini on of deriva ve to find f′ (x).

 Solu on
                      f(x + h) − f(x)        (x + h)2/3 − x2/3
           f′ (x) = lim                = lim
                  h→0        h           h→0         h
                                    1/3 (                    )
                      (x + h) − x
                              1/3
                = lim                   · (x + h) + x
                                                  1/3    1/3
                  h→0
                         (     h)
                  1 −2/3
                = 3x       2x1/3 = 2 x−1/3
                                     3
x → x2/3 and its derivative

        y



         .      x
x → x2/3 and its derivative

        y
                f


         .          x
x → x2/3 and its derivative

        y
                f        f is not differen able at 0
                         and lim± f′ (x) = ±∞
                f′           x→0
         .           x
x → x2/3 and its derivative

        y
                f        f is not differen able at 0
                         and lim± f′ (x) = ±∞
                f′           x→0
         .           x   No ce also
                          lim f′ (x) = 0
                         x→±∞
Recap
     y       y′
    x2      2x
    x3      3x2
           1 −1/2
    x1/2   2x
           1 −2/3
    x1/3   3x
           2 −1/3
    x2/3   3x
Recap
     y       y′
    x2      2x
    x3      3x2
           1 −1/2
    x1/2   2x
           1 −2/3
    x1/3   3x
           2 −1/3
    x2/3   3x
Recap
     y       y′
    x2      2x
    x3      3x2
           1 −1/2
    x1/2   2x
           1 −2/3
    x1/3   3x
           2 −1/3
    x2/3   3x
Recap
     y       y′
    x2      2x
    x3      3x2
           1 −1/2
    x1/2   2x
           1 −2/3
    x1/3   3x
           2 −1/3
    x2/3   3x
Recap
     y       y′
    x2      2x
    x3      3x2
           1 −1/2
    x1/2   2x
           1 −2/3
    x1/3   3x
           2 −1/3
    x2/3   3x
Recap
     y       y′
    x2      2x1
    x3      3x2
           1 −1/2
    x1/2   2x
           1 −2/3
    x1/3   3x
           2 −1/3
    x2/3   3x
Recap: The Tower of Power
      y        y′
     x2       2x1     The power goes down by
     x   3
              3x2     one in each deriva ve
             1 −1/2
     x1/2    2x
             1 −2/3
     x1/3    3x
             2 −1/3
     x2/3    3x
Recap: The Tower of Power
      y        y′
     x2       2x      The power goes down by
     x   3
              3x2     one in each deriva ve
             1 −1/2
     x1/2    2x
             1 −2/3
     x1/3    3x
             2 −1/3
     x2/3    3x
Recap: The Tower of Power
      y        y′
     x2       2x      The power goes down by
     x   3
              3x2     one in each deriva ve
             1 −1/2
     x1/2    2x
             1 −2/3
     x1/3    3x
             2 −1/3
     x2/3    3x
Recap: The Tower of Power
      y        y′
     x2       2x      The power goes down by
     x   3
              3x2     one in each deriva ve
             1 −1/2
     x1/2    2x
             1 −2/3
     x1/3    3x
             2 −1/3
     x2/3    3x
Recap: The Tower of Power
      y        y′
     x2       2x      The power goes down by
     x   3
              3x2     one in each deriva ve
             1 −1/2
     x1/2    2x
             1 −2/3
     x1/3    3x
             2 −1/3
     x2/3    3x
Recap: The Tower of Power
      y        y′
     x2       2x      The power goes down by
     x   3
              3x2     one in each deriva ve
             1 −1/2
     x1/2    2x
             1 −2/3
     x1/3    3x
             2 −1/3
     x2/3    3x
Recap: The Tower of Power
      y        y′
     x2       2x      The power goes down by
     x   3
              3x2     one in each deriva ve
             1 −1/2   The coefficient in the
     x1/2    2x       deriva ve is the power of
             1 −2/3
     x1/3    3x
                      the original func on
             2 −1/3
     x2/3    3x
The Power Rule
 There is moun ng evidence for
 Theorem (The Power Rule)
 Let r be a real number and f(x) = xr . Then

                             f′ (x) = rxr−1

 as long as the expression on the right-hand side is defined.

     Perhaps the most famous rule in calculus
     We will assume it as of today
     We will prove it many ways for many different r.
The other Tower of Power
Outline
 Deriva ves so far
    Deriva ves of power func ons by hand
    The Power Rule
 Deriva ves of polynomials
    The Power Rule for whole number powers
    The Power Rule for constants
    The Sum Rule
    The Constant Mul ple Rule
 Deriva ves of sine and cosine
Remember your algebra
 Fact
 Let n be a posi ve whole number. Then

        (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it)
Remember your algebra
 Fact
 Let n be a posi ve whole number. Then

        (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it)


 Proof.
 We have
                                                           ∑
                                                           n
   (x + h) = (x + h) · (x + h) · (x + h) · · · (x + h) =
            n
                                                                 ck xk hn−k
                                n copies                   k=0
Remember your algebra
 Fact
 Let n be a posi ve whole number. Then

        (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it)


 Proof.
 We have
                                                           ∑
                                                           n
   (x + h) = (x + h) · (x + h) · (x + h) · · · (x + h) =
            n
                                                                 ck xk hn−k
                                n copies                   k=0
Remember your algebra
 Fact
 Let n be a posi ve whole number. Then

        (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it)


 Proof.
 We have
                                                           ∑
                                                           n
   (x + h) = (x + h) · (x + h) · (x + h) · · · (x + h) =
            n
                                                                 ck xk hn−k
                                n copies                   k=0
Remember your algebra
 Fact
 Let n be a posi ve whole number. Then

        (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it)


 Proof.
 We have
                                                           ∑
                                                           n
   (x + h) = (x + h) · (x + h) · (x + h) · · · (x + h) =
            n
                                                                 ck xk hn−k
                                n copies                   k=0
Remember your algebra
 Fact
 Let n be a posi ve whole number. Then

        (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it)


 Proof.
 We have
                                                           ∑
                                                           n
   (x + h) = (x + h) · (x + h) · (x + h) · · · (x + h) =
            n
                                                                 ck xk hn−k
                                n copies                   k=0
Remember your algebra
 Fact
 Let n be a posi ve whole number. Then

        (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it)


