SlideShare a Scribd company logo
1
Fiber Optics
Ray Theory
SOLO HERMELIN
Updated: 17.06.06
http://www.solohermelin.com
2
SOLO Optical Fibre – Ray Theory
http://www.datacottage.com/nch/fibre.htm
3
A step-index cylindrical fiber has a central core of index ncore surrounded by
cladding of index ncladding where ncladding < ncore.
SOLO Optical Fiber – Ray Theory
Cladding
Core
axisθ
0θ
i
θ
Core axis
Cladding
Skew ray in core of fiber
Meridional ray in core
with two reflexions
When a ray of light enters such a
fiber at an angle θ0 is refracted at an
angle θ, and then reflected back at the
boundary between core and cladding,
if the angle of incidence θi is greater
than the critical angle θc.
Two distinct rays can travel inside
the fiber in this way:
• meridional rays remain in a plan that contains fiber axis
• skew rays travel in a non-planar zig-zag path and never cross the fiber axis
4
For the meridional ray
SOLO Optical Fiber – Ray Theory
Cladding
Core
axisθ
0θ
iθ
Meridional ray in core
with two reflexions
Snell’s Law at the fiber enter
If the ray is refracted from the core
to the cladding than according to
Snell’s Law:
222
0
sin1cossinsin claddingcoreicoreicorecore
nnnnn −<−=== θθθθ
r
core
cladding
i
n
n
θθ sinsin =
If there is no tunneling from core to cladding.1sin:sin ≤=> c
core
cladding
i
n
n
θθ
Since we have

90=+ i
θθ

θθ sinsin 0
1
coreair nn =
Therefore total internal reflection will occur if:
2
22
0
1sin 







−=−<
core
cladding
corecladdingcore
n
n
nnnθ
5
We consider only two
types of optical fibers:
SOLO Optical Fiber – Ray Theory
Skew ray in step-index
core fiber
Meridional ray in step-index
core fiber
Core axis
Cladding
Core axis
Cladding
zθ
φθ
φ1
r1z1.constnn corecladding =<
Meridional ray in a grated-index core
Core
axis
Cladding
Skew ray in a grated-index core of fiber
( )rnncore =
Core axis
Cladding
zθ
φθ
r
r1
φ1
• step-index core fiber
where the index of
refraction in core is
constant and changes
by a step in the cladding
such that
corecladding nn <
• graded-index core fiber
where the index of
refraction in core changes
as function of radius r
such that ( )rnncore =
6
For a graded-index core fiber ncore = n ( r ) let develop the ray equation:
SOLO Optical Fiber – Ray Theory
( ) ( ) ( ) rrn
rd
d
rn
sd
rd
rn
sd
d
1
ray
=∇=






zzrrr 11ray +=

where:
rayr

-ray vector
rayrdsd

=
Assuming a cylindrical core fiber we will use cylindrical coordinates
zzddrrrdrd 111ray ++= φφ

Graded-index Fiber
sz
sd
zd
sd
d
rr
sd
rd
sd
rd
1:111
ray
=++= φ
φ








=
−=
=
01
11
11

zd
rdd
drd
φφ
φφ
011111 =−== z
sd
d
r
sd
d
sd
d
sd
d
r
sd
d φ
φφ
φ






=
+−=
+=
zz
yx
yxr
11
1cos1sin1
1sin1cos1
φφφ
φφ
to describe the ray vector:
( ) ( ) ( ) ( )22222/1
zddrrdrdrdsd rayray ++=⋅= φ
ray propagation direction
See S. Hermelin, “Foundation of Geometrical Optics”
7
SOLO Optical Fiber – Ray Theory
Skew ray in core of fiber
z
θ
φθ
φ1
r1
z1
ρ
Q
P
zrrr zzz
1cos1cossin1sinsin1 ray
θθθθθ φφ ++=
ρ
φθ
Core
Q' axis
Core
axis
Cladding
zθ
φθ
r
r1
φ1
ray1r
( )rnncore =
( ) ( ) ( ) rrn
rd
d
rn
sd
rd
rn
sd
d
1
ray
=∇=






Graded-index Fiber (continue – 1(
z
sd
zd
sd
d
rr
sd
rd
sd
rd
111
ray
++= φ
φ

( )
( ) ( )
( ) ( )
( ) ( )

0
ray
1
1
1
1
1
1
sd
zd
sd
zd
rnz
sd
zd
rn
sd
d
sd
d
sd
d
rrn
sd
d
rrn
sd
d
sd
rd
sd
rd
rnr
sd
rd
rn
sd
d
sd
rd
rn
sd
d
+





+
+





+
+





=






φφ
φ
φ

( ) ( ) ( ) ( ) ( ) z
sd
zd
rn
sd
d
r
sd
d
rnr
sd
d
rnr
sd
d
sd
d
sd
rd
rnr
sd
rd
rn
sd
d
11111
2






+





−





++





=
φ
φ
φ
φ
φ
( ) ( ) ( ) ( ) ( ) ( ) ( ) r
rd
rnd
z
sd
zd
rn
sd
d
sd
d
sd
rd
rn
sd
d
rn
sd
d
r
sd
d
rnr
sd
rd
rn
sd
d
sd
rd
rn
sd
d
11121
2
ray
=





+






+





+














−





=





φ
φφφ

011111 =−== z
sd
d
r
sd
d
sd
d
sd
d
r
sd
d φ
φφ
φ
8
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 2(
( ) ( ) ( ) ( ) ( ) ( ) ( ) r
rd
rnd
z
sd
zd
rn
sd
d
sd
d
sd
rd
rn
sd
d
rn
sd
d
r
sd
d
rnr
sd
rd
rn
sd
d
sd
rd
rn
sd
d
11121
2
ray
=





+






+





+














−





=





φ
φφφ

From this equation we obtain the following three
equations:
( ) ( ) ( )
rd
rnd
sd
d
rnr
sd
rd
rn
sd
d
=





