SlideShare a Scribd company logo
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2356
CLOSED LOOP SIMULATION AND IMPLEMENTATION OF DIGITAL
INTEGRAL CONTROL OF SYNCHRONOUS BUCK CONVERTER
Chaitra.J 1, Viswanatha V 2, Ashwini Kumari P 3 , Shashikiran.R 4
1Student School of Electrical Engineering, REVA University, Bangalore, Karnataka, INDIA
2,3Asst.Professor School of Electrical Engineering, REVA University, Bangalore, Karnataka, INDIA
4Student, Dept. of Electrical Engineering, UVCE, Bangalore University, Karnataka, INDIA
---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - In the consumer electronic industry buck
converters are the most popular converters used now-a-days.
Among that Synchronous buck converters are becoming the
industry standard because of their superior performance and
higher efficiency. In this paper modeling and simulation of
synchronous buck converter in digital mode is carried out.
Now-a-days digital controllers are becoming popularbecause
of their advantages like reprogrammability, immunity to
analog component variations, flexibility etc. In digital
controller the two nonlinear quantizes namely the analog-to-
digital converter (ADC) and digital pulse width modulator
(DPWM) are used. These blocks regulate the output voltage
effectively against the input voltage and load current
perturbations.
Key Words: Buck Converter, Synchronous, ADC, DPWM.
1. INTRODUCTION
DC-DC converters are used to carry out the efficient
transfer of energy from the input to the output of the
converter. The input voltage of the converter can bestepped
down (buck converter), stepped up (boost converter), or
inverted (buck-boost converter). Among other converters
buck converter[1] is popular because it needs very low
voltages of about 5V or 3.3V which is required by the
processor ICs[2].These converters are used in applications
requiring power levels from less than 1W to over 100MW
[3]. The conventional buck converter typically employs a
MOSFET and a freewheeling diode. These semiconductor
devices have conduction losses due to their “ON “state
resistances. The power losses in the converter are mainly
due to diode’s forward voltage ofabout0.6Vto0.7V.This has
lead to the development of Synchronous buck converter
topology (fig 1) where the diode is replaced with another
MOSFET, is often employed to meet better performance and
higher efficiency. Replacing the diode with anotherMOSFET
reduces the typical 0.5V-to-1V diode drop to about 0.3V or
less, resulting in typical circuit efficiency improvements of
around 5% and higher. This topology (synchronous buck
converter) derives its name from the control method of the
two power MOSFETs; the ON/OFF control is synchronized in
order to provide a regulated output voltage and also to
prevent the MOSFETs from turning on at the same time. In
order to prevent shoot-through the MOSFETs are controlled
synchronously [1]. Shoot through occurs when the two
MOSFETs are both on at the same time, providing a direct
short to ground.
Figure-1: Closed loop control Synchronous buck converter
The output of the converter should remain stable regardless
of the changes in the input voltage, load current, and age of
the components. This can be achieved through the use of
control circuits to regulate the dc outputvoltageagainstload
and line variations. Here the control technique employed is
the digital controller which consists of ADC, Digital
compensator and DPWM blocks which gives the accurate
results. In this work the modeling and simulation of a
synchronous buck converter is undertaken. In section II the
working principle of synchronous buck converter is
explained. In section III the modeling of synchronous buck
converter is outlined. In section IV the simulationresultsare
discussed with the aid of MATLAB/Simulink software .And
finally in section V the conclusion of the work is presented.
2. WORKING PRINCIPLE
A synchronous buck converter is a modified version of the
basic buck converter circuit topology in which diode, D, is
replaced by a second switch, S2. This modification is a
tradeoff between improved efficiency and increased cost.
The main switch is S1 and auxiliary switch is termed as
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2357
S2.When S1 is off and S2 is on, current flows upward out of
the drain of S2.The advantage of thisconfigurationisthatthe
second MOSFET will have a much lower voltage drop across
it compared to a diode resulting in higher circuit efficiency.
This is especially important in low- voltage, high- current
applications. ThesecondMOSFETwill haveanextremelylow
voltage drop due to an on-state resistance as low as in terms
of milliohms. This circuit has a control scheme known as
synchronous rectification. The second MOSFET S2 is known
as synchronous rectifier. The two MOSFETs must not be on
at the same time to prevent a short circuit across the source,
so a dead time is built into the switching control-one
MOSFET is turned off before the other is turned on. A diode
is placed in parallel with the second MOSFET to provide a
conducting path for inductor current during the dead time
when both MOSFETs are off.
Figure -2: Synchronous buck converter
