BMM 104: ENGINEERING MATHEMATICS I                                                       Page 1 of 8


                                CHAPTER 5: PARTIAL DERIVATIVES

Functions of n Independent Variables

Suppose D is a set of n-tuples of real numbers ( x1 , x 2 ,..., x n ) . A real valued function f
on D is a rule that assigns a unique (single) real number

                 w = f ( x1 , x 2 ,..., x n )
to each element in D. The set D is the function’s domain. The set of w-values taken on
by f is the function’s range. The symbol w is the dependent variable of f, and f is said to
be a function of the n independent variables x1 to x n . We also call the x j ' s the
function’s input variables and call w the function’s output variable.

Level Curve, Graph, surface of Functions of Two Variables

The set of points in the plane where a function f ( x , y ) has a constant value f ( x , y ) = c
is called a level curve of f. The set of all points ( x , y , f ( x , y ) ) in space, for ( x , y ) in
the domain of f, is called the graph of f. The graph of f is also called the surface
 z = f ( x , y) .

Functions of Three Variables

The set of points ( x , y , z ) in space where a function of three independent variables has a
constant value f ( x , y , z ) = c is called a level surface of f.

Example: Attend lecture.

Partial Derivatives of a Function of Two Variables

Definition:      Partial Derivative with Respect to x

The partial derivative of f ( x , y ) with respect to x at the point ( x0 , y 0 ) is

                 ∂f                         f ( x0 + h , y 0 ) − f ( x0 , y 0 )
                                    = lim                                       ,
                 ∂x   ( x0 , y0 )
                                      h→0                   h
provided the limit exists.




Definition:      Partial Derivative with Respect to y
BMM 104: ENGINEERING MATHEMATICS I                                                                                        Page 2 of 8


The partial derivative of f ( x , y ) with respect to y at the point ( x0 , y0 ) is

                    ∂f                     d                                      f ( x0 , y 0 + h ) − f ( x0 , y 0 )
                                       =      f ( x0 , y )             = lim                                          ,
                    ∂y   ( x0 , y0 )       dy                 y = y0        h→0                   h
provided the limit exists.

Example:

                                           ∂f     ∂f
1.       Find the values of                   and ∂ at the point ( 4 ,− ) if
                                                                       5
                                           ∂x      y
 f ( x , y ) = x 2 + 3 xy + y − 1 .
                   ∂ f
2.           Find         if f ( x , y ) = y sin xy .
                    ∂ x
                                                                       2y
3.       Find f x and f y if f ( x , y ) = y + cos x .



Functions of More Than Two Variables

Example:

                                                             ∂f   ∂f    ∂f
1.       Let f ( x , y , z ) = xy 2 z 3 . Find                  , ∂ and    at (1,− ,− ) .
                                                                                  2 1
                                                             ∂x    y    ∂z
                                             y
2.       Let g ( x , y , z ) = x 2 e z . Find g x , g y and g z .


Second-Order Partial Derivatives

When we differentiate a function f ( x , y ) twice, we produce its second-order
       derivatives.
These derivatives are usually denoted by

∂2 f                                                         f xx
         “ d squared fdx squared “ or                                   “f sub xx “
∂x 2

∂2 f
         “ d squared fdy squared “ or                        f yy       “f sub yy “
∂ 2
 y

∂2 f                                                         f xx
         “ d squared fdx squared “ or                                   “f sub xx “
∂x 2

 ∂ f
  2

                   “ d squared fdxdy squared “ or                                      f yx     “f sub yx “
 ∂∂
  x y
BMM 104: ENGINEERING MATHEMATICS I                                                                               Page 3 of 8




∂ f
 2

                  “ d squared fdydx squared “ or                                       f xy        “f sub xy “
∂∂
 y x

The defining equations are

                   ∂2 f   ∂  ∂f                          ∂2 f   ∂ ∂ 
                                                                       f
                        =        ,                            =    
                                                                     ∂ 
                   ∂x 2
                          ∂x  ∂x                         ∂∂
                                                            x y   ∂  y
                                                                   x     
and so on. Notice the order in which the derivatives are taken:

         ∂ f
          2

                                             Differentiate first with respect to y, then with respect to x.
         ∂∂
          x y

         f yx = ( f y ) x      Means the same thing.