−





2
φ
( ) ( ) 02 =+





sd
d
sd
rd
r
rn
sd
d
rn
sd
d φφ
( ) 0=





sd
zd
rn
sd
d
( ) ( ) 022
=+





sd
d
sd
rd
rrn
sd
d
rn
sd
d
r
φφ
2
r×
( ) 02
=





sd
d
rnr
sd
d φ
( ) const
sd
zd
rn == β ( ) .2
constl
sd
d
rnr == ρ
φ
Integration
Integration
where:
l,β -dimensionless constants (ray invariants( to be defined
ρ -radius of the boundary between core and cladding
By integrating the last two equation we obtain:
(1)
(2)
(3)
(3’) (2’)
9
( ) ( ) zrn
sd
zd
rn θβ cos==
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 3(
We found that the ray
propagation vector is
Skew ray in core of fiber
φ
φ1
r1 z1
Q
P
zrs zzz 1cos1cossin1sinsin1 θφθθθθ φφ ++=
Core
Q'
axis
Core
axis
Cladding
zθ
s
sd
rd
1:ray
=
φ
φ1
φθ
r
r1
φ1inner
caustic
outer
caustic
s1
z1
zθ
( )rnncore =
sz
sd
zd
sd
d
rr
sd
rd
sd
rd
1111
ray
=++= φ
φ

( )rnsd
zd β
=
( )rnr
l
sd
d
2
ρφ
=
( ) ( ) sd
rd
z
rnrnr
l
r
sd
rd
s
ray
1111

=++=
β
φ
ρ
( ) sd
rd
zrs zz
ray
1cos1cos1sinsin1

=++= θφθθθ φφ
Let write also as a function of two geometric parameterss1 φθθ ,z
φθ -skew angle
zθ -angle between ands1 z1
( )rnr
l
z
ρ
θθ φ =cossin ( ) φθθ
ρ
cossin zrn
r
l =
(3’) (2’)
10
( ) ( ) zrn
sd
zd
rn θβ cos==
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 4(
We found
φθ
r
r1
φ1inner
caustic
intesects
ray path
outer
caustic
intersects
ray path
0=φθ
0=φθ
The skew rays take a helical path, as seen from the cross-section figure.
( ) φθθ
ρ
cossin zrn
r
l =
( ) ( ) ( ) ( ) 22222
cossin
cos
β
ρ
θ
ρ
θ
ρ
θφ
−
=
−
==
rn
l
rrnrn
l
rrn
l
r
z
z
( ) ( ) 0== ocic
rr φφ θθ
A particular family of skew ray will not come closer to the fiber axis than the
inner caustic cylindrical surface of radius ric and further from the axis than the
outer caustic cylindrical surface of radius roc. From the figure we can see that
at the intersection of ray path with the caustic surface
Therefore the caustic radiuses can be found by solving:
( )
( ) 10cos
22
===
−
φ
θ
β
ρ
rn
l
r
or ( ) ( ) 0: 2
2
222
=−−=
r
lrnrg
ρ
β ( ) ( ) 0== ocic
rgrg
11
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 5(
We obtained:
( )rnsd
zd β
= ( )rnr
l
sd
d
2
ρφ
=
( ) zd
d
rnzd
d
sd
zd
sd
d β
==
( )
( )
( )
( )
( )
( ) ( )rn
rd
rnd
rnr
l
rnr
zd
rd
rn
rn
zd
d
rn
×=





−





2
2
ρββ
( )
2
2
3
2
2
2
2
2
2
1
rd
rnd
r
l
zd
rd
=−
ρ
β
Define:
zd
rd
r =:'
rd
rd
r
zd
rd
rd
d
zd
rd
zd
rd
zd
d
zd
rd '
'2
2
=





=





=
( )
2
2
3
2
22
2
1
'
rd
rnd
r
l
rd
dr
r =−
ρ
β
Integration
( ) constrn
r
l
zd
rd
+=+




 2
2
2
2
2
2
2
1
2
1
2
1 ρ
β
( ) const
sd
zd
rn == β(3’) ( ) .2
constl
sd
d
rnr == ρ
φ
(2’)
( ) ( ) ( )
rd
rnd
sd
d
rnr
sd
rd
rn
sd
d
=





−





2
φ
(1)
( )
( )
2
2
2
222
2
2
2 β
ρ
ββ +⋅+−−=





const
r
lrn
zd
rd
rg
  
12
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 6(
We obtained:
( )
( )
2
2
2
222
2
2
2 β
ρ
ββ +⋅+−−=





const
r
lrn
zd
rd
rg
  
φθ
r
r1
φ1inner
caustic
intesects
ray path
outer
caustic
intersects
ray path
0=φθ
0=φθ
To determine the constant we use the fact that at
the caustic we have
therefore
( ) ( ) 0&0 2
2
222
=−−==
r
lrnrg
zd
rd ρ
β
02 2
=+⋅ βconst
Finally we obtain the ray path equation:
( ) ( ) 2
2
222
2
2
:
r
lrnrg
zd
rd ρ
ββ −−==





Since a ray path exists only in the regions where0
2
2
≥





zd
rd
β ( ) 0>rg
13
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 7(
Analysis of: ( ) ( ) 2
2
222
2
2
:
r
lrnrg
zd
rd ρ
ββ −−==





A ray path exists only in the regions where ( ) 0>rg
1.Bounded rays
The rays are bounded in the core region iff:
g (r)>0 for ric<r < roc and g (r)<0 for r ≥ ρ
rρ
ocr
icr
2
2
2
r
l
ρ
cladding
core
0≠l
( )rg
skew ray
β<cladding
n( ) ociccore
rrrrn ≤≤> β
( ) ociccorecladding
rrrrnn ≤≤<< β
rρ
ocr
0=l
cladding
core
( )rg
meridional ray
14
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 8(
Analysis of: ( ) ( ) 2
2
222
2
2
:
r
lrnrg
zd
rd ρ
ββ −−==





A ray path exists only in the regions where ( ) 0>rg
2.Refracted rays
The rays are refracted from the core in the
cladding region iff:
g (r)>0 for r ≥ ρ
rρ
icr
2
2
2
r
l
ρ
cladding
core
0≠l
( )rg
skew ray
222
lncladding
+> β
15
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 9(
Analysis of: ( ) ( ) 2
2
222
2
2
:
r
lrnrg
zd
rd ρ
ββ −−==