3.MODELINGOFSYNCHRONOUSBUCKCONVERTER
In all switching converters , the output voltage V(t) is a
function of the input voltage Vg(t), the duty cycle D(t) and
the load current, i load (t), as well as converter circuit
element values[5]. The important equations that describe
the operation of the converter are given below,
The current through the inductor is given by the equation,
diL/dt= (1/L) (VgD-iLRL-V0) (1)
And the change of voltage across the capacitor is given by,
dvc/dt = (1/C ) (iL – io) (2)
The output voltage is given by the equation
V0= Vc + Resr ( iL – i out ) (3)
Figure -3 :Functional block diagram
Figure 3 gives the functional block diagram illustrating the
dependence of V on Vg, D, iload [5].
The buck converter model is given in figure 2. This block
represents the power section modeling where inductor
current and capacitor voltage are the state variables.The
operation of a converter is said to be eitheropen–loop, when
there is no feedback connected totheoutputoftheconverter
or closed-loop when a feedback is connected totheoutput of
the converter.In open loop there is no way of controlling the
output parameter even when unwantedperturbationsoccur
in the input or output of the converter. In closed- loop,
however, a degree of control overtheoutputcanbeachieved
through the use of a feedback network.
Figure- 4: Digital controller block diagram
The digital controller block diagram is shown in the fig . 4
The output voltage is compared with the reference
voltage and is given to the ADC(ZOH) block which holds the
value of error and this error signal is given to quantizer and
the ADC limits are set. After applying ADC limits,thesignal is
given to PI controller and then to DAC(Digital-to-analog)
quantizer, to which DAC limit is applied.Finallytheoutputis
obtained and given as pulses to the switches.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2358
Figure- 5: Control Section
4. SIMULATION RESULTS
The results for the simulation of the synchronous buck
converter are given in this section. It can be seen that the
converter steps down the input voltage from 5V to 2V as
expected. The transient that is common with most of the
converters can be seen at the start of the simulation.
Figure-6: Output Voltage Waveform.
The unwanted transient in the output voltage has been
removed and the converter steps down the voltage to 2V as
expected. The above figure 6 gives the output voltage
waveform. A digital integral-controlled Buck converter with
the specifications listed in table-1 is studied in this paper.
According to the specifications the results are verified with
the simulation.
5. SPECIFICATIONS
Table-1: Specifications of the synchronous buck
converter
6. HARDWARE IMPLEMENTATION
For implementing it inhardwaretwoMOSFETswitches,
capacitor load resistor, buffer IC 4047, one 89S52
microcontroller board and oscilloscope is required.
Supply for the converter is taken from regulated power
supply as dc voltage. This voltage is applied directly to the
MOSFET switch as this waveform is pulsating dc a filter
capacitor is used to remove the ripples.Filtercircuitconsists
of inductor and capacitor. After this microcontroller is used
as a feedback block and so it is given to it which controls the
switching of MOSFETs. If any disturbances arise at the
output of microcontroller then thesignal isgiventothe4047
IC chip which in turn generates the square pulses based on
the received instruction by microcontroller. So a fixed dc
voltage is obtained at the output.
Figure-7: Hardware Implementation
Parameter Value Unit
Input voltage 5 V
Output voltage 2 V
Inductor(L) 4.7 µH
Inductor ESR (RL) 200 mΩ
Output Capacitor(C) 10 µF
Capacitor ESR(RC) 100 mΩ
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2359
.
Figure-8: Gate Pulse
The figure.8 represents the gate pulses which are given to
the gate of MOSFET switch from the buffer IC 4047 which is
controlled by the microcontroller.
Figure-9: Output Voltage
The figure.9 represents the outputvoltageobtainedfrom the
hardware of synchronous buck converter.
6. CONCLUSIONS
The modeling and simulation of a synchronous buck
converter is carried out in this work. A transient and a
steady-state error are observed from the result of the
simulation. To solve these problems and to tackle the line
and the load current variations a feedback is connected to
the converter using a digital integral controller. The results
show that the feedback circuit is very effective in handling
the problems identified above. The transient is eliminated
and the steady-state error is effectively reduced to zero.
REFERENCES
1) M. H. Rashid, Power Electronics: Circuits, Devices and
Applications, 3rd edition, Pearson, 2004
2) V. R. Moorthi, Power Electronics: Devices, Circuits and
Industrial Applications, Oxford University Press, 2007
3) N. Mohan, T. Undeland, and W. Robbins, Power
Electronics: Converters, Applications, and Design, 2nd ed.,
New York: John Wiley & Sons, 1995.
4) R. Miftakhutdinov and J.Zbib, “Synchronous Buck
converter with increased efficiency “,in proc. IEEE Applied
Power Electronics Conference, 2007 pp.714-718
5) Z. Zhang, “Buck converter controlbook”,Alpha andOmega
Semiconductor,August ,2008