 Proof.
 We have
                                                           ∑
                                                           n
   (x + h) = (x + h) · (x + h) · (x + h) · · · (x + h) =
            n
                                                                 ck xk hn−k
                                n copies                   k=0
Pascal’s Triangle
          .
          1
         1 1
       1 2 1
      1 3 3 1         (x + h)0 = 1
     1 4 6 4 1        (x + h)1 = 1x + 1h
                      (x + h)2 = 1x2 + 2xh + 1h2
    1 5 10 10 5 1
                      (x + h)3 = 1x3 + 3x2 h + 3xh2 + 1h3
   1 6 15 20 15 6 1        ... ...
Pascal’s Triangle
          .
          1
         1 1
       1 2 1
      1 3 3 1         (x + h)0 = 1
     1 4 6 4 1        (x + h)1 = 1x + 1h
                      (x + h)2 = 1x2 + 2xh + 1h2
    1 5 10 10 5 1
                      (x + h)3 = 1x3 + 3x2 h + 3xh2 + 1h3
   1 6 15 20 15 6 1        ... ...
Pascal’s Triangle
          .
          1
         1 1
       1 2 1
      1 3 3 1         (x + h)0 = 1
     1 4 6 4 1        (x + h)1 = 1x + 1h
                      (x + h)2 = 1x2 + 2xh + 1h2
    1 5 10 10 5 1
                      (x + h)3 = 1x3 + 3x2 h + 3xh2 + 1h3
   1 6 15 20 15 6 1        ... ...
Pascal’s Triangle
          .
          1
         1 1
       1 2 1
      1 3 3 1         (x + h)0 = 1
     1 4 6 4 1        (x + h)1 = 1x + 1h
                      (x + h)2 = 1x2 + 2xh + 1h2
    1 5 10 10 5 1
                      (x + h)3 = 1x3 + 3x2 h + 3xh2 + 1h3
   1 6 15 20 15 6 1        ... ...
Proving the Power Rule
 Theorem (The Power Rule)
                                         d n
 Let n be a posi ve whole number. Then      x = nxn−1 .
                                         dx
Proving the Power Rule
 Theorem (The Power Rule)
                                                 d n
 Let n be a posi ve whole number. Then              x = nxn−1 .
                                                 dx

 Proof.
 As we showed above,

             (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it)

              (x + h)n − xn   nxn−1 h + (stuff with at least two hs in it)
           So               =
                    h                             h
                            = nxn−1 + (stuff with at least one h in it)
 and this tends to nxn−1 as h → 0.
The Power Rule for constants?
 Theorem
                             d
 Let c be a constant. Then      c=0
                             dx
The Power Rule for constants?
                                                d 0
 Theorem                                 like      x = 0x−1
                             d                  dx
 Let c be a constant. Then      c = 0.
                                     .
                             dx
The Power Rule for constants?
                                                d 0
 Theorem                                 like      x = 0x−1
                             d                  dx
 Let c be a constant. Then      c = 0.
                                     .
                             dx

 Proof.
 Let f(x) = c. Then

                      f(x + h) − f(x) c − c
                                     =      =0
                             h          h
 So f′ (x) = lim 0 = 0.
            h→0
.

    Calculus
Recall the Limit Laws
 Fact
 Suppose lim f(x) = L and lim g(x) = M and c is a constant. Then
              x→a         x→a
  1. lim [f(x) + g(x)] = L + M
        x→a
  2. lim [f(x) − g(x)] = L − M
        x→a
  3. lim [cf(x)] = cL
        x→a
  4. . . .
Adding functions
 Theorem (The Sum Rule)
 Let f and g be func ons and define

                          (f + g)(x) = f(x) + g(x)

 Then if f and g are differen able at x, then so is f + g and

                        (f + g)′ (x) = f′ (x) + g′ (x).

 Succinctly, (f + g)′ = f′ + g′ .
Proof of the Sum Rule
 Proof.
 Follow your nose:
                            (f + g)(x + h) − (f + g)(x)
          (f + g)′ (x) = lim
                        h→0              h
Proof of the Sum Rule
 Proof.
 Follow your nose:
                           (f + g)(x + h) − (f + g)(x)
          (f + g)′ (x) = lim
                       h→0              h
                           f(x + h) + g(x + h) − [f(x) + g(x)]
                     = lim
                       h→0                 h
Proof of the Sum Rule
 Proof.
 Follow your nose:
                           (f + g)(x + h) − (f + g)(x)
          (f + g)′ (x) = lim
                       h→0              h
                           f(x + h) + g(x + h) − [f(x) + g(x)]
                     = lim
                       h→0                  h
                           f(x + h) − f(x)       g(x + h) − g(x)
                     = lim                 + lim
                       h→0        h          h→0        h
Proof of the Sum Rule
 Proof.
 Follow your nose:
                            (f + g)(x + h) − (f + g)(x)
          (f + g)′ (x) = lim
                       h→0               h
                            f(x + h) + g(x + h) − [f(x) + g(x)]
                     = lim
                       h→0                   h
                            f(x + h) − f(x)       g(x + h) − g(x)
                     = lim                  + lim
                       h→0         h          h→0        h
                        ′        ′
                     = f (x) + g (x)
Scaling functions
 Theorem (The Constant Mul ple Rule)
 Let f be a func on and c a constant. Define

                              (cf)(x) = cf(x)

 Then if f is differen able at x, so is cf and

                             (cf)′ (x) = c · f′ (x)

 Succinctly, (cf)′ = cf′ .
Proof of Constant Multiple Rule
 Proof.
 Again, follow your nose.
                    (cf)(x + h) − (cf)(x)
     (cf)′ (x) = lim
                h→0           h
Proof of Constant Multiple Rule
 Proof.
 Again, follow your nose.
                    (cf)(x + h) − (cf)(x)       cf(x + h) − cf(x)
     (cf)′ (x) = lim                      = lim
                h→0           h             h→0         h
Proof of Constant Multiple Rule
 Proof.
 Again, follow your nose.
                    (cf)(x + h) − (cf)(x)       cf(x + h) − cf(x)
     (cf)′ (x) = lim                      = lim
               h→0            h             h→0         h
                     f(x + h) − f(x)
             = c lim
                 h→0        h
Proof of Constant Multiple Rule
 Proof.
 Again, follow your nose.
                    (cf)(x + h) − (cf)(x)         cf(x + h) − cf(x)
     (cf)′ (x) = lim                      = lim
               h→0            h               h→0         h
                     f(x + h) − f(x)
             = c lim                 = c · f′ (x)
                 h→0        h
Derivatives of polynomials
 Example
      d ( 3                  )
 Find    2x + x4 − 17x12 + 37
      dx
Derivatives of polynomials
 Example
      d ( 3                  )
 Find    2x + x4 − 17x12 + 37
      dx
 Solu on

