This document proposes a new approach for preserving sensitive data privacy when clustering data. It involves adding noise to numeric attributes in the data using a fuzzy membership function, which distorts the data while maintaining the original clusters. The fuzzy membership function uses a S-shaped curve to map original attribute values to modified values. Clustering is then performed on the distorted data. This approach aims to preserve privacy while reducing processing time compared to other privacy-preserving methods like cryptographic techniques, data swapping, and noise addition.