More Related Content

What's hot

FPGA Based Design and Validation of Asymmetrical Reduced Switch Multilevel In...
FPGA Based Design and Validation of Asymmetrical Reduced Switch Multilevel In...FPGA Based Design and Validation of Asymmetrical Reduced Switch Multilevel In...
FPGA Based Design and Validation of Asymmetrical Reduced Switch Multilevel In...
IJPEDS-IAES
 
Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...
Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...
Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...
LeMeniz Infotech
 
A unity power factor bridgeless isolated cuk converter fed brushless dc motor...
A unity power factor bridgeless isolated cuk converter fed brushless dc motor...A unity power factor bridgeless isolated cuk converter fed brushless dc motor...
A unity power factor bridgeless isolated cuk converter fed brushless dc motor...
LeMeniz Infotech
 
Bridgeless PFC-Modified SEPIC Rectifier With Extended Gain for Universal Inpu...
Bridgeless PFC-Modified SEPIC Rectifier With Extended Gain for Universal Inpu...Bridgeless PFC-Modified SEPIC Rectifier With Extended Gain for Universal Inpu...
Bridgeless PFC-Modified SEPIC Rectifier With Extended Gain for Universal Inpu...
IISTech2015
 
AN ACTIVE PFC WITH FLYBACK DESIGN FOR INTELLIGENCE IN STREET LIGHT APPLICATION
AN ACTIVE PFC WITH FLYBACK DESIGN FOR INTELLIGENCE IN STREET LIGHT APPLICATIONAN ACTIVE PFC WITH FLYBACK DESIGN FOR INTELLIGENCE IN STREET LIGHT APPLICATION
AN ACTIVE PFC WITH FLYBACK DESIGN FOR INTELLIGENCE IN STREET LIGHT APPLICATION
Journal For Research
 
A Novel Single Phase bridgeless AC/DC PFC converter for Low Total Harmonics D...
A Novel Single Phase bridgeless AC/DC PFC converter for Low Total Harmonics D...A Novel Single Phase bridgeless AC/DC PFC converter for Low Total Harmonics D...
A Novel Single Phase bridgeless AC/DC PFC converter for Low Total Harmonics D...
International Journal of Power Electronics and Drive Systems
 
Comparison of Different Control Techniques for Interleaved DC-DC Converter
Comparison of Different Control Techniques for Interleaved DC-DC ConverterComparison of Different Control Techniques for Interleaved DC-DC Converter
Comparison of Different Control Techniques for Interleaved DC-DC Converter
International Journal of Power Electronics and Drive Systems
 
Final year Power electronics Project Titles
Final year Power electronics Project TitlesFinal year Power electronics Project Titles
Final year Power electronics Project Titles
musthafa01
 
A Low Cost Single-Switch Bridgeless Boost PFC Converter
A Low Cost Single-Switch Bridgeless Boost PFC ConverterA Low Cost Single-Switch Bridgeless Boost PFC Converter
A Low Cost Single-Switch Bridgeless Boost PFC Converter
IJPEDS-IAES
 
Power factor improvement in switched reluctance motor drive using pwm
Power factor improvement in switched reluctance motor drive using pwmPower factor improvement in switched reluctance motor drive using pwm
Power factor improvement in switched reluctance motor drive using pwmIAEME Publication
 