 d ( 3                  )  d ( 3) d     d (       ) d
    2x + x4 − 17x12 + 37 =    2x + x4 +     −17x12 + (37)
 dx                        dx     dx    dx          dx
Derivatives of polynomials
 Example
      d ( 3                  )
 Find    2x + x4 − 17x12 + 37
      dx
 Solu on

 d ( 3                  )    d ( 3)    d    d (       ) d
    2x + x4 − 17x12 + 37 =       2x + x4 +      −17x12 + (37)
 dx                         dx         dx  dx           dx
                              d     d      d
                          = 2 x3 + x4 − 17 x12 + 0
                              dx    dx     dx
Derivatives of polynomials
 Example
      d ( 3                  )
 Find    2x + x4 − 17x12 + 37
      dx
 Solu on

 d ( 3                  )    d ( 3)      d     d (       ) d
    2x + x4 − 17x12 + 37 =       2x + x4 +         −17x12 + (37)
 dx                         dx          dx     dx          dx
                              d      d         d
                          = 2 x3 + x4 − 17 x12 + 0
                              dx     dx       dx
                          = 2 · 3x + 4x − 17 · 12x11
                                  2     3
Derivatives of polynomials
 Example
      d ( 3                  )
 Find    2x + x4 − 17x12 + 37
      dx
 Solu on

 d ( 3                  )    d ( 3)      d      d (       ) d
    2x + x4 − 17x12 + 37 =       2x + x4 +          −17x12 + (37)
 dx                         dx          dx     dx           dx
                              d      d         d
                          = 2 x3 + x4 − 17 x12 + 0
                              dx     dx        dx
                          = 2 · 3x + 4x − 17 · 12x11
                                  2     3

                          = 6x2 + 4x3 − 204x11
Outline
 Deriva ves so far
    Deriva ves of power func ons by hand
    The Power Rule
 Deriva ves of polynomials
    The Power Rule for whole number powers
    The Power Rule for constants
    The Sum Rule
    The Constant Mul ple Rule
 Deriva ves of sine and cosine
Derivatives of Sine and Cosine
 Fact
  d
    sin x = ???
 dx
 Proof.
 From the defini on:
Derivatives of Sine and Cosine
 Fact
  d
    sin x = ???
 dx
 Proof.
 From the defini on:
 d              sin(x + h) − sin x
    sin x = lim
 dx         h→0         h
Angle addition formulas
See Appendix A



           sin(A + B) = . A cos B + cos A sin B
                        sin
           cos(A + B) = cos A cos B − sin A sin B
Derivatives of Sine and Cosine
 Fact
  d
    sin x = ???
 dx
 Proof.
 From the defini on:
 d              sin(x + h) − sin x       ( sin x cos h + cos x sin h) − sin x
    sin x = lim                    = lim
 dx         h→0         h            h→0                  h
Derivatives of Sine and Cosine
 Fact
  d
    sin x = ???
 dx
 Proof.
 From the defini on:
 d               sin(x + h) − sin x        ( sin x cos h + cos x sin h) − sin x
    sin x = lim                     = lim
 dx         h→0           h           h→0                   h
                        cos h − 1                sin h
          = sin x · lim           + cos x · lim
                    h→0     h               h→0 h
Two important trigonometric
limits
See Section 1.4


                                   sin θ
                               lim .     =1
                               θ→0 θ
                                 cos θ − 1
              sin θ θ       lim            =0
       θ                    θ→0      θ
   .
           1 − cos θ    1
Derivatives of Sine and Cosine
 Fact
  d
    sin x = ???
 dx
 Proof.
 From the defini on:
 d               sin(x + h) − sin x        ( sin x cos h + cos x sin h) − sin x
    sin x = lim                     = lim
 dx         h→0           h           h→0                   h
                        cos h − 1                sin h
          = sin x · lim           + cos x · lim
                    h→0      h              h→0 h
          = sin x · 0 + cos x · 1
Derivatives of Sine and Cosine
 Fact
  d
    sin x = ???
 dx
 Proof.
 From the defini on:
 d               sin(x + h) − sin x        ( sin x cos h + cos x sin h) − sin x
    sin x = lim                     = lim
 dx         h→0           h           h→0                   h
                        cos h − 1                sin h
          = sin x · lim           + cos x · lim
                    h→0      h              h→0 h
          = sin x · 0 + cos x · 1
Derivatives of Sine and Cosine
 Fact
  d
    sin x = cos x
 dx
 Proof.
 From the defini on:
 d               sin(x + h) − sin x         ( sin x cos h + cos x sin h) − sin x
    sin x = lim                      = lim
 dx         h→0           h            h→0                   h
                        cos h − 1                 sin h
          = sin x · lim            + cos x · lim
                    h→0      h               h→0 h
          = sin x · 0 + cos x · 1 = cos x
Illustration of Sine and Cosine
                 y

                 .           x
        π   −π   0   π   π
             2       2
                             sin x
Illustration of Sine and Cosine
                             y

                             .                     x
             π      −π       0       π       π     cos x
                     2               2
                                                   sin x


   f(x) = sin x has horizontal tangents where f′ = cos(x) is zero.
Illustration of Sine and Cosine
                             y

                             .                     x
             π      −π       0       π       π     cos x
                     2               2
                                                   sin x


   f(x) = sin x has horizontal tangents where f′ = cos(x) is zero.
   what happens at the horizontal tangents of cos?
Derivative of Cosine
 Fact
  d
    cos x = − sin x
 dx
Derivative of Cosine
 Fact
  d
    cos x = − sin x
 dx
 Proof.
 We already did the first. The second is similar (muta s mutandis):
 d              cos(x + h) − cos x
    cos x = lim
 dx         h→0         h
Derivative of Cosine
 Fact
  d
    cos x = − sin x
 dx
 Proof.
 We already did the first. The second is similar (muta s mutandis):
 d              cos(x + h) − cos x       (cos x cos h − sin x sin h) − cos x
    cos x = lim                    = lim
 dx         h→0         h            h→0                  h
Derivative of Cosine
 Fact
  d
    cos x = − sin x
 dx
 Proof.
 We already did the first. The second is similar (muta s mutandis):
 d              cos(x + h) − cos x           (cos x cos h − sin x sin h) − cos x
    cos x = lim                     = lim
 dx         h→0           h            h→0                    h
                        cos h − 1               sin h
          = cos x · lim           − sin x · lim
                    h→0     h               h→0 h
Derivative of Cosine
 Fact
  d
    cos x = − sin x
 dx
 Proof.
 We already did the first. The second is similar (muta s mutandis):
 d              cos(x + h) − cos x            (cos x cos h − sin x sin h) − cos x
    cos x = lim                      = lim
 dx         h→0           h             h→0                    h
                        cos h − 1                sin h
          = cos x · lim            − sin x · lim
                    h→0      h               h→0 h
          = cos x · 0 − sin x · 1 = − sin x
Summary
What have we learned today?

