This document is the notes from a Calculus I class at New York University covering Section 4.2 on the Mean Value Theorem. The notes include objectives, an outline, explanations of Rolle's Theorem and the Mean Value Theorem, examples of using the theorems, and a food for thought question. The key points are that Rolle's Theorem states that if a function is continuous on an interval and differentiable inside the interval, and the function values at the endpoints are equal, then there exists a point in the interior where the derivative is 0. The Mean Value Theorem similarly states that if a function is continuous on an interval and differentiable inside, there exists a point where the average rate of change equals the instantaneous rate of