Example:

                                                ∂2 f    ∂ f
                                                          2
                                                                ∂ f        ∂ f
                                                                             2                      2

1.      Let f ( x , y ) = x 3 y 2 − x 4 y 6 . Find    ,       ,        and       .
                                                 ∂x 2 ∂ ∂ ∂
                                                          y x     y2       ∂∂x y
                                               ∂2 f   ∂ f
                                                        2
                                                              ∂2 f        ∂ f
                                                                           2

2.      If f ( x , y ) = x cos y + ye x , find      ,       ,        and       .
                                               ∂x 2 ∂ ∂ ∂
                                                        y x     y2       ∂∂x y




The Chain Rule

Chain Rule for Functions of Two Independent Variables

If w = f ( x , y ) has continuous partial derivatives f x and f y and if x = x( t ) , y = y ( t )
        are
differentiable functions of t, then the compose w = f ( x( t ) , y ( t ) ) is a differentiable
function of t and

                   df
                      = f x ( x ( t ) , y ( t ) ) • x ' ( t ) + f y ( x( t ) , y ( t ) ) • y ' ( t ) ,
                   dt

or
                   dw   ∂f dx ∂f dy
                      =       +       .
                   dt   ∂x dt   ∂y dt

Example:

Use the chain rule to find the derivative of w = xy , with respect to t along the path
BMM 104: ENGINEERING MATHEMATICS I                                                              Page 4 of 8


                                                             π
x = cos t , y = sin t . What is the derivative’s value at t = ?
                                                                       2

Chain Rule for Functions of Three Independent Variables

If w = f ( x , y , z ) is differentiable and x, y and z are differentiable functions of t, then w
        is
a differentiable function of t and

                   dw   ∂f dx ∂f dy ∂f dz
                      =       +       +       .
                   dt   ∂x dt   ∂y dt   ∂z dt

Example:

       dw
Find      if w = xy + z ,      x = cos t ,   y = sin t ,   z =t.
       dt

Chain Rule for Two Independent Variables and Three Intermediate Variables

Suppose that w = f ( x , y , z ) , x = g ( r , s ) , y = h( r , s ) , and z = k ( r , s ) . If all four
        functions
are differentiable, then w has partial derivatives with respect to r and s, given by the
formulas

                   ∂w   ∂ ∂
                         w x ∂ ∂w y   ∂ ∂
                                       w z
                      =      +      +
                   ∂r   ∂ ∂
                         x r   ∂ ∂
                                y r   ∂ ∂
                                       z r

                   ∂w   ∂ ∂
                         w x ∂ ∂w y   ∂ ∂
                                       w z
                      =      +      +
                   ∂s   ∂ ∂
                         x s   ∂ ∂
                                y s   ∂ ∂
                                       z s

Example:

           ∂w     ∂w
Express       and               in terms of r and s is
           ∂r     ∂s

                                    r
         w = x +2y + z2, x =          , y = r 2 + ln s , z = 2 r .
                                    s

If w = f ( x , y ) , x = g ( r , s ) , and y = h( r , s ) , then

          ∂w   ∂ ∂
                w x   ∂ ∂
                       w y                                         ∂w   ∂ ∂
                                                                         w x   ∂ ∂
                                                                                w y
             =      +                                  and            =      +
          ∂r   ∂ ∂
                x r   ∂ ∂
                       y r                                         ∂s   ∂ ∂
                                                                         x s   ∂ ∂
                                                                                y s
Example:

           ∂w     ∂w
Express       and    in terms of r and s if
           ∂r     ∂s
BMM 104: ENGINEERING MATHEMATICS I                                                                   Page 5 of 8




         w = x2 + y2 ,     x= r− s,                  y =r+s.

If w = f ( x ) and x = g ( r , s ) , then

         ∂w   dw ∂x                     ∂w   dw ∂x
            =       and                    =       .
         ∂r   dx ∂r                     ∂s   dx ∂s




                                     PROBLEM SET: CHAPTER 5

1.      Sketch and name the surfaces

        (a)       f ( x, y , z ) = x 2 + y 2 + z 2        (e)        f ( x, y, z ) = x 2 + y 2
        (b)       f ( x , y , z ) = ln( x 2 + y 2 + z 2 ) (f)        f ( x, y, z ) = y 2 + z 2
        (c)       f ( x, y , z ) = x + z                  (g)        f ( x, y, z ) = z − x 2 − y 2
                                                                                                 x2 y2 z2
        (d)       f ( x, y, z ) = z                                  (h)      f ( x, y , z ) =     +   +
                                                                                                 25 16   9

               ∂f     ∂f
2.      Find      and ∂ .
               ∂x      y

        (a)       f ( x , y ) = 5 xy − 7 x 2 − y 2 + 3 x − 6 y + 2
                                           y
        (b)       f ( x , y ) = tan −1  
                                           x
        (c)       f ( x, y) = e    ( x + y +1)

        (d)       f ( x , y ) = e −x sin( x + y )
        (e)       f ( x , y ) = ln( x + y )
        (f)       f ( x , y ) = sin 2 ( x − 3 y )