    The Power Rule
Summary
What have we learned today?

    The Power Rule
    The deriva ve of a sum is the sum of the deriva ves
    The deriva ve of a constant mul ple of a func on is that
    constant mul ple of the deriva ve
Summary
What have we learned today?

    The Power Rule
    The deriva ve of a sum is the sum of the deriva ves
    The deriva ve of a constant mul ple of a func on is that
    constant mul ple of the deriva ve
    The deriva ve of sine is cosine
    The deriva ve of cosine is the opposite of sine.

Lesson 8: Basic Differentation Rules (slides)

  • 1.
    Sec on 2.3 Basic Differenta on Rules V63.0121.011: Calculus I Professor Ma hew Leingang New York University . NYUMathematics
  • 2.
    Announcements Quiz 1 this week on 1.1–1.4 Quiz 2 March 3/4 on 1.5, 1.6, 2.1, 2.2, 2.3 Midterm Monday March 7 in class
  • 3.
    Objectives Understand and use these differen a on rules: the deriva ve of a constant func on (zero); the Constant Mul ple Rule; the Sum Rule; the Difference Rule; the deriva ves of sine and cosine.
  • 4.
    Recall: the derivative Defini on Let f be a func on and a a point in the domain of f. If the limit f(a + h) − f(a) f(x) − f(a) f′ (a) = lim = lim h→0 h x→a x−a exists, the func on is said to be differen able at a and f′ (a) is the deriva ve of f at a.
  • 5.
    The deriva ve… …measures the slope of the line through (a, f(a)) tangent to the curve y = f(x); …represents the instantaneous rate of change of f at a …produces the best possible linear approxima on to f near a.
  • 6.
    Notation Newtonian nota on Leibnizian nota on dy d df f′ (x) y′ (x) y′ f(x) dx dx dx
  • 7.
    Link between thenotations f(x + ∆x) − f(x) ∆y dy f′ (x) = lim = lim = ∆x→0 ∆x ∆x→0 ∆x dx dy Leibniz thought of as a quo ent of “infinitesimals” dx dy We think of as represen ng a limit of (finite) difference dx quo ents, not as an actual frac on itself. The nota on suggests things which are true even though they don’t follow from the nota on per se
  • 8.
    Outline Deriva vesso far Deriva ves of power func ons by hand The Power Rule Deriva ves of polynomials The Power Rule for whole number powers The Power Rule for constants The Sum Rule The Constant Mul ple Rule Deriva ves of sine and cosine
  • 9.
    Derivative of thesquaring function Example Suppose f(x) = x2 . Use the defini on of deriva ve to find f′ (x).
  • 10.
    Derivative of thesquaring function Example Suppose f(x) = x2 . Use the defini on of deriva ve to find f′ (x). Solu on f(x + h) − f(x) f′ (x) = lim h→0 h
  • 11.
    Derivative of thesquaring function Example Suppose f(x) = x2 . Use the defini on of deriva ve to find f′ (x). Solu on ′ f(x + h) − f(x) (x + h)2 − x2 f (x) = lim = lim h→0 h h→0 h
  • 12.
    Derivative of thesquaring function Example Suppose f(x) = x2 . Use the defini on of deriva ve to find f′ (x). Solu on ′ f(x + h) − f(x) (x + h)2 − x2 f (x) = lim = lim h→0 h h→0 h   + 2xh + h −   2 x2   x2   = lim h→0 h
  • 13.
    Derivative of thesquaring function Example Suppose f(x) = x2 . Use the defini on of deriva ve to find f′ (x). Solu on ′ f(x + h) − f(x) (x + h)2 − x2 f (x) = lim = lim h→0 h h→0 h   + 2xh + h −   x2   2 x2   2x + h2 h ¡ = lim = lim h→0 h h→0 h
  • 14.
    Derivative of thesquaring function Example Suppose f(x) = x2 . Use the defini on of deriva ve to find f′ (x). Solu on ′ f(x + h) − f(x) (x + h)2 − x2 f (x) = lim = lim h→0 h h→0 h   + 2xh + h −   x2   2 x2   2x + h2 h ¡ = lim = lim h→0 h h→0 h = lim (2x + h) = 2x. h→0
  • 15.
    The second derivative If f is a func on, so is f′ , and we can seek its deriva ve. f′′ = (f′ )′ It measures the rate of change of the rate of change!
  • 16.
    The second derivative If f is a func on, so is f′ , and we can seek its deriva ve. f′′ = (f′ )′ It measures the rate of change of the rate of change! Leibnizian nota on: d2 y d2 d2 f f(x) dx2 dx2 dx2
  • 17.
    The squaring functionand its derivatives y . x
  • 18.
    The squaring functionand its derivatives y . f x
  • 19.
    The squaring functionand its derivatives y f′ f increasing =⇒ f′ ≥ 0 f decreasing =⇒ f′ ≤ 0 . f x horizontal tangent at 0 =⇒ f′ (0) = 0
  • 20.
    The squaring functionand its derivatives y f′ f′′ f increasing =⇒ f′ ≥ 0 f decreasing =⇒ f′ ≤ 0 . f x horizontal tangent at 0 =⇒ f′ (0) = 0
  • 21.
    Derivative of thecubing function Example Suppose f(x) = x3 . Use the defini on of deriva ve to find f′ (x).
  • 22.
    Derivative of thecubing function Example Suppose f(x) = x3 . Use the defini on of deriva ve to find f′ (x). Solu on ′ f(x + h) − f(x) (x + h)3 − x3 f (x) = lim = lim h→0 h h→0 h
  • 23.