Analysis and design of single switch forward-flyback two-channel led driver w...
Analysis and design of single switch forward-flyback two-channel led driver w...Analysis and design of single switch forward-flyback two-channel led driver w...
Analysis and design of single switch forward-flyback two-channel led driver w...
LeMeniz Infotech
 
IRJET- Speed Control of Brushless DC Motor using Pulse Width Modulation T...
IRJET-  	  Speed Control of Brushless DC Motor using Pulse Width Modulation T...IRJET-  	  Speed Control of Brushless DC Motor using Pulse Width Modulation T...
IRJET- Speed Control of Brushless DC Motor using Pulse Width Modulation T...
IRJET Journal
 
IMPLEMENTATION OF DISCONTINUOUS INDUCTOR CURRENT MODE IN CUK CONVERTERS FED B...
IMPLEMENTATION OF DISCONTINUOUS INDUCTOR CURRENT MODE IN CUK CONVERTERS FED B...IMPLEMENTATION OF DISCONTINUOUS INDUCTOR CURRENT MODE IN CUK CONVERTERS FED B...
IMPLEMENTATION OF DISCONTINUOUS INDUCTOR CURRENT MODE IN CUK CONVERTERS FED B...
Journal For Research
 
SIMULATION OF CASCADED H- BRIDGE MULTILEVEL INVERTER USING PD, POD, APOD TECH...
SIMULATION OF CASCADED H- BRIDGE MULTILEVEL INVERTER USING PD, POD, APOD TECH...SIMULATION OF CASCADED H- BRIDGE MULTILEVEL INVERTER USING PD, POD, APOD TECH...
SIMULATION OF CASCADED H- BRIDGE MULTILEVEL INVERTER USING PD, POD, APOD TECH...
ecij
 
A Sub-Region Based Space Vector Modulation Scheme for Dual 2-Level Inverter S...
A Sub-Region Based Space Vector Modulation Scheme for Dual 2-Level Inverter S...A Sub-Region Based Space Vector Modulation Scheme for Dual 2-Level Inverter S...
A Sub-Region Based Space Vector Modulation Scheme for Dual 2-Level Inverter S...
IJECEIAES
 
IRJET- A Novel High Speed Power Efficient Double Tail Comparator in 180nm...
IRJET-  	  A Novel High Speed Power Efficient Double Tail Comparator in 180nm...IRJET-  	  A Novel High Speed Power Efficient Double Tail Comparator in 180nm...
IRJET- A Novel High Speed Power Efficient Double Tail Comparator in 180nm...
IRJET Journal
 
IRJET- Modified Cascaded H - Bridge Multilevel Inverter for Household Appliances
IRJET- Modified Cascaded H - Bridge Multilevel Inverter for Household AppliancesIRJET- Modified Cascaded H - Bridge Multilevel Inverter for Household Appliances
IRJET- Modified Cascaded H - Bridge Multilevel Inverter for Household Appliances
IRJET Journal
 
Comparison of PI and PID Controlled Bidirectional DC-DC Converter Systems
Comparison of PI and PID Controlled Bidirectional DC-DC Converter SystemsComparison of PI and PID Controlled Bidirectional DC-DC Converter Systems
Comparison of PI and PID Controlled Bidirectional DC-DC Converter Systems
IJPEDS-IAES
 
A three level quasi-two-stage single-phase pfc converter with flexible output...
A three level quasi-two-stage single-phase pfc converter with flexible output...A three level quasi-two-stage single-phase pfc converter with flexible output...
A three level quasi-two-stage single-phase pfc converter with flexible output...
LeMeniz Infotech
 

What's hot (20)

SST
SSTSST
SST
 
FPGA Based Design and Validation of Asymmetrical Reduced Switch Multilevel In...
FPGA Based Design and Validation of Asymmetrical Reduced Switch Multilevel In...FPGA Based Design and Validation of Asymmetrical Reduced Switch Multilevel In...
FPGA Based Design and Validation of Asymmetrical Reduced Switch Multilevel In...
 
Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...
Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...
Bridgeless pfc modified sepic rectifier with extended gain for universal inpu...
 
A unity power factor bridgeless isolated cuk converter fed brushless dc motor...
A unity power factor bridgeless isolated cuk converter fed brushless dc motor...A unity power factor bridgeless isolated cuk converter fed brushless dc motor...
A unity power factor bridgeless isolated cuk converter fed brushless dc motor...
 