3.      Find f x , f y and f z .

        (a)       f ( x , y , z ) = sin −1 ( xyz )
                  f ( x , y , z ) = e −( x                    )
                                             2
                                                 + y 2 +z 2
        (b)
        (c)       f ( x , y , z ) = e −xyz
        (d)       f ( x , y , z ) = tanh( x + 2 y + 3 z )

4.      Find all the second-order partial derivatives of the following functions.

        (a)       f ( x , y ) = x + y + xy
        (b)       f ( x , y ) = sin xy
        (c)       f ( x , y ) = x 2 y + cos y + y sin x
BMM 104: ENGINEERING MATHEMATICS I                                                                      Page 6 of 8


      (d)      f ( x , y ) = xe y + y + 1

5.    Verify that w xy = w yx .

      (a)     w = ln( 2 x + 3 y )                       (c)      w = xy 2 + x 2 y 3 + x 3 y 4
      (b)     w = e x + x ln y + y ln x (d)              w = x sin y + y sin x + xy

                                                            dw
6.    In the following questions, (a) express                  as a function of t, both by using
                                                            dt
      the Chain Rule and by expressing w in terms of t and differentiating directly with
                                              dw
      respect to t. The (b) evaluate             at the given value of t.
                                              dt

      (i)     w = x2 + y2 ,        x = cos t ,      y = sin t ;      t=π .

                    x y                                                     1
      (ii)    w=     + ,         x = cos 2 t ,      y = sin 2 t ,     z=          t =3.
                    z z                                                     t

                                                            ∂z     ∂z
7.    In the following questions, (a) express                  and    as a functions of u and v
                                                            ∂u     ∂v
      both by using the Chain Rule and by expressing z directly in terms of u and v
                                                              ∂z     ∂z
      before differentiating. Then (b) evaluate                  and    at the given point (u , v ) .
                                                              ∂u     ∂v


      (i)     z = 4 e x ln y ,      x = ln( u cos v ) ,       y = u sin v ;      ( u ,v ) =  2 , π 
                                                                                                   
                                                                                                4


      (ii)
                         x
              z = tan −1   ,
                         y          x = u cos v ,       y = u sin v ;       ( u ,v ) = 1.3 , π 
                                                                                                 
                                                                                              6


                    ANSWERS FOR PROBLEM SET: CHAPTER 5

              ∂f                       ∂f
2.    (a)        = 5 y − 14 x + 3 ,        = 5 x − 2 y −6
              ∂x                       ∂y
              ∂f           y        ∂f          x
      (b)        =− 2             ,     = 2
              ∂x     x + y 2 ∂y           x + y2
              ∂f                   ∂f
      (c)        = e ( x +y +1) ,      = e ( x +y +1 )
              ∂x                   ∂y
              ∂f                                             ∂f
      (d)        = −e −x sin( x + y ) + e −x cos ( x + y ) ,    = e −x cos ( x + y )
              ∂x                                             ∂y
              ∂f     1    ∂f    1
      (e)        =      ,    =
              ∂x   x + y ∂y    x+y
              ∂f                                     ∂f
      (f)        = 2 sin( x − 3 y ) cos( x − 3 y ) ,    = −6 sin( x − 3 y ) cos( x − 3 y )
              ∂x                                     ∂x
BMM 104: ENGINEERING MATHEMATICS I                                                                                Page 7 of 8




                            yz                                xz                                   xy
3.    (a)     fx =                            , fy =                          , fz =
                       1−x y z2       2   2
                                                          1−x y z
                                                                2   2   2
                                                                                              1 − x2 y2 z2
              f x = −2 xe −( x                     ) , f = −2 ye −( x                        f z = −2 ze − ( x + y + z )
      (b)
                                  2
                                      + y 2 +z 2                        2
                                                                            + y 2 +z 2   ) ,                  2   2   2
                                                        y

      (c)     f x = −yze −xyz , f y = −xze −xyz , f z = −xye − xyz
      (d)     f x = sec h 2 ( x + 2 y + 3 z ) , f y = 2 sec h 2 ( x + 2 y + 3 z ) ,
              f z = 3 sec h 2 ( x + 2 y + 3 z )

              ∂f          ∂f                   ∂2 f
                             =1 + x , ∂ f = 0,
                                       2
                                                         ∂2 f   ∂2 f
4.    (a)        = 1 + y,                           = 0,      =      =1
              ∂x          ∂y          ∂x 2     ∂y 2      ∂∂
                                                          y x   ∂∂
                                                                 x y


