FACTORING
The Difference of Two Squares
Review
𝑥 + 3 𝑥 − 3 =
Review
F O I L
𝑥 + 3 𝑥 − 3 = 𝑥2
− 3𝑥 + 3𝑥 + 9
Review
F O I L
𝑥 + 3 𝑥 − 3 = 𝑥2
− 3𝑥 + 3𝑥 + 9
cancels out
Review
F O I L
𝑥 + 3 𝑥 − 3 = 𝑥2
− 3𝑥 + 3𝑥 − 9 = 𝑥2
− 9
cancels out
Factoring the difference of two squares is the reverse
of multiplying the sum and the difference of the same
two terms.
Multiply: 𝑥 + 3 𝑥 − 3 = 𝑥2 − 9
Factor: 𝑥2
− 9 = (𝑥 + 3)(𝑥 − 3)
Factoring the Difference of Two Square
Example:
𝑥2 − 9 =
Factoring the Difference of Two Square
Example:
𝑥2 − 9 = ( + )( − )
Factoring the Difference of Two Square
Example:
𝑥2 − 9 = ( + )( − )
𝑥2
Factoring the Difference of Two Square
Example:
𝑥2 − 9 = ( 𝑥 + )( 𝑥 − )
𝑥2 = 𝑥
Factoring the Difference of Two Square
Example:
𝑥2 − 9 = ( 𝑥 + )( 𝑥 − )
9
Factoring the Difference of Two Square
Example:
𝑥2 − 9 = ( 𝑥 + 3) (𝑥 −3)
9 = 3
Factoring the Difference of Two Square
Example:
𝑥2 − 9 = ( 𝑥 + 3)( 𝑥 − 3)
Factoring the Difference of Two Square
Example:
4𝑥2 − 25 =
Factoring the Difference of Two Square
Example:
4𝑥2 − 25 = ( + )( − )
Factoring the Difference of Two Square
Example:
4𝑥2 − 25 = ( + )( − )
4𝑥2 =
Factoring the Difference of Two Square
Example:
4𝑥2 − 25 = ( 2𝑥 + )( 2𝑥 − )
4𝑥2 = 2𝑥
Factoring the Difference of Two Square
Example:
4𝑥2 − 25 = ( 2𝑥 + )( 2𝑥 − )
25 =
Factoring the Difference of Two Square
Example:
4𝑥2 − 25 = ( 2𝑥 + 5)(2𝑥 − 5)
25 = 5
Factoring the Difference of Two Square
Example:
4𝑥2 − 25 = ( 2𝑥 + 5)( 2𝑥 − 5)

Factoring difference of squares