Bridgeless PFC-Modified SEPIC Rectifier With Extended Gain for Universal Inpu...
Bridgeless PFC-Modified SEPIC Rectifier With Extended Gain for Universal Inpu...Bridgeless PFC-Modified SEPIC Rectifier With Extended Gain for Universal Inpu...
Bridgeless PFC-Modified SEPIC Rectifier With Extended Gain for Universal Inpu...
 
AN ACTIVE PFC WITH FLYBACK DESIGN FOR INTELLIGENCE IN STREET LIGHT APPLICATION
AN ACTIVE PFC WITH FLYBACK DESIGN FOR INTELLIGENCE IN STREET LIGHT APPLICATIONAN ACTIVE PFC WITH FLYBACK DESIGN FOR INTELLIGENCE IN STREET LIGHT APPLICATION
AN ACTIVE PFC WITH FLYBACK DESIGN FOR INTELLIGENCE IN STREET LIGHT APPLICATION
 
A Novel Single Phase bridgeless AC/DC PFC converter for Low Total Harmonics D...
A Novel Single Phase bridgeless AC/DC PFC converter for Low Total Harmonics D...A Novel Single Phase bridgeless AC/DC PFC converter for Low Total Harmonics D...
A Novel Single Phase bridgeless AC/DC PFC converter for Low Total Harmonics D...
 
Comparison of Different Control Techniques for Interleaved DC-DC Converter
Comparison of Different Control Techniques for Interleaved DC-DC ConverterComparison of Different Control Techniques for Interleaved DC-DC Converter
Comparison of Different Control Techniques for Interleaved DC-DC Converter
 
Final year Power electronics Project Titles
Final year Power electronics Project TitlesFinal year Power electronics Project Titles
Final year Power electronics Project Titles
 
A Low Cost Single-Switch Bridgeless Boost PFC Converter
A Low Cost Single-Switch Bridgeless Boost PFC ConverterA Low Cost Single-Switch Bridgeless Boost PFC Converter
A Low Cost Single-Switch Bridgeless Boost PFC Converter
 
Power factor improvement in switched reluctance motor drive using pwm
Power factor improvement in switched reluctance motor drive using pwmPower factor improvement in switched reluctance motor drive using pwm
Power factor improvement in switched reluctance motor drive using pwm
 
Analysis and design of single switch forward-flyback two-channel led driver w...
Analysis and design of single switch forward-flyback two-channel led driver w...Analysis and design of single switch forward-flyback two-channel led driver w...
Analysis and design of single switch forward-flyback two-channel led driver w...
 
IRJET- Speed Control of Brushless DC Motor using Pulse Width Modulation T...
IRJET-  	  Speed Control of Brushless DC Motor using Pulse Width Modulation T...IRJET-  	  Speed Control of Brushless DC Motor using Pulse Width Modulation T...
IRJET- Speed Control of Brushless DC Motor using Pulse Width Modulation T...
 
IMPLEMENTATION OF DISCONTINUOUS INDUCTOR CURRENT MODE IN CUK CONVERTERS FED B...
IMPLEMENTATION OF DISCONTINUOUS INDUCTOR CURRENT MODE IN CUK CONVERTERS FED B...IMPLEMENTATION OF DISCONTINUOUS INDUCTOR CURRENT MODE IN CUK CONVERTERS FED B...
IMPLEMENTATION OF DISCONTINUOUS INDUCTOR CURRENT MODE IN CUK CONVERTERS FED B...
 
SIMULATION OF CASCADED H- BRIDGE MULTILEVEL INVERTER USING PD, POD, APOD TECH...
SIMULATION OF CASCADED H- BRIDGE MULTILEVEL INVERTER USING PD, POD, APOD TECH...SIMULATION OF CASCADED H- BRIDGE MULTILEVEL INVERTER USING PD, POD, APOD TECH...
SIMULATION OF CASCADED H- BRIDGE MULTILEVEL INVERTER USING PD, POD, APOD TECH...
 
A Sub-Region Based Space Vector Modulation Scheme for Dual 2-Level Inverter S...
A Sub-Region Based Space Vector Modulation Scheme for Dual 2-Level Inverter S...A Sub-Region Based Space Vector Modulation Scheme for Dual 2-Level Inverter S...
A Sub-Region Based Space Vector Modulation Scheme for Dual 2-Level Inverter S...
 