              ∂f              ∂f                                   ∂2 f
                                 = x cos xy , ∂ f = − y 2 sin xy ,
                                               2
      (b)        = y cos xy ,                                           = −x 2 sin xy ,
              ∂x              ∂y              ∂x 2                 ∂y 2
              ∂2 f   ∂2 f
                   =      = cos xy − xy sin xy
              ∂y∂x   ∂x∂y
              ∂f                     ∂f
                                        = x 2 − sin y + sin x , ∂ f = 2 y − y sin x ,
                                                                 2
      (c)         = 2 xy + y cos x ,
              ∂x                     ∂y                         ∂x 2
              ∂ f
               2
                               ∂2 f     ∂2 f
                   = −cos y ,         =       = 2 x + cos x
              ∂y 2
                               ∂y∂x     ∂x∂y
              ∂f     ∂f                        ∂2 f
                        = xe y + 1 , ∂ f = 0 ,
                                      2
                                                             ∂2 f   ∂2 f
      (d)        =ey                                = xe y ,      =      =e y
              ∂x     ∂y              ∂x 2      ∂y 2
                                                             ∂∂
                                                              y x   ∂∂
                                                                     x y




              ∂w       2      ∂w       3      ∂2 w       −6
5.    (a)        =          ,    =          ,      =              , and
              ∂x   2 x + 3 y ∂y    2 x + 3 y ∂y∂x    (2x + 3 y) 2
              ∂2 w       −6
                   =
              ∂x∂y ( 2 x + 3 y ) 2
              ∂w               y ∂w  x         ∂2 w  1 1
      (b)        = e x + ln y + ,   = + ln x ,      = + , and
              ∂x               x ∂y  y         ∂∂
                                                y x  y x
              ∂2w 1 1
                  = +
              ∂x∂y y x

              ∂w                              ∂w
      (c)        = y 2 + 2 xy 3 + 3 x 2 y 4 ,    = 2 xy + 3 x 2 y 2 + 4 x 3 y 3 ,
              ∂x                              ∂y
      ∂2 w                                   ∂2 w
           = 2 y + 6 xy 2 + 12 x 2 y 3 , and      = 2 y + 6 xy 2 + 12 x 2 y 3
      ∂y∂x                                   ∂x∂y
BMM 104: ENGINEERING MATHEMATICS I                                        Page 8 of 8


             ∂w                         ∂w
      (d)       = sin y + y cos x + y ,    = x cos y + sin x + x ,
             ∂x                         ∂y
             ∂2 w                          ∂2 w
                  = cos y + cos x + 1, and      = cos y + cos x + 1
             ∂y∂x                          ∂x∂y



                     dw
6.    (i)    (a)        =0              (b)       0
                     dt
                     dw
      (ii)   (a)        =1              (b)       1
                     dt

                     ∂z
7.    (i)    (a)          = ( 4 cos v ) ln( u sin v ) + 4 cos v
                     ∂u
                     ∂z                                      4u cos 2 v
                          = ( − 4u sin v ) ln( u sin v ) +
                     ∂v                                        sin v
                     ∂z
             (b)          = 2 ( ln 2 + 2 )
                     ∂u
                     ∂z
                          = −2 2 ln 2 + 4 2
                     ∂v

                     ∂z
      (ii)   (a)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
                     ∂z
             (b)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
BMM 104: ENGINEERING MATHEMATICS I                                        Page 8 of 8


             ∂w                         ∂w
      (d)       = sin y + y cos x + y ,    = x cos y + sin x + x ,
             ∂x                         ∂y
             ∂2 w                          ∂2 w
                  = cos y + cos x + 1, and      = cos y + cos x + 1
             ∂y∂x                          ∂x∂y



                     dw
6.    (i)    (a)        =0              (b)       0
                     dt
                     dw
      (ii)   (a)        =1              (b)       1
                     dt

                     ∂z
7.    (i)    (a)          = ( 4 cos v ) ln( u sin v ) + 4 cos v
                     ∂u
                     ∂z                                      4u cos 2 v
                          = ( − 4u sin v ) ln( u sin v ) +
                     ∂v                                        sin v
                     ∂z
             (b)          = 2 ( ln 2 + 2 )
                     ∂u
                     ∂z
                          = −2 2 ln 2 + 4 2
                     ∂v

                     ∂z
      (ii)   (a)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
                     ∂z
             (b)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
BMM 104: ENGINEERING MATHEMATICS I                                        Page 8 of 8


             ∂w                         ∂w
      (d)       = sin y + y cos x + y ,    = x cos y + sin x + x ,
             ∂x                         ∂y
             ∂2 w                          ∂2 w
                  = cos y + cos x + 1, and      = cos y + cos x + 1
             ∂y∂x                          ∂x∂y



                     dw
6.    (i)    (a)        =0              (b)       0
                     dt
                     dw
      (ii)   (a)        =1              (b)       1
                     dt

