6/10/20136/10/2013
Perceptron Training
• Algorithm
While epoch produces a non null errorWhile epoch produces a non null error
End WhileEnd While
Perceptron Training
• Assuming that f is the threshold function
• What are the weight values?
• Initialize with random weight values
t =t = 00..00
yy
xx
--11
WW11 = ?= ?
WW33 = ?= ?
WW22 = ?= ?
ANDAND
A B OutputA B Output
0 0 00 0 0
0 1 00 1 0
1 0 01 0 0
1 1 11 1 1
66//1010//20132013
Perceptron Training
t =t = 00..00
yy
xx
--11
WW11 = ?= ?
WW33 = ?= ?
WW22 = ?= ?
ANDAND
A B OutputA B Output
0 0 00 0 0
0 1 00 1 0
1 0 01 0 0
1 1 11 1 1
I1 I2 I3 Summation Output
-1 0 0 (-1*0.3) + (0*0.5) + (0*-0.4) = -0.3 0
-1 0 1 (-1*0.3) + (0*0.5) + (1*-0.4) = -0.7 0
-1 1 0 (-1*0.3) + (1*0.5) + (0*-0.4) = 0.2 1
-1 1 1 (-1*0.3) + (1*0.5) + (1*-0.4) = -0.2 0
Lanjutkan…!
Training in Neural Network
• Learn values of weights from I/O pairs
• Start with random weights
• Load training example’s input
• Observe computed input
• Modify weights to reduce difference
• Iterate over all training examples
• Terminate when weights stop changing
OR when error is very small

Jst part3

  • 1.
    6/10/20136/10/2013 Perceptron Training • Algorithm Whileepoch produces a non null errorWhile epoch produces a non null error End WhileEnd While Perceptron Training • Assuming that f is the threshold function • What are the weight values? • Initialize with random weight values t =t = 00..00 yy xx --11 WW11 = ?= ? WW33 = ?= ? WW22 = ?= ? ANDAND A B OutputA B Output 0 0 00 0 0 0 1 00 1 0 1 0 01 0 0 1 1 11 1 1
  • 2.
    66//1010//20132013 Perceptron Training t =t= 00..00 yy xx --11 WW11 = ?= ? WW33 = ?= ? WW22 = ?= ? ANDAND A B OutputA B Output 0 0 00 0 0 0 1 00 1 0 1 0 01 0 0 1 1 11 1 1 I1 I2 I3 Summation Output -1 0 0 (-1*0.3) + (0*0.5) + (0*-0.4) = -0.3 0 -1 0 1 (-1*0.3) + (0*0.5) + (1*-0.4) = -0.7 0 -1 1 0 (-1*0.3) + (1*0.5) + (0*-0.4) = 0.2 1 -1 1 1 (-1*0.3) + (1*0.5) + (1*-0.4) = -0.2 0 Lanjutkan…! Training in Neural Network • Learn values of weights from I/O pairs • Start with random weights • Load training example’s input • Observe computed input • Modify weights to reduce difference • Iterate over all training examples • Terminate when weights stop changing OR when error is very small