IRJET- A Novel High Speed Power Efficient Double Tail Comparator in 180nm...
IRJET-  	  A Novel High Speed Power Efficient Double Tail Comparator in 180nm...IRJET-  	  A Novel High Speed Power Efficient Double Tail Comparator in 180nm...
IRJET- A Novel High Speed Power Efficient Double Tail Comparator in 180nm...
 
IRJET- Modified Cascaded H - Bridge Multilevel Inverter for Household Appliances
IRJET- Modified Cascaded H - Bridge Multilevel Inverter for Household AppliancesIRJET- Modified Cascaded H - Bridge Multilevel Inverter for Household Appliances
IRJET- Modified Cascaded H - Bridge Multilevel Inverter for Household Appliances
 
Comparison of PI and PID Controlled Bidirectional DC-DC Converter Systems
Comparison of PI and PID Controlled Bidirectional DC-DC Converter SystemsComparison of PI and PID Controlled Bidirectional DC-DC Converter Systems
Comparison of PI and PID Controlled Bidirectional DC-DC Converter Systems
 
A three level quasi-two-stage single-phase pfc converter with flexible output...
A three level quasi-two-stage single-phase pfc converter with flexible output...A three level quasi-two-stage single-phase pfc converter with flexible output...
A three level quasi-two-stage single-phase pfc converter with flexible output...
 

Similar to Closed Loop Simulation and Implementation of Digital Integral Control of Synchronous Buck Converter

A COMPARISON OF SYNCHRONOUS AND NON-SYNCHRONOUS BOOST CONVERTER
A COMPARISON OF SYNCHRONOUS AND NON-SYNCHRONOUS BOOST CONVERTERA COMPARISON OF SYNCHRONOUS AND NON-SYNCHRONOUS BOOST CONVERTER
A COMPARISON OF SYNCHRONOUS AND NON-SYNCHRONOUS BOOST CONVERTER
IRJET Journal
 
IRJET - Comparative Study of Different AC-DC Converter for High Step Down
IRJET - Comparative Study of Different AC-DC Converter for High Step DownIRJET - Comparative Study of Different AC-DC Converter for High Step Down
IRJET - Comparative Study of Different AC-DC Converter for High Step Down
IRJET Journal
 
Study and implementation of comparator in cmos 50 nm
Study and implementation of comparator in cmos 50 nmStudy and implementation of comparator in cmos 50 nm
Study and implementation of comparator in cmos 50 nm
eSAT Publishing House
 
Study and implementation of comparator in cmos 50 nm technology
Study and implementation of comparator in cmos 50 nm technologyStudy and implementation of comparator in cmos 50 nm technology
Study and implementation of comparator in cmos 50 nm technology
eSAT Journals
 
A novel transformer-less four phase buck converter with low voltage stress an...
A novel transformer-less four phase buck converter with low voltage stress an...A novel transformer-less four phase buck converter with low voltage stress an...
A novel transformer-less four phase buck converter with low voltage stress an...
IRJET Journal
 
Design and Implementation of speed control for 3 phase induction motor using ...
Design and Implementation of speed control for 3 phase induction motor using ...Design and Implementation of speed control for 3 phase induction motor using ...
Design and Implementation of speed control for 3 phase induction motor using ...
IRJET Journal
 
IRJET- Investigation on DC-DC Converter Topologies for PV Applications
IRJET-  	  Investigation on DC-DC Converter Topologies for PV ApplicationsIRJET-  	  Investigation on DC-DC Converter Topologies for PV Applications
IRJET- Investigation on DC-DC Converter Topologies for PV Applications
IRJET Journal
 
Digital Current Mode Controller for Buck Converter
Digital Current Mode Controller for Buck ConverterDigital Current Mode Controller for Buck Converter
Digital Current Mode Controller for Buck Converter
IJMREMJournal
 
Design and Control of Half-Bridge Resonant Converter Topology of PID Controller
Design and Control of Half-Bridge Resonant Converter Topology of PID ControllerDesign and Control of Half-Bridge Resonant Converter Topology of PID Controller
Design and Control of Half-Bridge Resonant Converter Topology of PID Controller
IRJET Journal
 