A ray path exists only in the regions where ( ) 0>rg
3.Tunneling rays
The rays escape in the cladding region iff:
g (r)<0 for ρ <r<rrad and g (r)>0 for r ≥ rrad
222
lncladding
+< β
rρ
ocr
ic
r
2
2
2
r
l
ρ
cladding
core
0≠l
( )rg
skew ray
radr
β>cladding
n
22
lncladding
+<< ββ
( ) 02
2
222
=−−=
rad
claddingrade
r
lnrg
ρ
β 22
β
ρ
−
=
cladding
rad
n
l
r
The energy leaks from the core to
the cladding region.
16
For a step-index core
fiber ncore = constant.
SOLO Optical Fiber – Ray Theory
Core axis
Cladding
Skew ray in core of fiber
z
θ
φθ
s1
φ1
r1
z1
ρ
Q
P
zrrs zzz 1cos1cossin1sinsin1 θθθθθ φφ ++=
ρ
φθ
Core
P
Q
Q' axis
P Q'
ρ
φθρ sin2' =PQ
φθ
φθ
icr
φ
θρ cos=ic
r
φθ
inner
caustic
.constnn corecladding =<
Step-index Fiber
( ) ( ) zrn
sd
zd
rn θβ cos==
( ) φθθ
ρ
cossin zrn
r
l =
( ) ( ) 2
2
222
2
2
:
r
lrnrg
zd
rd ρ
ββ −−==





( )



≥=
<=
=
ρ
ρ
rconstn
rconstn
rn
cladding
core
2
1
17
SOLO Optical Fiber – Ray Theory
Step-index Fiber (continue – 7(
Analysis of: ( ) ( ) 2
2
222
2
2
:
r
lrnrg
zd
rd ρ
ββ −−==





A ray path exists only in the regions where ( ) 0>rg
1.Bounded rays
The rays are bounded in the core region iff:
g (r)>0 for r = ρ- ε and g (r)<0 for r = ρ+ε
β<cladding
nβ>core
n
corecladding
nn << β
rρ
22
β
ρ
−
=
core
ic
n
l
r
2
2
2
r
l
ρ
claddingcore
0≠l
( )rg
skew ray
22
β−core
n
22
β−cladding
n
corenn = claddingnn =
0222
>−−= lng core
β
0222
<−−= lng cladding β
rρ
0=l
claddingcore
( )rg
meridional ray
022
<−= βcladdingng
022
>−= βcore
ng
corenn = claddingnn =
( )



≥=
<=
=
ρ
ρ
rconstn
rconstn
rn
cladding
core
2
1
( ) 0=ic
rg φ
θθρ
θβ
θρ
β
ρ φ
cos
cossin
cos22
zcore
zcore
nl
n
core
ic
n
l
r
=
=
=
−
=
P Q'
ρ
φθρsin2' =PQ
φθ
φθ
icr
φθρ cos=icr
φθ
inner
caustic
18
SOLO Optical Fiber – Ray Theory
Step-index Fiber (continue – 8(
Analysis of: ( ) ( ) 2
2
222
2
2
:
r
lrnrg
zd
rd ρ
ββ −−==





A ray path exists only in the regions where ( ) 0>rg
2.Refracted rays
The rays are refracted from the core in the
cladding region iff:
g (r)>0 for r ≥ ρ
22
lncladding
+> β
( )



≥=
<=
=
ρ
ρ
rconstn
rconstn
rn
cladding
core
2
1
rρ
22
β
ρ
−
=
core
ic
n
l
r
2
2
2
r
l
ρ
claddingcore
0≠l
( )rg
skew ray
22
β−coren
22
β−cladding
n
corenn = claddingnn =
0222
>−−= lng core β
0222
>−−= lng cladding β
19
SOLO Optical Fiber – Ray Theory
Step-index Fiber (continue – 9(
Analysis of: ( ) ( ) 2
2
222
2
2
:
r
lrnrg
zd
rd ρ
ββ −−==





A ray path exists only in the regions where ( ) 0>rg
3.Tunneling rays
The rays escape in the cladding region iff:
g (r)<0 for ρ <r<rrad and g (r)>0 for r ≥ rrad
222
lncladding
+< β β>cladding
n
22
lncladding
+<< ββ
( ) 02
2
222
=−−=
rad
claddingrade
r
lnrg
ρ
β 22
β
ρ
−
=
cladding
rad
n
l
r
The energy leaks from the core to
the cladding region.
( )



≥=
<=
=
ρ
ρ
rconstn
rconstn
rn
cladding
core
2
1
rρ
22
β
ρ
−
=
core
ic
n
l
r
2
2
2
r
l
ρ
claddingcore
0≠l
( )rg
skew ray
22
β−core
n
22
β−claddingn
core
nn = cladding
nn =
22
β
ρ
−
=
cladding
rad
n
l
r
0222
>−− lncore β
0222
<−− lncladding β
20
For a step-index core
fiber ncore = constant.
SOLO Optical Fiber – Ray Theory
P Q'
ρ
φθρ sin2' =PQ
φθ
φθ
ic
r
φθρ cos=ic
r
φθ
inner
caustic
Step-index Fiber
( ) ( ) 2
2
222
2
2
:
r
lrnrg
zd
rd ρ
ββ −−==





( )



≥=
<=
=
ρ
ρ
rconstn
rconstn
rn
cladding
core
2
1
rρ
22
β
ρ
−
=
core
ic
n
l
r
2
2
2
r
l
ρ
claddingcore
0≠l
( )rg
skew ray
22
β−core
n
22
β−cladding
n
corenn = claddingnn =
0222
>−−= lng core β
0222
<−−= lng cladding β
rρ
0=l
claddingcore
( )rg
meridional ray
022
<−= βcladdingng
022
>−= βcoreng
corenn = claddingnn =
corecladding
nn << β
rρ
22
β
ρ
−
=
core
ic
n
l
r
2
2
2
r
l
ρ
claddingcore
0≠l
( )rg
skew ray
22
β−core
n
22
β−claddingn
corenn = claddingnn =
0222
>−−= lng core β
0222
>−−= lng cladding β
rρ
22
β
ρ
−
=
core
ic
n
l
r
2
2
2
r
l
ρ
claddingcore
0≠l
( )rg
skew ray
22
β−coren
22
β−claddingn
core
nn = claddingnn =
22
β
ρ
−
=
cladding
rad
n
l
r
0222
>−− lncore
β
0222
<−− lncladding β
1.Bounded rays
2.Refracted rays
222
lncladding
+> β
3.Tunneling rays
22
lncladding
+<< ββ
21
22
SOLO
References
C.C. Davis, “Laser and Electro-Optics”, Cambridge University Press, 1996,
OPTICS
S. Hermelin, “Foundation of Geometrical Optics”
January 9, 2015 23
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA

More Related Content

What's hot

OPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPTOPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPT
Er. Satyendra Vishwakarma
 
Dispersion in optical fibers
Dispersion in optical fibersDispersion in optical fibers
Dispersion in optical fibers
CKSunith1
 
Electro-optic Modulator
Electro-optic ModulatorElectro-optic Modulator
Electro-optic ModulatorAhmed El-Sayed
 
Link power and rise time budget analysis
Link power and rise time budget analysisLink power and rise time budget analysis
Link power and rise time budget analysis
CKSunith1
 
LED and LASER source in optical communication
LED and LASER source in optical communicationLED and LASER source in optical communication
LED and LASER source in optical communication
bhupender rawat
 
OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1
Asif Iqbal
 
Optical communication
Optical communicationOptical communication
Optical communication
VIVEK KUMAR SHARMA
 
Noise in photodetectors
Noise in photodetectorsNoise in photodetectors
Noise in photodetectors
CKSunith1
 
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCETOPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
SeshaVidhyaS
 
Two cavity klystron
Two cavity klystronTwo cavity klystron
Two cavity klystron
abhikalmegh
 
Antenna PARAMETERS
Antenna PARAMETERSAntenna PARAMETERS
Antenna PARAMETERS
AJAL A J
 
Non linear effects in optical fibers
Non linear effects in optical fibersNon linear effects in optical fibers
Non linear effects in optical fibers
CKSunith1
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
Tapas Mondal
 
Critical frequency
Critical frequencyCritical frequency
Critical frequency
Gautam Saxena
 
Optical sources and detectors
Optical sources and detectorsOptical sources and detectors
Optical sources and detectors
PallaviHailkar
 
Oc ppt(38,39,40) optical sources
Oc ppt(38,39,40) optical sourcesOc ppt(38,39,40) optical sources
Oc ppt(38,39,40) optical sources
Dharit Unadkat
 
Antenna Parameters Part 2
Antenna Parameters Part 2Antenna Parameters Part 2
Antenna Parameters Part 2
Roma Rico Flores
 

What's hot (20)

Foc ppt
Foc pptFoc ppt
Foc ppt
 
OPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPTOPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPT
 
Dispersion in optical fibers
Dispersion in optical fibersDispersion in optical fibers
Dispersion in optical fibers
 
Electro-optic Modulator
Electro-optic ModulatorElectro-optic Modulator
Electro-optic Modulator
 
Link power and rise time budget analysis
Link power and rise time budget analysisLink power and rise time budget analysis
Link power and rise time budget analysis
 
Losses in optical fiber
Losses in optical fiberLosses in optical fiber
Losses in optical fiber
 
LED and LASER source in optical communication
LED and LASER source in optical communicationLED and LASER source in optical communication
LED and LASER source in optical communication
 
OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1
 
Photodetectors
PhotodetectorsPhotodetectors
Photodetectors
 
Optical communication
Optical communicationOptical communication
Optical communication
 
Noise in photodetectors
Noise in photodetectorsNoise in photodetectors
Noise in photodetectors
 
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCETOPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
OPTICAL COMMUNICATION -UNIT-III(detectors) by S.SESHA VIDHYA/ASP/ECE/RMKCET
 
Two cavity klystron
Two cavity klystronTwo cavity klystron
Two cavity klystron
 
Antenna PARAMETERS
Antenna PARAMETERSAntenna PARAMETERS
Antenna PARAMETERS
 
Non linear effects in optical fibers
Non linear effects in optical fibersNon linear effects in optical fibers
Non linear effects in optical fibers
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
 
Critical frequency
Critical frequencyCritical frequency
Critical frequency
 
Optical sources and detectors
Optical sources and detectorsOptical sources and detectors
Optical sources and detectors
 
Oc ppt(38,39,40) optical sources
Oc ppt(38,39,40) optical sourcesOc ppt(38,39,40) optical sources
Oc ppt(38,39,40) optical sources
 
Antenna Parameters Part 2
Antenna Parameters Part 2Antenna Parameters Part 2
Antenna Parameters Part 2
 

Viewers also liked

Basic Ray Theory
Basic Ray TheoryBasic Ray Theory
Basic Ray Theory
carlospiedrahitaescobar
 
optical fiber ppt
optical fiber ppt optical fiber ppt
optical fiber ppt
RUSHIT PATEL
 
2 estimators
2 estimators2 estimators
2 estimators
Solo Hermelin
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
Solo Hermelin
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
Solo Hermelin
 
Introduction to elasticity, part i
Introduction to elasticity, part iIntroduction to elasticity, part i
Introduction to elasticity, part i
Solo Hermelin
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loops
Solo Hermelin
 
Optical aberrations
Optical aberrationsOptical aberrations
Optical aberrations
Solo Hermelin
 
5 cramer-rao lower bound
5 cramer-rao lower bound5 cramer-rao lower bound
5 cramer-rao lower bound
Solo Hermelin
 
Maxwell equations and propagation in anisotropic media
Maxwell equations and propagation in anisotropic mediaMaxwell equations and propagation in anisotropic media
Maxwell equations and propagation in anisotropic media
Solo Hermelin
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
Solo Hermelin
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
Solo Hermelin
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
Solo Hermelin
 
Equation of motion of a variable mass system2
Equation of motion of a variable mass system2Equation of motion of a variable mass system2
Equation of motion of a variable mass system2
Solo Hermelin
 
1 tracking systems1
1 tracking systems11 tracking systems1
1 tracking systems1
Solo Hermelin
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
Solo Hermelin
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
Solo Hermelin
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
Solo Hermelin
 
Cosmic Ray Presentation
Cosmic Ray PresentationCosmic Ray Presentation
Cosmic Ray Presentationguest3aa2df
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
Solo Hermelin
 

Viewers also liked (20)