    Derivative of thecubing function Example Suppose f(x) = x3 . Use the defini on of deriva ve to find f′ (x). Solu on ′ f(x + h) − f(x) (x + h)3 − x3 f (x) = lim = lim h→0 h h→0 h x3     + 3x2 h + 3xh2 + h3 −  3 x  = lim h→0 h
  • 24.
    Derivative of thecubing function Example Suppose f(x) = x3 . Use the defini on of deriva ve to find f′ (x). Solu on ′ f(x + h) − f(x) (x + h)3 − x3 f (x) = lim = lim h→0 h h→0 h 1 2 ! ¡ ! ¡ x3     + 2 2 3x h + 3xh + h 3 −  3 x  3x2 + h ¡ 3xh2 + ¡ h3 = lim = lim h→0 h h→0 h
  • 25.
    Derivative of thecubing function Example Suppose f(x) = x3 . Use the defini on of deriva ve to find f′ (x). Solu on ′ f(x + h) − f(x) (x + h)3 − x3 f (x) = lim = lim h→0 h h→0 h 1 2 ! ¡ ! ¡ x3   2 2 3x h + 3xh + h   + 3 −  3 x  3x2 + h ¡ 3xh2 + ¡ h3 = lim = lim h→0 ( 2 h ) h→0 h = lim 3x + 3xh + h2 = 3x2 . h→0
  • 26.
    The cubing functionand its derivatives y . x
  • 27.
    The cubing functionand its derivatives y f . x
  • 28.
    The cubing functionand its derivatives No ce that f is increasing, y and f′ 0 except f′ f′ (0) = 0 f . x
  • 29.
    The cubing functionand its derivatives No ce that f is increasing, y and f′ 0 except f′′ f′ f′ (0) = 0 f . x
  • 30.
    The cubing functionand its derivatives No ce that f is increasing, y and f′ 0 except f′′ f′ f′ (0) = 0 No ce also that the f tangent line to the graph . x of f at (0, 0) crosses the graph (contrary to a popular “defini on” of the tangent line)
  • 31.
    Derivative of thesquare root Example √ Suppose f(x) = x = x1/2 . Fnd f′ (x) with the defini on.
  • 32.
    Derivative of thesquare root Example √ Suppose f(x) = x = x1/2 . Fnd f′ (x) with the defini on. Solu on √ √ ′ f(x + h) − f(x) x+h− x f (x) = lim = lim h→0 h h→0 h
  • 33.
    Derivative of thesquare root Example √ Suppose f(x) = x = x1/2 . Fnd f′ (x) with the defini on. Solu on √ √ ′ f(x + h) − f(x) x+h− x f (x) = lim = lim h→0 √ h h→0 h √ √ √ x+h− x x+h+ x = lim ·√ √ h→0 h x+h+ x
  • 34.
    Derivative of thesquare root Example √ Suppose f(x) = x = x1/2 . Fnd f′ (x) with the defini on. Solu on √ √ ′ f(x + h) − f(x) x+h− x f (x) = lim = lim h→0 √ h h→0 h √ √ √ x+h− x x+h+ x = lim ·√ √ h→0 h x+h+ x (x + h) − x ¡ ¡ = lim (√ √ ) h→0 h x+h+ x
  • 35.
    Derivative of thesquare root Example √ Suppose f(x) = x = x1/2 . Fnd f′ (x) with the defini on. Solu on √ √ ′ f(x + h) − f(x) x+h− x f (x) = lim = lim h→0 √ h h→0 h √ √ √ x+h− x x+h+ x = lim ·√ √ h→0 h x+h+ x (x + h) − x ¡ ¡ h = lim (√ √ ) = lim (√ √ ) h→0 h x+h+ x h x+h+ x h→0
  • 36.
    Derivative of thesquare root Example √ Suppose f(x) = x = x1/2 . Fnd f′ (x) with the defini on. Solu on √ √ ′ f(x + h) − f(x) x+h− x f (x) = lim = lim h→0 √ h h→0 h √ √ √ x+h− x x+h+ x = lim ·√ √ h→0 h x+h+ x (x + h) − x ¡ ¡ h 1 = lim (√ √ ) = lim (√ √ )= √ h→0 h x+h+ x h x+h+ x h→0 2 x
  • 37.
    The square rootand its derivatives y . x
  • 38.
    The square rootand its derivatives y f . x
  • 39.
    The square rootand its derivatives y f Here lim+ f′ (x) = ∞ and f x→0 f′ is not differen able at 0 . x
  • 40.
    The square rootand its derivatives y f Here lim+ f′ (x) = ∞ and f x→0 f′ is not differen able at 0 . x No ce also lim f′ (x) = 0 x→∞
  • 41.
    Derivative of thecube root Example √ Suppose f(x) = 3 x = x1/3 . Find f′ (x).
  • 42.
    Derivative of thecube root Example √ Suppose f(x) = 3 x = x1/3 . Find f′ (x). Solu on f(x + h) − f(x) (x + h)1/3 − x1/3 f′ (x) = lim = lim h→0 h h→0 h
  • 43.
    Derivative of thecube root Example √ Suppose f(x) = 3 x = x1/3 . Find f′ (x). Solu on f(x + h) − f(x) (x + h)1/3 − x1/3 f′ (x) = lim = lim h→0 h h→0 h (x + h) − x 1/3 1/3 (x + h) + (x + h)1/3 x1/3 + x2/3 2/3 = lim · h→0 h (x + h)2/3 + (x + h)1/3 x1/3 + x2/3
  • 44.
    Derivative of thecube root Example √ Suppose f(x) = 3 x = x1/3 . Find f′ (x). Solu on f(x + h) − f(x) (x + h)1/3 − x1/3 f′ (x) = lim = lim h→0 h h→0 h (x + h) − x 1/3 1/3 (x + h) + (x + h)1/3 x1/3 + x2/3 2/3 = lim · h→0 h (x + h)2/3 + (x + h)1/3 x1/3 + x2/3 (x + h) − x ¡ ¡ = lim 2/3 + (x + h)1/3 x1/3 + x2/3 ) h→0 h ((x + h)
  • 45.
    Derivative of thecube root Example √ Suppose f(x) = 3 x = x1/3 . Find f′ (x). Solu on f(x + h) − f(x) (x + h)1/3 − x1/3 f′ (x) = lim = lim h→0 h h→0 h (x + h) − x 1/3 1/3 (x + h) + (x + h)1/3 x1/3 + x2/3 2/3 = lim · h→0 h (x + h)2/3 + (x + h)1/3 x1/3 + x2/3 (x + h) − x ¡ ¡ = lim 2/3 + (x + h)1/3 x1/3 + x2/3 ) h→0 h ((x + h) h = lim 2/3 + (x + h)1/3 x1/3 + x2/3 ) h→0 ((x + h) h
  • 46.
    Derivative of thecube root Example √ Suppose f(x) = 3 x = x1/3 . Find f′ (x). Solu on f(x + h) − f(x) (x + h)1/3 − x1/3 f′ (x) = lim = lim h→0 h h→0 h (x + h) − x 1/3 1/3 (x + h) + (x + h)1/3 x1/3 + x2/3 2/3 = lim · h→0 h (x + h)2/3 + (x + h)1/3 x1/3 + x2/3 (x + h) − x ¡ ¡ = lim 2/3 + (x + h)1/3 x1/3 + x2/3 ) h→0 h ((x + h) h 1 = lim 2/3 + (x + h)1/3 x1/3 + x2/3 ) = 2/3 h→0 ((x + h) h 3x
