This document proposes a new approach for preserving sensitive data privacy when clustering data. It involves adding noise to numeric attributes in the data using a fuzzy membership function, which distorts the data while maintaining the original clusters. This method is compared to other privacy preservation techniques like data swapping and noise addition. It is found to reduce processing time compared to other methods. The document outlines literature on privacy preservation techniques including data modification, cryptography, and data reconstruction methods. It then describes the proposed method of using a fuzzy membership function to add noise to sensitive attributes before clustering the data.