Basic Ray Theory
Basic Ray TheoryBasic Ray Theory
Basic Ray Theory
 
optical fiber ppt
optical fiber ppt optical fiber ppt
optical fiber ppt
 
2 estimators
2 estimators2 estimators
2 estimators
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Introduction to elasticity, part i
Introduction to elasticity, part iIntroduction to elasticity, part i
Introduction to elasticity, part i
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loops
 
Optical aberrations
Optical aberrationsOptical aberrations
Optical aberrations
 
5 cramer-rao lower bound
5 cramer-rao lower bound5 cramer-rao lower bound
5 cramer-rao lower bound
 
Maxwell equations and propagation in anisotropic media
Maxwell equations and propagation in anisotropic mediaMaxwell equations and propagation in anisotropic media
Maxwell equations and propagation in anisotropic media
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
Equation of motion of a variable mass system2
Equation of motion of a variable mass system2Equation of motion of a variable mass system2
Equation of motion of a variable mass system2
 
1 tracking systems1
1 tracking systems11 tracking systems1
1 tracking systems1
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
 
Cosmic Ray Presentation
Cosmic Ray PresentationCosmic Ray Presentation
Cosmic Ray Presentation
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 

Similar to Fiber optics ray theory

EC6602 - AWP UNIT-2
EC6602 - AWP UNIT-2EC6602 - AWP UNIT-2
EC6602 - AWP UNIT-2
krishnamrm
 
Ph ddefence
Ph ddefencePh ddefence
Lens
LensLens
Ch33 ssm
Ch33 ssmCh33 ssm
Ch33 ssm
Marta Díaz
 
XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
ArivazhaganRanganath1
 
XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
AkshayKumar760371
 
Physics practicals
Physics practicalsPhysics practicals
Physics practicals
SAKSHIGAWADE2
 
Radial distribution function and most probable distance of 1s and 2s electron
Radial distribution function and most probable distance of 1s and 2s electronRadial distribution function and most probable distance of 1s and 2s electron
Radial distribution function and most probable distance of 1s and 2s electron
Mithil Fal Desai
 
Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2
Forward2025
 
Monte Carlo simulations of production of collimated panoramic X-rays using a ...
Monte Carlo simulations of production of collimated panoramic X-rays using a ...Monte Carlo simulations of production of collimated panoramic X-rays using a ...
Monte Carlo simulations of production of collimated panoramic X-rays using a ...
Andrii Sofiienko
 
Waveguide charactersation uma (1)
Waveguide charactersation uma (1)Waveguide charactersation uma (1)
Waveguide charactersation uma (1)
ssuser4553ca
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
tejaspatel1997
 
8.1. microtech ion implant,1,2
8.1. microtech ion implant,1,28.1. microtech ion implant,1,2
8.1. microtech ion implant,1,2
Bhargav Veepuri
 
xrd.pptx
xrd.pptxxrd.pptx
xrd.pptx
AhsanMuhammad22
 
Xray discovery of_a_dwarf_galaxy_galaxy_collision
Xray discovery of_a_dwarf_galaxy_galaxy_collisionXray discovery of_a_dwarf_galaxy_galaxy_collision
Xray discovery of_a_dwarf_galaxy_galaxy_collisionSérgio Sacani
 
Light
LightLight

Similar to Fiber optics ray theory (20)

Optics geometry
Optics geometryOptics geometry
Optics geometry
 
Magnet basics
Magnet basicsMagnet basics
Magnet basics
 
EC6602 - AWP UNIT-2
EC6602 - AWP UNIT-2EC6602 - AWP UNIT-2
EC6602 - AWP UNIT-2
 
Ph ddefence
Ph ddefencePh ddefence
Ph ddefence
 
Lens
LensLens
Lens
 
Ch33 ssm
Ch33 ssmCh33 ssm
Ch33 ssm
 
XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
 
XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
 
Physics practicals
Physics practicalsPhysics practicals
Physics practicals
 
Radial distribution function and most probable distance of 1s and 2s electron
Radial distribution function and most probable distance of 1s and 2s electronRadial distribution function and most probable distance of 1s and 2s electron
Radial distribution function and most probable distance of 1s and 2s electron
 
Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2
 
Monte Carlo simulations of production of collimated panoramic X-rays using a ...
Monte Carlo simulations of production of collimated panoramic X-rays using a ...Monte Carlo simulations of production of collimated panoramic X-rays using a ...
Monte Carlo simulations of production of collimated panoramic X-rays using a ...
 
Waveguide charactersation uma (1)
Waveguide charactersation uma (1)Waveguide charactersation uma (1)
Waveguide charactersation uma (1)
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
 
8.1. microtech ion implant,1,2
8.1. microtech ion implant,1,28.1. microtech ion implant,1,2
8.1. microtech ion implant,1,2
 
xrd.pptx
xrd.pptxxrd.pptx
xrd.pptx
 
Xray discovery of_a_dwarf_galaxy_galaxy_collision
Xray discovery of_a_dwarf_galaxy_galaxy_collisionXray discovery of_a_dwarf_galaxy_galaxy_collision
Xray discovery of_a_dwarf_galaxy_galaxy_collision
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
PhD_seminar_final
PhD_seminar_finalPhD_seminar_final
PhD_seminar_final
 
Light
LightLight
Light
 

More from Solo Hermelin

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
Solo Hermelin
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
Solo Hermelin
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
Solo Hermelin
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
Solo Hermelin
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
Solo Hermelin
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
Solo Hermelin
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
Solo Hermelin
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
Solo Hermelin
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
Solo Hermelin
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
Solo Hermelin
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
Solo Hermelin
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
Solo Hermelin
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
Solo Hermelin
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
Solo Hermelin
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
Solo Hermelin
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
Solo Hermelin
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
Solo Hermelin
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
Solo Hermelin
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
Solo Hermelin
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
Solo Hermelin
 

More from Solo Hermelin (20)

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
 

Recently uploaded

Red blood cells- genesis-maturation.pptx
Red blood cells- genesis-maturation.pptxRed blood cells- genesis-maturation.pptx
Red blood cells- genesis-maturation.pptx
muralinath2
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
Nistarini College, Purulia (W.B) India
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
fafyfskhan251kmf
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
KrushnaDarade1
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
yqqaatn0
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
PRIYANKA PATEL
 
Eukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptxEukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptx
RitabrataSarkar3
 
Nucleophilic Addition of carbonyl compounds.pptx
Nucleophilic Addition of carbonyl  compounds.pptxNucleophilic Addition of carbonyl  compounds.pptx
Nucleophilic Addition of carbonyl compounds.pptx
SSR02
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptxThe use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
MAGOTI ERNEST
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
pablovgd
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
University of Maribor
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
University of Maribor
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
tonzsalvador2222
 
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptxANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
RASHMI M G
 

Recently uploaded (20)

Red blood cells- genesis-maturation.pptx
Red blood cells- genesis-maturation.pptxRed blood cells- genesis-maturation.pptx
Red blood cells- genesis-maturation.pptx
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
 
Eukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptxEukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptx
 
Nucleophilic Addition of carbonyl compounds.pptx
Nucleophilic Addition of carbonyl  compounds.pptxNucleophilic Addition of carbonyl  compounds.pptx
Nucleophilic Addition of carbonyl compounds.pptx
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptxThe use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
 
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptxANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
 

Fiber optics ray theory

  • 1. 1 Fiber Optics Ray Theory SOLO HERMELIN Updated: 17.06.06 http://www.solohermelin.com
  • 2. 2 SOLO Optical Fibre – Ray Theory http://www.datacottage.com/nch/fibre.htm
  • 3. 3 A step-index cylindrical fiber has a central core of index ncore surrounded by cladding of index ncladding where ncladding < ncore. SOLO Optical Fiber – Ray Theory Cladding Core axisθ 0θ i θ Core axis Cladding Skew ray in core of fiber Meridional ray in core with two reflexions When a ray of light enters such a fiber at an angle θ0 is refracted at an angle θ, and then reflected back at the boundary between core and cladding, if the angle of incidence θi is greater than the critical angle θc. Two distinct rays can travel inside the fiber in this way: • meridional rays remain in a plan that contains fiber axis • skew rays travel in a non-planar zig-zag path and never cross the fiber axis
  • 4. 4 For the meridional ray SOLO Optical Fiber – Ray Theory Cladding Core axisθ 0θ iθ Meridional ray in core with two reflexions Snell’s Law at the fiber enter If the ray is refracted from the core to the cladding than according to Snell’s Law: 222 0 sin1cossinsin claddingcoreicoreicorecore nnnnn −<−=== θθθθ r core cladding i n n θθ sinsin = If there is no tunneling from core to cladding.1sin:sin ≤=> c core cladding i n n θθ Since we have  90=+ i θθ  θθ sinsin 0 1 coreair nn = Therefore total internal reflection will occur if: 2 22 0 1sin         −=−< core cladding corecladdingcore n n nnnθ
  • 5. 5 We consider only two types of optical fibers: SOLO Optical Fiber – Ray Theory Skew ray in step-index core fiber Meridional ray in step-index core fiber Core axis Cladding Core axis Cladding zθ φθ φ1 r1z1.constnn corecladding =< Meridional ray in a grated-index core Core axis Cladding Skew ray in a grated-index core of fiber ( )rnncore = Core axis Cladding zθ φθ r r1 φ1 • step-index core fiber where the index of refraction in core is constant and changes by a step in the cladding such that corecladding nn < • graded-index core fiber where the index of refraction in core changes as function of radius r such that ( )rnncore =
  • 6. 6 For a graded-index core fiber ncore = n ( r ) let develop the ray equation: SOLO Optical Fiber – Ray Theory ( ) ( ) ( ) rrn rd d rn sd rd rn sd d 1 ray =∇=       zzrrr 11ray +=  where: rayr  -ray vector rayrdsd  = Assuming a cylindrical core fiber we will use cylindrical coordinates zzddrrrdrd 111ray ++= φφ  Graded-index Fiber sz sd zd sd d rr sd rd sd rd 1:111 ray =++= φ φ         = −= = 01 11 11  zd rdd drd φφ φφ 011111 =−== z sd d r sd d sd d sd d r sd d φ φφ φ       = +−= += zz yx yxr 11 1cos1sin1 1sin1cos1 φφφ φφ to describe the ray vector: ( ) ( ) ( ) ( )22222/1 zddrrdrdrdsd rayray ++=⋅= φ ray propagation direction See S. Hermelin, “Foundation of Geometrical Optics”