  • 47.
    The cube rootand its derivative y . x
  • 48.
    The cube rootand its derivative y f . x
  • 49.
    The cube rootand its derivative y Here lim f′ (x) = ∞ and f f x→0 is not differen able at 0 f′ . x
  • 50.
    The cube rootand its derivative y Here lim f′ (x) = ∞ and f f x→0 is not differen able at 0 f′ . x No ce also lim f′ (x) = 0 x→±∞
  • 51.
    One more Example Suppose f(x) = x2/3 . Use the defini on of deriva ve to find f′ (x).
  • 52.
    One more Example Suppose f(x) = x2/3 . Use the defini on of deriva ve to find f′ (x). Solu on f(x + h) − f(x) (x + h)2/3 − x2/3 f′ (x) = lim = lim h→0 h h→0 h
  • 53.
    One more Example Suppose f(x) = x2/3 . Use the defini on of deriva ve to find f′ (x). Solu on f(x + h) − f(x) (x + h)2/3 − x2/3 f′ (x) = lim = lim h→0 h h→0 h 1/3 ( ) (x + h) − x 1/3 = lim · (x + h) + x 1/3 1/3 h→0 h
  • 54.
    One more Example Suppose f(x) = x2/3 . Use the defini on of deriva ve to find f′ (x). Solu on f(x + h) − f(x) (x + h)2/3 − x2/3 f′ (x) = lim = lim h→0 h h→0 h 1/3 ( ) (x + h) − x 1/3 = lim · (x + h) + x 1/3 1/3 h→0 ( h) 1 −2/3 = 3x 2x1/3
  • 55.
    One more Example Suppose f(x) = x2/3 . Use the defini on of deriva ve to find f′ (x). Solu on f(x + h) − f(x) (x + h)2/3 − x2/3 f′ (x) = lim = lim h→0 h h→0 h 1/3 ( ) (x + h) − x 1/3 = lim · (x + h) + x 1/3 1/3 h→0 ( h) 1 −2/3 = 3x 2x1/3 = 2 x−1/3 3
  • 56.
    x → x2/3and its derivative y . x
  • 57.
    x → x2/3and its derivative y f . x
  • 58.
    x → x2/3and its derivative y f f is not differen able at 0 and lim± f′ (x) = ±∞ f′ x→0 . x
  • 59.
    x → x2/3and its derivative y f f is not differen able at 0 and lim± f′ (x) = ±∞ f′ x→0 . x No ce also lim f′ (x) = 0 x→±∞
  • 60.
    Recap y y′ x2 2x x3 3x2 1 −1/2 x1/2 2x 1 −2/3 x1/3 3x 2 −1/3 x2/3 3x
  • 61.
    Recap y y′ x2 2x x3 3x2 1 −1/2 x1/2 2x 1 −2/3 x1/3 3x 2 −1/3 x2/3 3x
  • 62.
    Recap y y′ x2 2x x3 3x2 1 −1/2 x1/2 2x 1 −2/3 x1/3 3x 2 −1/3 x2/3 3x
  • 63.
    Recap y y′ x2 2x x3 3x2 1 −1/2 x1/2 2x 1 −2/3 x1/3 3x 2 −1/3 x2/3 3x
  • 64.
    Recap y y′ x2 2x x3 3x2 1 −1/2 x1/2 2x 1 −2/3 x1/3 3x 2 −1/3 x2/3 3x
  • 65.
    Recap y y′ x2 2x1 x3 3x2 1 −1/2 x1/2 2x 1 −2/3 x1/3 3x 2 −1/3 x2/3 3x
  • 66.
    Recap: The Towerof Power y y′ x2 2x1 The power goes down by x 3 3x2 one in each deriva ve 1 −1/2 x1/2 2x 1 −2/3 x1/3 3x 2 −1/3 x2/3 3x
  • 67.
    Recap: The Towerof Power y y′ x2 2x The power goes down by x 3 3x2 one in each deriva ve 1 −1/2 x1/2 2x 1 −2/3 x1/3 3x 2 −1/3 x2/3 3x
  • 68.
    Recap: The Towerof Power y y′ x2 2x The power goes down by x 3 3x2 one in each deriva ve 1 −1/2 x1/2 2x 1 −2/3 x1/3 3x 2 −1/3 x2/3 3x
  • 69.
    Recap: The Towerof Power y y′ x2 2x The power goes down by x 3 3x2 one in each deriva ve 1 −1/2 x1/2 2x 1 −2/3 x1/3 3x 2 −1/3 x2/3 3x
  • 70.
    Recap: The Towerof Power y y′ x2 2x The power goes down by x 3 3x2 one in each deriva ve 1 −1/2 x1/2 2x 1 −2/3 x1/3 3x 2 −1/3 x2/3 3x
  • 71.
    Recap: The Towerof Power y y′ x2 2x The power goes down by x 3 3x2 one in each deriva ve 1 −1/2 x1/2 2x 1 −2/3 x1/3 3x 2 −1/3 x2/3 3x
  • 72.
    Recap: The Towerof Power y y′ x2 2x The power goes down by x 3 3x2 one in each deriva ve 1 −1/2 The coefficient in the x1/2 2x deriva ve is the power of 1 −2/3 x1/3 3x the original func on 2 −1/3 x2/3 3x
  • 73.
    The Power Rule There is moun ng evidence for Theorem (The Power Rule) Let r be a real number and f(x) = xr . Then f′ (x) = rxr−1 as long as the expression on the right-hand side is defined. Perhaps the most famous rule in calculus We will assume it as of today We will prove it many ways for many different r.
  • 74.
  • 75.
    Outline Deriva vesso far Deriva ves of power func ons by hand The Power Rule Deriva ves of polynomials The Power Rule for whole number powers The Power Rule for constants The Sum Rule The Constant Mul ple Rule Deriva ves of sine and cosine
  • 76.
    Remember your algebra Fact Let n be a posi ve whole number. Then (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it)
  • 77.
    Remember your algebra Fact Let n be a posi ve whole number. Then (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it) Proof. We have ∑ n (x + h) = (x + h) · (x + h) · (x + h) · · · (x + h) = n ck xk hn−k n copies k=0
  • 78.
    Remember your algebra Fact Let n be a posi ve whole number. Then (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it) Proof. We have ∑ n (x + h) = (x + h) · (x + h) · (x + h) · · · (x + h) = n ck xk hn−k n copies k=0
  • 79.
    Remember your algebra Fact Let n be a posi ve whole number. Then (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it) Proof. We have ∑ n (x + h) = (x + h) · (x + h) · (x + h) · · · (x + h) = n ck xk hn−k n copies k=0