                     ∂z
7.    (i)    (a)          = ( 4 cos v ) ln( u sin v ) + 4 cos v
                     ∂u
                     ∂z                                      4u cos 2 v
                          = ( − 4u sin v ) ln( u sin v ) +
                     ∂v                                        sin v
                     ∂z
             (b)          = 2 ( ln 2 + 2 )
                     ∂u
                     ∂z
                          = −2 2 ln 2 + 4 2
                     ∂v

                     ∂z
      (ii)   (a)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
                     ∂z
             (b)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
BMM 104: ENGINEERING MATHEMATICS I                                        Page 8 of 8


             ∂w                         ∂w
      (d)       = sin y + y cos x + y ,    = x cos y + sin x + x ,
             ∂x                         ∂y
             ∂2 w                          ∂2 w
                  = cos y + cos x + 1, and      = cos y + cos x + 1
             ∂y∂x                          ∂x∂y



                     dw
6.    (i)    (a)        =0              (b)       0
                     dt
                     dw
      (ii)   (a)        =1              (b)       1
                     dt

                     ∂z
7.    (i)    (a)          = ( 4 cos v ) ln( u sin v ) + 4 cos v
                     ∂u
                     ∂z                                      4u cos 2 v
                          = ( − 4u sin v ) ln( u sin v ) +
                     ∂v                                        sin v
                     ∂z
             (b)          = 2 ( ln 2 + 2 )
                     ∂u
                     ∂z
                          = −2 2 ln 2 + 4 2
                     ∂v

                     ∂z
      (ii)   (a)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
                     ∂z
             (b)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v

Chapter 5(partial differentiation)

