The document provides an introduction to the back-propagation algorithm, which is commonly used to train artificial neural networks. It discusses how back-propagation calculates the gradient of a loss function with respect to the network's weights in order to minimize the loss through methods like gradient descent. The document outlines the history of neural networks and perceptrons, describes the limitations of single-layer networks, and explains how back-propagation allows multi-layer networks to learn complex patterns through error propagation during training.