IRJET- Comparative Analysis for Power Quality Improvenment of Cascaded an...
IRJET-  	  Comparative Analysis for Power Quality Improvenment of Cascaded an...IRJET-  	  Comparative Analysis for Power Quality Improvenment of Cascaded an...
IRJET- Comparative Analysis for Power Quality Improvenment of Cascaded an...
IRJET Journal
 
AC to AC Step Down Cycloconverter
AC to AC Step Down CycloconverterAC to AC Step Down Cycloconverter
AC to AC Step Down Cycloconverter
IRJET Journal
 
Closed Loop Analysis of Bridgeless SEPIC Converter for Drive Application
Closed Loop Analysis of Bridgeless SEPIC Converter for Drive ApplicationClosed Loop Analysis of Bridgeless SEPIC Converter for Drive Application
Closed Loop Analysis of Bridgeless SEPIC Converter for Drive Application
IJPEDS-IAES
 
Switched Inductor Based Buck-Boost Transformerless Inverter
Switched Inductor Based Buck-Boost Transformerless InverterSwitched Inductor Based Buck-Boost Transformerless Inverter
Switched Inductor Based Buck-Boost Transformerless Inverter
IRJET Journal
 
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
IRJET Journal
 
IRJET- Design and Development of Interleaved Boost Converter using Fuzzy ...
IRJET-  	  Design and Development of Interleaved Boost Converter using Fuzzy ...IRJET-  	  Design and Development of Interleaved Boost Converter using Fuzzy ...
IRJET- Design and Development of Interleaved Boost Converter using Fuzzy ...
IRJET Journal
 
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
IRJET Journal
 
Ijetcas14 641
Ijetcas14 641Ijetcas14 641
Ijetcas14 641
Iasir Journals
 
Design consideration of an mmc hvdc system based on 4500 v:4000a emitter turn...
Design consideration of an mmc hvdc system based on 4500 v:4000a emitter turn...Design consideration of an mmc hvdc system based on 4500 v:4000a emitter turn...
Design consideration of an mmc hvdc system based on 4500 v:4000a emitter turn...
Ghazal Falahi
 
Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...
Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...
Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...
Sajin Ismail
 
IRJET- Improved Power Quality Switched Inductor Cuk Converter for Battery Cha...
IRJET- Improved Power Quality Switched Inductor Cuk Converter for Battery Cha...IRJET- Improved Power Quality Switched Inductor Cuk Converter for Battery Cha...
IRJET- Improved Power Quality Switched Inductor Cuk Converter for Battery Cha...
IRJET Journal
 

Similar to Closed Loop Simulation and Implementation of Digital Integral Control of Synchronous Buck Converter (20)

A COMPARISON OF SYNCHRONOUS AND NON-SYNCHRONOUS BOOST CONVERTER
A COMPARISON OF SYNCHRONOUS AND NON-SYNCHRONOUS BOOST CONVERTERA COMPARISON OF SYNCHRONOUS AND NON-SYNCHRONOUS BOOST CONVERTER
A COMPARISON OF SYNCHRONOUS AND NON-SYNCHRONOUS BOOST CONVERTER
 
IRJET - Comparative Study of Different AC-DC Converter for High Step Down
IRJET - Comparative Study of Different AC-DC Converter for High Step DownIRJET - Comparative Study of Different AC-DC Converter for High Step Down
IRJET - Comparative Study of Different AC-DC Converter for High Step Down
 
Study and implementation of comparator in cmos 50 nm
Study and implementation of comparator in cmos 50 nmStudy and implementation of comparator in cmos 50 nm
Study and implementation of comparator in cmos 50 nm
 
Study and implementation of comparator in cmos 50 nm technology
Study and implementation of comparator in cmos 50 nm technologyStudy and implementation of comparator in cmos 50 nm technology
Study and implementation of comparator in cmos 50 nm technology
 
A novel transformer-less four phase buck converter with low voltage stress an...
A novel transformer-less four phase buck converter with low voltage stress an...A novel transformer-less four phase buck converter with low voltage stress an...
A novel transformer-less four phase buck converter with low voltage stress an...
 