  • 1.
    BMM 104: ENGINEERINGMATHEMATICS I Page 1 of 8 CHAPTER 5: PARTIAL DERIVATIVES Functions of n Independent Variables Suppose D is a set of n-tuples of real numbers ( x1 , x 2 ,..., x n ) . A real valued function f on D is a rule that assigns a unique (single) real number w = f ( x1 , x 2 ,..., x n ) to each element in D. The set D is the function’s domain. The set of w-values taken on by f is the function’s range. The symbol w is the dependent variable of f, and f is said to be a function of the n independent variables x1 to x n . We also call the x j ' s the function’s input variables and call w the function’s output variable. Level Curve, Graph, surface of Functions of Two Variables The set of points in the plane where a function f ( x , y ) has a constant value f ( x , y ) = c is called a level curve of f. The set of all points ( x , y , f ( x , y ) ) in space, for ( x , y ) in the domain of f, is called the graph of f. The graph of f is also called the surface z = f ( x , y) . Functions of Three Variables The set of points ( x , y , z ) in space where a function of three independent variables has a constant value f ( x , y , z ) = c is called a level surface of f. Example: Attend lecture. Partial Derivatives of a Function of Two Variables Definition: Partial Derivative with Respect to x The partial derivative of f ( x , y ) with respect to x at the point ( x0 , y 0 ) is ∂f f ( x0 + h , y 0 ) − f ( x0 , y 0 ) = lim , ∂x ( x0 , y0 ) h→0 h provided the limit exists. Definition: Partial Derivative with Respect to y
  • 2.
    BMM 104: ENGINEERINGMATHEMATICS I Page 2 of 8 The partial derivative of f ( x , y ) with respect to y at the point ( x0 , y0 ) is ∂f d f ( x0 , y 0 + h ) − f ( x0 , y 0 ) = f ( x0 , y ) = lim , ∂y ( x0 , y0 ) dy y = y0 h→0 h provided the limit exists. Example: ∂f ∂f 1. Find the values of and ∂ at the point ( 4 ,− ) if 5 ∂x y f ( x , y ) = x 2 + 3 xy + y − 1 . ∂ f 2. Find if f ( x , y ) = y sin xy . ∂ x 2y 3. Find f x and f y if f ( x , y ) = y + cos x . Functions of More Than Two Variables Example: ∂f ∂f ∂f 1. Let f ( x , y , z ) = xy 2 z 3 . Find , ∂ and at (1,− ,− ) . 2 1 ∂x y ∂z y 2. Let g ( x , y , z ) = x 2 e z . Find g x , g y and g z . Second-Order Partial Derivatives When we differentiate a function f ( x , y ) twice, we produce its second-order derivatives. These derivatives are usually denoted by ∂2 f f xx “ d squared fdx squared “ or “f sub xx “ ∂x 2 ∂2 f “ d squared fdy squared “ or f yy “f sub yy “ ∂ 2 y ∂2 f f xx “ d squared fdx squared “ or “f sub xx “ ∂x 2 ∂ f 2 “ d squared fdxdy squared “ or f yx “f sub yx “ ∂∂ x y
  • 3.
    BMM 104: ENGINEERINGMATHEMATICS I Page 3 of 8 ∂ f 2 “ d squared fdydx squared “ or f xy “f sub xy “ ∂∂ y x The defining equations are ∂2 f ∂  ∂f  ∂2 f ∂ ∂  f =  , =  ∂  ∂x 2 ∂x  ∂x  ∂∂ x y ∂  y x  and so on. Notice the order in which the derivatives are taken: ∂ f 2 Differentiate first with respect to y, then with respect to x. ∂∂ x y f yx = ( f y ) x Means the same thing. Example: ∂2 f ∂ f 2 ∂ f ∂ f 2 2 1. Let f ( x , y ) = x 3 y 2 − x 4 y 6 . Find , , and . ∂x 2 ∂ ∂ ∂ y x y2 ∂∂x y ∂2 f ∂ f 2 ∂2 f ∂ f 2 2. If f ( x , y ) = x cos y + ye x , find , , and . ∂x 2 ∂ ∂ ∂ y x y2 ∂∂x y The Chain Rule Chain Rule for Functions of Two Independent Variables If w = f ( x , y ) has continuous partial derivatives f x and f y and if x = x( t ) , y = y ( t ) are differentiable functions of t, then the compose w = f ( x( t ) , y ( t ) ) is a differentiable function of t and df = f x ( x ( t ) , y ( t ) ) • x ' ( t ) + f y ( x( t ) , y ( t ) ) • y ' ( t ) , dt or dw ∂f dx ∂f dy = + . dt ∂x dt ∂y dt Example: Use the chain rule to find the derivative of w = xy , with respect to t along the path