  • 80.
    Remember your algebra Fact Let n be a posi ve whole number. Then (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it) Proof. We have ∑ n (x + h) = (x + h) · (x + h) · (x + h) · · · (x + h) = n ck xk hn−k n copies k=0
  • 81.
    Remember your algebra Fact Let n be a posi ve whole number. Then (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it) Proof. We have ∑ n (x + h) = (x + h) · (x + h) · (x + h) · · · (x + h) = n ck xk hn−k n copies k=0
  • 82.
    Remember your algebra Fact Let n be a posi ve whole number. Then (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it) Proof. We have ∑ n (x + h) = (x + h) · (x + h) · (x + h) · · · (x + h) = n ck xk hn−k n copies k=0
  • 83.
    Pascal’s Triangle . 1 1 1 1 2 1 1 3 3 1 (x + h)0 = 1 1 4 6 4 1 (x + h)1 = 1x + 1h (x + h)2 = 1x2 + 2xh + 1h2 1 5 10 10 5 1 (x + h)3 = 1x3 + 3x2 h + 3xh2 + 1h3 1 6 15 20 15 6 1 ... ...
  • 84.
    Pascal’s Triangle . 1 1 1 1 2 1 1 3 3 1 (x + h)0 = 1 1 4 6 4 1 (x + h)1 = 1x + 1h (x + h)2 = 1x2 + 2xh + 1h2 1 5 10 10 5 1 (x + h)3 = 1x3 + 3x2 h + 3xh2 + 1h3 1 6 15 20 15 6 1 ... ...
  • 85.
    Pascal’s Triangle . 1 1 1 1 2 1 1 3 3 1 (x + h)0 = 1 1 4 6 4 1 (x + h)1 = 1x + 1h (x + h)2 = 1x2 + 2xh + 1h2 1 5 10 10 5 1 (x + h)3 = 1x3 + 3x2 h + 3xh2 + 1h3 1 6 15 20 15 6 1 ... ...
  • 86.
    Pascal’s Triangle . 1 1 1 1 2 1 1 3 3 1 (x + h)0 = 1 1 4 6 4 1 (x + h)1 = 1x + 1h (x + h)2 = 1x2 + 2xh + 1h2 1 5 10 10 5 1 (x + h)3 = 1x3 + 3x2 h + 3xh2 + 1h3 1 6 15 20 15 6 1 ... ...
  • 87.
    Proving the PowerRule Theorem (The Power Rule) d n Let n be a posi ve whole number. Then x = nxn−1 . dx
  • 88.
    Proving the PowerRule Theorem (The Power Rule) d n Let n be a posi ve whole number. Then x = nxn−1 . dx Proof. As we showed above, (x + h)n = xn + nxn−1 h + (stuff with at least two hs in it) (x + h)n − xn nxn−1 h + (stuff with at least two hs in it) So = h h = nxn−1 + (stuff with at least one h in it) and this tends to nxn−1 as h → 0.
  • 89.
    The Power Rulefor constants? Theorem d Let c be a constant. Then c=0 dx
  • 90.
    The Power Rulefor constants? d 0 Theorem like x = 0x−1 d dx Let c be a constant. Then c = 0. . dx
  • 91.
    The Power Rulefor constants? d 0 Theorem like x = 0x−1 d dx Let c be a constant. Then c = 0. . dx Proof. Let f(x) = c. Then f(x + h) − f(x) c − c = =0 h h So f′ (x) = lim 0 = 0. h→0
  • 92.
    . Calculus
  • 93.
    Recall the LimitLaws Fact Suppose lim f(x) = L and lim g(x) = M and c is a constant. Then x→a x→a 1. lim [f(x) + g(x)] = L + M x→a 2. lim [f(x) − g(x)] = L − M x→a 3. lim [cf(x)] = cL x→a 4. . . .
  • 94.
    Adding functions Theorem(The Sum Rule) Let f and g be func ons and define (f + g)(x) = f(x) + g(x) Then if f and g are differen able at x, then so is f + g and (f + g)′ (x) = f′ (x) + g′ (x). Succinctly, (f + g)′ = f′ + g′ .
  • 95.
    Proof of theSum Rule Proof. Follow your nose: (f + g)(x + h) − (f + g)(x) (f + g)′ (x) = lim h→0 h
  • 96.
    Proof of theSum Rule Proof. Follow your nose: (f + g)(x + h) − (f + g)(x) (f + g)′ (x) = lim h→0 h f(x + h) + g(x + h) − [f(x) + g(x)] = lim h→0 h
  • 97.
    Proof of theSum Rule Proof. Follow your nose: (f + g)(x + h) − (f + g)(x) (f + g)′ (x) = lim h→0 h f(x + h) + g(x + h) − [f(x) + g(x)] = lim h→0 h f(x + h) − f(x) g(x + h) − g(x) = lim + lim h→0 h h→0 h
  • 98.
    Proof of theSum Rule Proof. Follow your nose: (f + g)(x + h) − (f + g)(x) (f + g)′ (x) = lim h→0 h f(x + h) + g(x + h) − [f(x) + g(x)] = lim h→0 h f(x + h) − f(x) g(x + h) − g(x) = lim + lim h→0 h h→0 h ′ ′ = f (x) + g (x)
  • 99.
    Scaling functions Theorem(The Constant Mul ple Rule) Let f be a func on and c a constant. Define (cf)(x) = cf(x) Then if f is differen able at x, so is cf and (cf)′ (x) = c · f′ (x) Succinctly, (cf)′ = cf′ .
  • 100.
    Proof of ConstantMultiple Rule Proof. Again, follow your nose. (cf)(x + h) − (cf)(x) (cf)′ (x) = lim h→0 h
  • 101.
    Proof of ConstantMultiple Rule Proof. Again, follow your nose. (cf)(x + h) − (cf)(x) cf(x + h) − cf(x) (cf)′ (x) = lim = lim h→0 h h→0 h
  • 102.
    Proof of ConstantMultiple Rule Proof. Again, follow your nose. (cf)(x + h) − (cf)(x) cf(x + h) − cf(x) (cf)′ (x) = lim = lim h→0 h h→0 h f(x + h) − f(x) = c lim h→0 h
  • 103.
    Proof of ConstantMultiple Rule Proof. Again, follow your nose. (cf)(x + h) − (cf)(x) cf(x + h) − cf(x) (cf)′ (x) = lim = lim h→0 h h→0 h f(x + h) − f(x) = c lim = c · f′ (x) h→0 h
  • 104.
    Derivatives of polynomials Example d ( 3 ) Find 2x + x4 − 17x12 + 37 dx
  • 105.
    Derivatives of polynomials Example d ( 3 ) Find 2x + x4 − 17x12 + 37 dx Solu on d ( 3 ) d ( 3) d d ( ) d 2x + x4 − 17x12 + 37 = 2x + x4 + −17x12 + (37) dx dx dx dx dx
  • 106.