  • 7. 7 SOLO Optical Fiber – Ray Theory Skew ray in core of fiber z θ φθ φ1 r1 z1 ρ Q P zrrr zzz 1cos1cossin1sinsin1 ray θθθθθ φφ ++= ρ φθ Core Q' axis Core axis Cladding zθ φθ r r1 φ1 ray1r ( )rnncore = ( ) ( ) ( ) rrn rd d rn sd rd rn sd d 1 ray =∇=       Graded-index Fiber (continue – 1( z sd zd sd d rr sd rd sd rd 111 ray ++= φ φ  ( ) ( ) ( ) ( ) ( ) ( ) ( )  0 ray 1 1 1 1 1 1 sd zd sd zd rnz sd zd rn sd d sd d sd d rrn sd d rrn sd d sd rd sd rd rnr sd rd rn sd d sd rd rn sd d +      + +      + +      =       φφ φ φ  ( ) ( ) ( ) ( ) ( ) z sd zd rn sd d r sd d rnr sd d rnr sd d sd d sd rd rnr sd rd rn sd d 11111 2       +      −      ++      = φ φ φ φ φ ( ) ( ) ( ) ( ) ( ) ( ) ( ) r rd rnd z sd zd rn sd d sd d sd rd rn sd d rn sd d r sd d rnr sd rd rn sd d sd rd rn sd d 11121 2 ray =      +       +      +               −      =      φ φφφ  011111 =−== z sd d r sd d sd d sd d r sd d φ φφ φ
  • 8. 8 SOLO Optical Fiber – Ray Theory Graded-index Fiber (continue – 2( ( ) ( ) ( ) ( ) ( ) ( ) ( ) r rd rnd z sd zd rn sd d sd d sd rd rn sd d rn sd d r sd d rnr sd rd rn sd d sd rd rn sd d 11121 2 ray =      +       +      +               −      =      φ φφφ  From this equation we obtain the following three equations: ( ) ( ) ( ) rd rnd sd d rnr sd rd rn sd d =      −      2 φ ( ) ( ) 02 =+      sd d sd rd r rn sd d rn sd d φφ ( ) 0=      sd zd rn sd d ( ) ( ) 022 =+      sd d sd rd rrn sd d rn sd d r φφ 2 r× ( ) 02 =      sd d rnr sd d φ ( ) const sd zd rn == β ( ) .2 constl sd d rnr == ρ φ Integration Integration where: l,β -dimensionless constants (ray invariants( to be defined ρ -radius of the boundary between core and cladding By integrating the last two equation we obtain: (1) (2) (3) (3’) (2’)
  • 9. 9 ( ) ( ) zrn sd zd rn θβ cos== SOLO Optical Fiber – Ray Theory Graded-index Fiber (continue – 3( We found that the ray propagation vector is Skew ray in core of fiber φ φ1 r1 z1 Q P zrs zzz 1cos1cossin1sinsin1 θφθθθθ φφ ++= Core Q' axis Core axis Cladding zθ s sd rd 1:ray = φ φ1 φθ r r1 φ1inner caustic outer caustic s1 z1 zθ ( )rnncore = sz sd zd sd d rr sd rd sd rd 1111 ray =++= φ φ  ( )rnsd zd β = ( )rnr l sd d 2 ρφ = ( ) ( ) sd rd z rnrnr l r sd rd s ray 1111  =++= β φ ρ ( ) sd rd zrs zz ray 1cos1cos1sinsin1  =++= θφθθθ φφ Let write also as a function of two geometric parameterss1 φθθ ,z φθ -skew angle zθ -angle between ands1 z1 ( )rnr l z ρ θθ φ =cossin ( ) φθθ ρ cossin zrn r l = (3’) (2’)
  • 10. 10 ( ) ( ) zrn sd zd rn θβ cos== SOLO Optical Fiber – Ray Theory Graded-index Fiber (continue – 4( We found φθ r r1 φ1inner caustic intesects ray path outer caustic intersects ray path 0=φθ 0=φθ The skew rays take a helical path, as seen from the cross-section figure. ( ) φθθ ρ cossin zrn r l = ( ) ( ) ( ) ( ) 22222 cossin cos β ρ θ ρ θ ρ θφ − = − == rn l rrnrn l rrn l r z z ( ) ( ) 0== ocic rr φφ θθ A particular family of skew ray will not come closer to the fiber axis than the inner caustic cylindrical surface of radius ric and further from the axis than the outer caustic cylindrical surface of radius roc. From the figure we can see that at the intersection of ray path with the caustic surface Therefore the caustic radiuses can be found by solving: ( ) ( ) 10cos 22 === − φ θ β ρ rn l r or ( ) ( ) 0: 2 2 222 =−−= r lrnrg ρ β ( ) ( ) 0== ocic rgrg
  • 11. 11 SOLO Optical Fiber – Ray Theory Graded-index Fiber (continue – 5( We obtained: ( )rnsd zd β = ( )rnr l sd d 2 ρφ = ( ) zd d rnzd d sd zd sd d β == ( ) ( ) ( ) ( ) ( ) ( ) ( )rn rd rnd rnr l rnr zd rd rn rn zd d rn ×=      −      2 2 ρββ ( ) 2 2 3 2 2 2 2 2 2 1 rd rnd r l zd rd =− ρ β Define: zd rd r =:' rd rd r zd rd rd d zd rd zd rd zd d zd rd ' '2 2 =      =      = ( ) 2 2 3 2 22 2 1 ' rd rnd r l rd dr r =− ρ β Integration ( ) constrn r l zd rd +=+      2 2 2 2 2 2 2 1 2 1 2 1 ρ β ( ) const sd zd rn == β(3’) ( ) .2 constl sd d rnr == ρ φ (2’) ( ) ( ) ( ) rd rnd sd d rnr sd rd rn sd d =      −      2 φ (1) ( ) ( ) 2 2 2 222 2 2 2 β ρ ββ +⋅+−−=      const r lrn zd rd rg   
  • 12. 12 SOLO Optical Fiber – Ray Theory Graded-index Fiber (continue – 6( We obtained: ( ) ( ) 2 2 2 222 2 2 2 β ρ ββ +⋅+−−=      const r lrn zd rd rg    φθ r r1 φ1inner caustic intesects ray path outer caustic intersects ray path 0=φθ 0=φθ To determine the constant we use the fact that at the caustic we have therefore ( ) ( ) 0&0 2 2 222 =−−== r lrnrg zd rd ρ β 02 2 =+⋅ βconst Finally we obtain the ray path equation: ( ) ( ) 2 2 222 2 2 : r lrnrg zd rd ρ ββ −−==      Since a ray path exists only in the regions where0 2 2 ≥      zd rd β ( ) 0>rg
  • 13. 13 SOLO Optical Fiber – Ray Theory Graded-index Fiber (continue – 7( Analysis of: ( ) ( ) 2 2 222 2 2 : r lrnrg zd rd ρ ββ −−==      A ray path exists only in the regions where ( ) 0>rg 1.Bounded rays The rays are bounded in the core region iff: g (r)>0 for ric<r < roc and g (r)<0 for r ≥ ρ rρ ocr icr 2 2 2 r l ρ cladding core 0≠l ( )rg skew ray β<cladding n( ) ociccore rrrrn ≤≤> β ( ) ociccorecladding rrrrnn ≤≤<< β rρ ocr 0=l cladding core ( )rg meridional ray