  • 4.
    BMM 104: ENGINEERINGMATHEMATICS I Page 4 of 8 π x = cos t , y = sin t . What is the derivative’s value at t = ? 2 Chain Rule for Functions of Three Independent Variables If w = f ( x , y , z ) is differentiable and x, y and z are differentiable functions of t, then w is a differentiable function of t and dw ∂f dx ∂f dy ∂f dz = + + . dt ∂x dt ∂y dt ∂z dt Example: dw Find if w = xy + z , x = cos t , y = sin t , z =t. dt Chain Rule for Two Independent Variables and Three Intermediate Variables Suppose that w = f ( x , y , z ) , x = g ( r , s ) , y = h( r , s ) , and z = k ( r , s ) . If all four functions are differentiable, then w has partial derivatives with respect to r and s, given by the formulas ∂w ∂ ∂ w x ∂ ∂w y ∂ ∂ w z = + + ∂r ∂ ∂ x r ∂ ∂ y r ∂ ∂ z r ∂w ∂ ∂ w x ∂ ∂w y ∂ ∂ w z = + + ∂s ∂ ∂ x s ∂ ∂ y s ∂ ∂ z s Example: ∂w ∂w Express and in terms of r and s is ∂r ∂s r w = x +2y + z2, x = , y = r 2 + ln s , z = 2 r . s If w = f ( x , y ) , x = g ( r , s ) , and y = h( r , s ) , then ∂w ∂ ∂ w x ∂ ∂ w y ∂w ∂ ∂ w x ∂ ∂ w y = + and = + ∂r ∂ ∂ x r ∂ ∂ y r ∂s ∂ ∂ x s ∂ ∂ y s Example: ∂w ∂w Express and in terms of r and s if ∂r ∂s
  • 5.
    BMM 104: ENGINEERINGMATHEMATICS I Page 5 of 8 w = x2 + y2 , x= r− s, y =r+s. If w = f ( x ) and x = g ( r , s ) , then ∂w dw ∂x ∂w dw ∂x = and = . ∂r dx ∂r ∂s dx ∂s PROBLEM SET: CHAPTER 5 1. Sketch and name the surfaces (a) f ( x, y , z ) = x 2 + y 2 + z 2 (e) f ( x, y, z ) = x 2 + y 2 (b) f ( x , y , z ) = ln( x 2 + y 2 + z 2 ) (f) f ( x, y, z ) = y 2 + z 2 (c) f ( x, y , z ) = x + z (g) f ( x, y, z ) = z − x 2 − y 2 x2 y2 z2 (d) f ( x, y, z ) = z (h) f ( x, y , z ) = + + 25 16 9 ∂f ∂f 2. Find and ∂ . ∂x y (a) f ( x , y ) = 5 xy − 7 x 2 − y 2 + 3 x − 6 y + 2 y (b) f ( x , y ) = tan −1   x (c) f ( x, y) = e ( x + y +1) (d) f ( x , y ) = e −x sin( x + y ) (e) f ( x , y ) = ln( x + y ) (f) f ( x , y ) = sin 2 ( x − 3 y ) 3. Find f x , f y and f z . (a) f ( x , y , z ) = sin −1 ( xyz ) f ( x , y , z ) = e −( x ) 2 + y 2 +z 2 (b) (c) f ( x , y , z ) = e −xyz (d) f ( x , y , z ) = tanh( x + 2 y + 3 z ) 4. Find all the second-order partial derivatives of the following functions. (a) f ( x , y ) = x + y + xy (b) f ( x , y ) = sin xy (c) f ( x , y ) = x 2 y + cos y + y sin x
  • 6.
    BMM 104: ENGINEERINGMATHEMATICS I Page 6 of 8 (d) f ( x , y ) = xe y + y + 1 5. Verify that w xy = w yx . (a) w = ln( 2 x + 3 y ) (c) w = xy 2 + x 2 y 3 + x 3 y 4 (b) w = e x + x ln y + y ln x (d) w = x sin y + y sin x + xy dw 6. In the following questions, (a) express as a function of t, both by using dt the Chain Rule and by expressing w in terms of t and differentiating directly with dw respect to t. The (b) evaluate at the given value of t. dt (i) w = x2 + y2 , x = cos t , y = sin t ; t=π . x y 1 (ii) w= + , x = cos 2 t , y = sin 2 t , z= t =3. z z t ∂z ∂z 7. In the following questions, (a) express and as a functions of u and v ∂u ∂v both by using the Chain Rule and by expressing z directly in terms of u and v ∂z ∂z before differentiating. Then (b) evaluate and at the given point (u , v ) . ∂u ∂v (i) z = 4 e x ln y , x = ln( u cos v ) , y = u sin v ; ( u ,v ) =  2 , π     4 (ii) x z = tan −1   , y x = u cos v , y = u sin v ; ( u ,v ) = 1.3 , π       6 ANSWERS FOR PROBLEM SET: CHAPTER 5 ∂f ∂f 2. (a) = 5 y − 14 x + 3 , = 5 x − 2 y −6 ∂x ∂y ∂f y ∂f x (b) =− 2 , = 2 ∂x x + y 2 ∂y x + y2 ∂f ∂f (c) = e ( x +y +1) , = e ( x +y +1 ) ∂x ∂y ∂f ∂f (d) = −e −x sin( x + y ) + e −x cos ( x + y ) , = e −x cos ( x + y ) ∂x ∂y ∂f 1 ∂f 1 (e) = , = ∂x x + y ∂y x+y ∂f ∂f (f) = 2 sin( x − 3 y ) cos( x − 3 y ) , = −6 sin( x − 3 y ) cos( x − 3 y ) ∂x ∂x
