This document summarizes various techniques for anonymizing data to protect privacy and security when data is stored in the cloud. It discusses how anonymization removes identifying attributes from data to prevent individuals from being identified. The document reviews existing anonymization models like k-anonymity, l-diversity and t-closeness. It then describes different anonymization techniques like hashing, hiding, permutation, shifting, truncation, prefix-preserving and enumeration that were implemented to anonymize data fields. The goal is to anonymize data in a way that balances privacy, security, and the ability to still use the data for appropriate purposes.