  • 14. 14 SOLO Optical Fiber – Ray Theory Graded-index Fiber (continue – 8( Analysis of: ( ) ( ) 2 2 222 2 2 : r lrnrg zd rd ρ ββ −−==      A ray path exists only in the regions where ( ) 0>rg 2.Refracted rays The rays are refracted from the core in the cladding region iff: g (r)>0 for r ≥ ρ rρ icr 2 2 2 r l ρ cladding core 0≠l ( )rg skew ray 222 lncladding +> β
  • 15. 15 SOLO Optical Fiber – Ray Theory Graded-index Fiber (continue – 9( Analysis of: ( ) ( ) 2 2 222 2 2 : r lrnrg zd rd ρ ββ −−==      A ray path exists only in the regions where ( ) 0>rg 3.Tunneling rays The rays escape in the cladding region iff: g (r)<0 for ρ <r<rrad and g (r)>0 for r ≥ rrad 222 lncladding +< β rρ ocr ic r 2 2 2 r l ρ cladding core 0≠l ( )rg skew ray radr β>cladding n 22 lncladding +<< ββ ( ) 02 2 222 =−−= rad claddingrade r lnrg ρ β 22 β ρ − = cladding rad n l r The energy leaks from the core to the cladding region.
  • 16. 16 For a step-index core fiber ncore = constant. SOLO Optical Fiber – Ray Theory Core axis Cladding Skew ray in core of fiber z θ φθ s1 φ1 r1 z1 ρ Q P zrrs zzz 1cos1cossin1sinsin1 θθθθθ φφ ++= ρ φθ Core P Q Q' axis P Q' ρ φθρ sin2' =PQ φθ φθ icr φ θρ cos=ic r φθ inner caustic .constnn corecladding =< Step-index Fiber ( ) ( ) zrn sd zd rn θβ cos== ( ) φθθ ρ cossin zrn r l = ( ) ( ) 2 2 222 2 2 : r lrnrg zd rd ρ ββ −−==      ( )    ≥= <= = ρ ρ rconstn rconstn rn cladding core 2 1
  • 17. 17 SOLO Optical Fiber – Ray Theory Step-index Fiber (continue – 7( Analysis of: ( ) ( ) 2 2 222 2 2 : r lrnrg zd rd ρ ββ −−==      A ray path exists only in the regions where ( ) 0>rg 1.Bounded rays The rays are bounded in the core region iff: g (r)>0 for r = ρ- ε and g (r)<0 for r = ρ+ε β<cladding nβ>core n corecladding nn << β rρ 22 β ρ − = core ic n l r 2 2 2 r l ρ claddingcore 0≠l ( )rg skew ray 22 β−core n 22 β−cladding n corenn = claddingnn = 0222 >−−= lng core β 0222 <−−= lng cladding β rρ 0=l claddingcore ( )rg meridional ray 022 <−= βcladdingng 022 >−= βcore ng corenn = claddingnn = ( )    ≥= <= = ρ ρ rconstn rconstn rn cladding core 2 1 ( ) 0=ic rg φ θθρ θβ θρ β ρ φ cos cossin cos22 zcore zcore nl n core ic n l r = = = − = P Q' ρ φθρsin2' =PQ φθ φθ icr φθρ cos=icr φθ inner caustic
  • 18. 18 SOLO Optical Fiber – Ray Theory Step-index Fiber (continue – 8( Analysis of: ( ) ( ) 2 2 222 2 2 : r lrnrg zd rd ρ ββ −−==      A ray path exists only in the regions where ( ) 0>rg 2.Refracted rays The rays are refracted from the core in the cladding region iff: g (r)>0 for r ≥ ρ 22 lncladding +> β ( )    ≥= <= = ρ ρ rconstn rconstn rn cladding core 2 1 rρ 22 β ρ − = core ic n l r 2 2 2 r l ρ claddingcore 0≠l ( )rg skew ray 22 β−coren 22 β−cladding n corenn = claddingnn = 0222 >−−= lng core β 0222 >−−= lng cladding β
  • 19. 19 SOLO Optical Fiber – Ray Theory Step-index Fiber (continue – 9( Analysis of: ( ) ( ) 2 2 222 2 2 : r lrnrg zd rd ρ ββ −−==      A ray path exists only in the regions where ( ) 0>rg 3.Tunneling rays The rays escape in the cladding region iff: g (r)<0 for ρ <r<rrad and g (r)>0 for r ≥ rrad 222 lncladding +< β β>cladding n 22 lncladding +<< ββ ( ) 02 2 222 =−−= rad claddingrade r lnrg ρ β 22 β ρ − = cladding rad n l r The energy leaks from the core to the cladding region. ( )    ≥= <= = ρ ρ rconstn rconstn rn cladding core 2 1 rρ 22 β ρ − = core ic n l r 2 2 2 r l ρ claddingcore 0≠l ( )rg skew ray 22 β−core n 22 β−claddingn core nn = cladding nn = 22 β ρ − = cladding rad n l r 0222 >−− lncore β 0222 <−− lncladding β
  • 20. 20 For a step-index core fiber ncore = constant. SOLO Optical Fiber – Ray Theory P Q' ρ φθρ sin2' =PQ φθ φθ ic r φθρ cos=ic r φθ inner caustic Step-index Fiber ( ) ( ) 2 2 222 2 2 : r lrnrg zd rd ρ ββ −−==      ( )    ≥= <= = ρ ρ rconstn rconstn rn cladding core 2 1 rρ 22 β ρ − = core ic n l r 2 2 2 r l ρ claddingcore 0≠l ( )rg skew ray 22 β−core n 22 β−cladding n corenn = claddingnn = 0222 >−−= lng core β 0222 <−−= lng cladding β rρ 0=l claddingcore ( )rg meridional ray 022 <−= βcladdingng 022 >−= βcoreng corenn = claddingnn = corecladding nn << β rρ 22 β ρ − = core ic n l r 2 2 2 r l ρ claddingcore 0≠l ( )rg skew ray 22 β−core n 22 β−claddingn corenn = claddingnn = 0222 >−−= lng core β 0222 >−−= lng cladding β rρ 22 β ρ − = core ic n l r 2 2 2 r l ρ claddingcore 0≠l ( )rg skew ray 22 β−coren 22 β−claddingn core nn = claddingnn = 22 β ρ − = cladding rad n l r 0222 >−− lncore β 0222 <−− lncladding β 1.Bounded rays 2.Refracted rays 222 lncladding +> β 3.Tunneling rays 22 lncladding +<< ββ
  • 21. 21
  • 22. 22 SOLO References C.C. Davis, “Laser and Electro-Optics”, Cambridge University Press, 1996, OPTICS S. Hermelin, “Foundation of Geometrical Optics”
  • 23. January 9, 2015 23 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 – 2013 Stanford University 1983 – 1986 PhD AA

Editor's Notes

  1. S. Hermelin, “Foundation of Geometrical Optics”