66//1010//20132013
Fungsi Aktivasi
• Fungsi aktivasi dengan notasi: µ(.)
mendefinisikan nilai output dari suatu neuron
dalam level aktivasi tertentu berdasarkan nilai
output pengkombinasi linier ui.
• Beberapa fungsi aktivasi yg biasa digunakan:
– Hardlimiter
– Threshold
– Sigmoid
– Tangen Hiperbolik
Fungsi Aktivasi
1. Hardlimiter
2. Piecewise Linear
66//1010//20132013
Fungsi Aktivasi
3. Threshold
xx
f(.)f(.)
++11
tt
f(x) = 0 jika x ≤ t
f(x) = 1 jika x > t
Fungsi Aktivasi
4. Sigmoid
5. Tangen Hiperbolik
6/10/20136/10/2013
Arsitektur JST
Single layerSingle layer Multiple layerMultiple layer
fully connectedfully connected
Recurrent networkRecurrent network
without hidden unitswithout hidden units
inputsinputs
outputsoutputs
{
}
Recurrent networkRecurrent network
with hidden unitswith hidden units
Unit delayUnit delay
operatoroperator
Standard Activation Functions
• The hard-limiting threshold function
– Corresponds to the biological paradigm
• either fires or not
• Sigmoid functions ('S'-shaped curves)
– The logistic function
– The hyperbolic tangent (symmetrical)
– Both functions have a simple differential
– Only the shape is important
)exp(1
1
)(
av
vf
−+
=
6/10/20136/10/2013
• Representation of Boolean function AND
• Linear threshold is used
Perceptron Training
t = 0.0t = 0.0
YY
XX
WW11 = 1.5= 1.5
WW33 = 1= 1
--11
WW22 = 1= 1
11 ifif ΣΣ wwiixxii >t>t
OutputOutput== {{00 otherwiseotherwise
Perceptron Training
• Epoch
– Presentation of the entire training set to the neural network.
– In the case of the AND function an epoch consists of four sets
of inputs being presented to the network (i.e. [0,0], [0,1], [1,0],
[1,1])
• Error
– a simple definition of error
– The error value is the amount by which the value output by
the network differs from the target value.
– For example, if we required the network to output 0 and it
output a 1, then Error = -1
Sum of squaredSum of squared
errors :errors :
66//1010//20132013
Perceptron Training
• Target Value (T)
– Value required to be produced
– If we present the network with [1,1] for the AND function,
T will be 1
• Output (O)
– The output value from the neuron
• Ij - Inputs being presented to the neuron
• Wj - Weight from input neuron (Ij) to the output neuron
• LR( ) - The learning rate
This dictates how quickly the network converges
It is set by a matter of experimentation
η
Perceptron Training
• Algorithm
While epoch produces a non null errorWhile epoch produces a non null error
End WhileEnd While

Jst part2

  • 1.
    66//1010//20132013 Fungsi Aktivasi • Fungsiaktivasi dengan notasi: µ(.) mendefinisikan nilai output dari suatu neuron dalam level aktivasi tertentu berdasarkan nilai output pengkombinasi linier ui. • Beberapa fungsi aktivasi yg biasa digunakan: – Hardlimiter – Threshold – Sigmoid – Tangen Hiperbolik Fungsi Aktivasi 1. Hardlimiter 2. Piecewise Linear
  • 2.
    66//1010//20132013 Fungsi Aktivasi 3. Threshold xx f(.)f(.) ++11 tt f(x)= 0 jika x ≤ t f(x) = 1 jika x > t Fungsi Aktivasi 4. Sigmoid 5. Tangen Hiperbolik
  • 3.
    6/10/20136/10/2013 Arsitektur JST Single layerSinglelayer Multiple layerMultiple layer fully connectedfully connected Recurrent networkRecurrent network without hidden unitswithout hidden units inputsinputs outputsoutputs { } Recurrent networkRecurrent network with hidden unitswith hidden units Unit delayUnit delay operatoroperator Standard Activation Functions • The hard-limiting threshold function – Corresponds to the biological paradigm • either fires or not • Sigmoid functions ('S'-shaped curves) – The logistic function – The hyperbolic tangent (symmetrical) – Both functions have a simple differential – Only the shape is important )exp(1 1 )( av vf −+ =
  • 4.
    6/10/20136/10/2013 • Representation ofBoolean function AND • Linear threshold is used Perceptron Training t = 0.0t = 0.0 YY XX WW11 = 1.5= 1.5 WW33 = 1= 1 --11 WW22 = 1= 1 11 ifif ΣΣ wwiixxii >t>t OutputOutput== {{00 otherwiseotherwise Perceptron Training • Epoch – Presentation of the entire training set to the neural network. – In the case of the AND function an epoch consists of four sets of inputs being presented to the network (i.e. [0,0], [0,1], [1,0], [1,1]) • Error – a simple definition of error – The error value is the amount by which the value output by the network differs from the target value. – For example, if we required the network to output 0 and it output a 1, then Error = -1 Sum of squaredSum of squared errors :errors :
  • 5.
    66//1010//20132013 Perceptron Training • TargetValue (T) – Value required to be produced – If we present the network with [1,1] for the AND function, T will be 1 • Output (O) – The output value from the neuron • Ij - Inputs being presented to the neuron • Wj - Weight from input neuron (Ij) to the output neuron • LR( ) - The learning rate This dictates how quickly the network converges It is set by a matter of experimentation η Perceptron Training • Algorithm While epoch produces a non null errorWhile epoch produces a non null error End WhileEnd While