  • 7.
    BMM 104: ENGINEERINGMATHEMATICS I Page 7 of 8 yz xz xy 3. (a) fx = , fy = , fz = 1−x y z2 2 2 1−x y z 2 2 2 1 − x2 y2 z2 f x = −2 xe −( x ) , f = −2 ye −( x f z = −2 ze − ( x + y + z ) (b) 2 + y 2 +z 2 2 + y 2 +z 2 ) , 2 2 2 y (c) f x = −yze −xyz , f y = −xze −xyz , f z = −xye − xyz (d) f x = sec h 2 ( x + 2 y + 3 z ) , f y = 2 sec h 2 ( x + 2 y + 3 z ) , f z = 3 sec h 2 ( x + 2 y + 3 z ) ∂f ∂f ∂2 f =1 + x , ∂ f = 0, 2 ∂2 f ∂2 f 4. (a) = 1 + y, = 0, = =1 ∂x ∂y ∂x 2 ∂y 2 ∂∂ y x ∂∂ x y ∂f ∂f ∂2 f = x cos xy , ∂ f = − y 2 sin xy , 2 (b) = y cos xy , = −x 2 sin xy , ∂x ∂y ∂x 2 ∂y 2 ∂2 f ∂2 f = = cos xy − xy sin xy ∂y∂x ∂x∂y ∂f ∂f = x 2 − sin y + sin x , ∂ f = 2 y − y sin x , 2 (c) = 2 xy + y cos x , ∂x ∂y ∂x 2 ∂ f 2 ∂2 f ∂2 f = −cos y , = = 2 x + cos x ∂y 2 ∂y∂x ∂x∂y ∂f ∂f ∂2 f = xe y + 1 , ∂ f = 0 , 2 ∂2 f ∂2 f (d) =ey = xe y , = =e y ∂x ∂y ∂x 2 ∂y 2 ∂∂ y x ∂∂ x y ∂w 2 ∂w 3 ∂2 w −6 5. (a) = , = , = , and ∂x 2 x + 3 y ∂y 2 x + 3 y ∂y∂x (2x + 3 y) 2 ∂2 w −6 = ∂x∂y ( 2 x + 3 y ) 2 ∂w y ∂w x ∂2 w 1 1 (b) = e x + ln y + , = + ln x , = + , and ∂x x ∂y y ∂∂ y x y x ∂2w 1 1 = + ∂x∂y y x ∂w ∂w (c) = y 2 + 2 xy 3 + 3 x 2 y 4 , = 2 xy + 3 x 2 y 2 + 4 x 3 y 3 , ∂x ∂y ∂2 w ∂2 w = 2 y + 6 xy 2 + 12 x 2 y 3 , and = 2 y + 6 xy 2 + 12 x 2 y 3 ∂y∂x ∂x∂y
  • 8.
    BMM 104: ENGINEERINGMATHEMATICS I Page 8 of 8 ∂w ∂w (d) = sin y + y cos x + y , = x cos y + sin x + x , ∂x ∂y ∂2 w ∂2 w = cos y + cos x + 1, and = cos y + cos x + 1 ∂y∂x ∂x∂y dw 6. (i) (a) =0 (b) 0 dt dw (ii) (a) =1 (b) 1 dt ∂z 7. (i) (a) = ( 4 cos v ) ln( u sin v ) + 4 cos v ∂u ∂z 4u cos 2 v = ( − 4u sin v ) ln( u sin v ) + ∂v sin v ∂z (b) = 2 ( ln 2 + 2 ) ∂u ∂z = −2 2 ln 2 + 4 2 ∂v ∂z (ii) (a) =0 ∂u ∂z = −1 ∂v ∂z (b) =0 ∂u ∂z = −1 ∂v
  • 9.
    BMM 104: ENGINEERINGMATHEMATICS I Page 8 of 8 ∂w ∂w (d) = sin y + y cos x + y , = x cos y + sin x + x , ∂x ∂y ∂2 w ∂2 w = cos y + cos x + 1, and = cos y + cos x + 1 ∂y∂x ∂x∂y dw 6. (i) (a) =0 (b) 0 dt dw (ii) (a) =1 (b) 1 dt ∂z 7. (i) (a) = ( 4 cos v ) ln( u sin v ) + 4 cos v ∂u ∂z 4u cos 2 v = ( − 4u sin v ) ln( u sin v ) + ∂v sin v ∂z (b) = 2 ( ln 2 + 2 ) ∂u ∂z = −2 2 ln 2 + 4 2 ∂v ∂z (ii) (a) =0 ∂u ∂z = −1 ∂v ∂z (b) =0 ∂u ∂z = −1 ∂v
  • 10.
    BMM 104: ENGINEERINGMATHEMATICS I Page 8 of 8 ∂w ∂w (d) = sin y + y cos x + y , = x cos y + sin x + x , ∂x ∂y ∂2 w ∂2 w = cos y + cos x + 1, and = cos y + cos x + 1 ∂y∂x ∂x∂y dw 6. (i) (a) =0 (b) 0 dt dw (ii) (a) =1 (b) 1 dt ∂z 7. (i) (a) = ( 4 cos v ) ln( u sin v ) + 4 cos v ∂u ∂z 4u cos 2 v = ( − 4u sin v ) ln( u sin v ) + ∂v sin v ∂z (b) = 2 ( ln 2 + 2 ) ∂u ∂z = −2 2 ln 2 + 4 2 ∂v ∂z (ii) (a) =0 ∂u ∂z = −1 ∂v ∂z (b) =0 ∂u ∂z = −1 ∂v
  • 11.
    BMM 104: ENGINEERINGMATHEMATICS I Page 8 of 8 ∂w ∂w (d) = sin y + y cos x + y , = x cos y + sin x + x , ∂x ∂y ∂2 w ∂2 w = cos y + cos x + 1, and = cos y + cos x + 1 ∂y∂x ∂x∂y dw 6. (i) (a) =0 (b) 0 dt dw (ii) (a) =1 (b) 1 dt ∂z 7. (i) (a) = ( 4 cos v ) ln( u sin v ) + 4 cos v ∂u ∂z 4u cos 2 v = ( − 4u sin v ) ln( u sin v ) + ∂v sin v ∂z (b) = 2 ( ln 2 + 2 ) ∂u ∂z = −2 2 ln 2 + 4 2 ∂v ∂z (ii) (a) =0 ∂u ∂z = −1 ∂v ∂z (b) =0 ∂u ∂z = −1 ∂v