    Derivatives of polynomials Example d ( 3 ) Find 2x + x4 − 17x12 + 37 dx Solu on d ( 3 ) d ( 3) d d ( ) d 2x + x4 − 17x12 + 37 = 2x + x4 + −17x12 + (37) dx dx dx dx dx d d d = 2 x3 + x4 − 17 x12 + 0 dx dx dx
  • 107.
    Derivatives of polynomials Example d ( 3 ) Find 2x + x4 − 17x12 + 37 dx Solu on d ( 3 ) d ( 3) d d ( ) d 2x + x4 − 17x12 + 37 = 2x + x4 + −17x12 + (37) dx dx dx dx dx d d d = 2 x3 + x4 − 17 x12 + 0 dx dx dx = 2 · 3x + 4x − 17 · 12x11 2 3
  • 108.
    Derivatives of polynomials Example d ( 3 ) Find 2x + x4 − 17x12 + 37 dx Solu on d ( 3 ) d ( 3) d d ( ) d 2x + x4 − 17x12 + 37 = 2x + x4 + −17x12 + (37) dx dx dx dx dx d d d = 2 x3 + x4 − 17 x12 + 0 dx dx dx = 2 · 3x + 4x − 17 · 12x11 2 3 = 6x2 + 4x3 − 204x11
  • 109.
    Outline Deriva vesso far Deriva ves of power func ons by hand The Power Rule Deriva ves of polynomials The Power Rule for whole number powers The Power Rule for constants The Sum Rule The Constant Mul ple Rule Deriva ves of sine and cosine
  • 110.
    Derivatives of Sineand Cosine Fact d sin x = ??? dx Proof. From the defini on:
  • 111.
    Derivatives of Sineand Cosine Fact d sin x = ??? dx Proof. From the defini on: d sin(x + h) − sin x sin x = lim dx h→0 h
  • 112.
    Angle addition formulas SeeAppendix A sin(A + B) = . A cos B + cos A sin B sin cos(A + B) = cos A cos B − sin A sin B
  • 113.
    Derivatives of Sineand Cosine Fact d sin x = ??? dx Proof. From the defini on: d sin(x + h) − sin x ( sin x cos h + cos x sin h) − sin x sin x = lim = lim dx h→0 h h→0 h
  • 114.
    Derivatives of Sineand Cosine Fact d sin x = ??? dx Proof. From the defini on: d sin(x + h) − sin x ( sin x cos h + cos x sin h) − sin x sin x = lim = lim dx h→0 h h→0 h cos h − 1 sin h = sin x · lim + cos x · lim h→0 h h→0 h
  • 115.
    Two important trigonometric limits SeeSection 1.4 sin θ lim . =1 θ→0 θ cos θ − 1 sin θ θ lim =0 θ θ→0 θ . 1 − cos θ 1
  • 116.
    Derivatives of Sineand Cosine Fact d sin x = ??? dx Proof. From the defini on: d sin(x + h) − sin x ( sin x cos h + cos x sin h) − sin x sin x = lim = lim dx h→0 h h→0 h cos h − 1 sin h = sin x · lim + cos x · lim h→0 h h→0 h = sin x · 0 + cos x · 1
  • 117.
    Derivatives of Sineand Cosine Fact d sin x = ??? dx Proof. From the defini on: d sin(x + h) − sin x ( sin x cos h + cos x sin h) − sin x sin x = lim = lim dx h→0 h h→0 h cos h − 1 sin h = sin x · lim + cos x · lim h→0 h h→0 h = sin x · 0 + cos x · 1
  • 118.
    Derivatives of Sineand Cosine Fact d sin x = cos x dx Proof. From the defini on: d sin(x + h) − sin x ( sin x cos h + cos x sin h) − sin x sin x = lim = lim dx h→0 h h→0 h cos h − 1 sin h = sin x · lim + cos x · lim h→0 h h→0 h = sin x · 0 + cos x · 1 = cos x
  • 119.
    Illustration of Sineand Cosine y . x π −π 0 π π 2 2 sin x
  • 120.
    Illustration of Sineand Cosine y . x π −π 0 π π cos x 2 2 sin x f(x) = sin x has horizontal tangents where f′ = cos(x) is zero.
  • 121.
    Illustration of Sineand Cosine y . x π −π 0 π π cos x 2 2 sin x f(x) = sin x has horizontal tangents where f′ = cos(x) is zero. what happens at the horizontal tangents of cos?
  • 122.
    Derivative of Cosine Fact d cos x = − sin x dx
  • 123.
    Derivative of Cosine Fact d cos x = − sin x dx Proof. We already did the first. The second is similar (muta s mutandis): d cos(x + h) − cos x cos x = lim dx h→0 h
  • 124.
    Derivative of Cosine Fact d cos x = − sin x dx Proof. We already did the first. The second is similar (muta s mutandis): d cos(x + h) − cos x (cos x cos h − sin x sin h) − cos x cos x = lim = lim dx h→0 h h→0 h
  • 125.
    Derivative of Cosine Fact d cos x = − sin x dx Proof. We already did the first. The second is similar (muta s mutandis): d cos(x + h) − cos x (cos x cos h − sin x sin h) − cos x cos x = lim = lim dx h→0 h h→0 h cos h − 1 sin h = cos x · lim − sin x · lim h→0 h h→0 h
  • 126.
    Derivative of Cosine Fact d cos x = − sin x dx Proof. We already did the first. The second is similar (muta s mutandis): d cos(x + h) − cos x (cos x cos h − sin x sin h) − cos x cos x = lim = lim dx h→0 h h→0 h cos h − 1 sin h = cos x · lim − sin x · lim h→0 h h→0 h = cos x · 0 − sin x · 1 = − sin x
  • 127.
    Summary What have welearned today? The Power Rule
  • 128.
    Summary What have welearned today? The Power Rule The deriva ve of a sum is the sum of the deriva ves The deriva ve of a constant mul ple of a func on is that constant mul ple of the deriva ve
  • 129.
    Summary What have welearned today? The Power Rule The deriva ve of a sum is the sum of the deriva ves The deriva ve of a constant mul ple of a func on is that constant mul ple of the deriva ve The deriva ve of sine is cosine The deriva ve of cosine is the opposite of sine.