Design and Implementation of speed control for 3 phase induction motor using ...
Design and Implementation of speed control for 3 phase induction motor using ...Design and Implementation of speed control for 3 phase induction motor using ...
Design and Implementation of speed control for 3 phase induction motor using ...
 
IRJET- Investigation on DC-DC Converter Topologies for PV Applications
IRJET-  	  Investigation on DC-DC Converter Topologies for PV ApplicationsIRJET-  	  Investigation on DC-DC Converter Topologies for PV Applications
IRJET- Investigation on DC-DC Converter Topologies for PV Applications
 
Digital Current Mode Controller for Buck Converter
Digital Current Mode Controller for Buck ConverterDigital Current Mode Controller for Buck Converter
Digital Current Mode Controller for Buck Converter
 
Design and Control of Half-Bridge Resonant Converter Topology of PID Controller
Design and Control of Half-Bridge Resonant Converter Topology of PID ControllerDesign and Control of Half-Bridge Resonant Converter Topology of PID Controller
Design and Control of Half-Bridge Resonant Converter Topology of PID Controller
 
IRJET- Comparative Analysis for Power Quality Improvenment of Cascaded an...
IRJET-  	  Comparative Analysis for Power Quality Improvenment of Cascaded an...IRJET-  	  Comparative Analysis for Power Quality Improvenment of Cascaded an...
IRJET- Comparative Analysis for Power Quality Improvenment of Cascaded an...
 
AC to AC Step Down Cycloconverter
AC to AC Step Down CycloconverterAC to AC Step Down Cycloconverter
AC to AC Step Down Cycloconverter
 
Closed Loop Analysis of Bridgeless SEPIC Converter for Drive Application
Closed Loop Analysis of Bridgeless SEPIC Converter for Drive ApplicationClosed Loop Analysis of Bridgeless SEPIC Converter for Drive Application
Closed Loop Analysis of Bridgeless SEPIC Converter for Drive Application
 
Switched Inductor Based Buck-Boost Transformerless Inverter
Switched Inductor Based Buck-Boost Transformerless InverterSwitched Inductor Based Buck-Boost Transformerless Inverter
Switched Inductor Based Buck-Boost Transformerless Inverter
 
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
 
IRJET- Design and Development of Interleaved Boost Converter using Fuzzy ...
IRJET-  	  Design and Development of Interleaved Boost Converter using Fuzzy ...IRJET-  	  Design and Development of Interleaved Boost Converter using Fuzzy ...
IRJET- Design and Development of Interleaved Boost Converter using Fuzzy ...
 
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
 
Ijetcas14 641
Ijetcas14 641Ijetcas14 641
Ijetcas14 641
 
Design consideration of an mmc hvdc system based on 4500 v:4000a emitter turn...
Design consideration of an mmc hvdc system based on 4500 v:4000a emitter turn...Design consideration of an mmc hvdc system based on 4500 v:4000a emitter turn...
Design consideration of an mmc hvdc system based on 4500 v:4000a emitter turn...
 
Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...
Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...
Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...
 
IRJET- Improved Power Quality Switched Inductor Cuk Converter for Battery Cha...
IRJET- Improved Power Quality Switched Inductor Cuk Converter for Battery Cha...IRJET- Improved Power Quality Switched Inductor Cuk Converter for Battery Cha...
IRJET- Improved Power Quality Switched Inductor Cuk Converter for Battery Cha...
 

More from IRJET Journal

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
IRJET Journal
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
IRJET Journal
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
IRJET Journal
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
IRJET Journal
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
IRJET Journal
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
IRJET Journal
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
IRJET Journal
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
IRJET Journal
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
IRJET Journal
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
IRJET Journal
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
IRJET Journal
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
IRJET Journal
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
IRJET Journal
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
IRJET Journal
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
IRJET Journal
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
IRJET Journal
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
IRJET Journal
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
IRJET Journal
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
IRJET Journal
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
IRJET Journal
 

More from IRJET Journal (20)

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
 

Recently uploaded

H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
ShahidSultan24
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
abh.arya
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
DuvanRamosGarzon1
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 

Recently uploaded (20)

H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 

Closed Loop Simulation and Implementation of Digital Integral Control of Synchronous Buck Converter

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2356 CLOSED LOOP SIMULATION AND IMPLEMENTATION OF DIGITAL INTEGRAL CONTROL OF SYNCHRONOUS BUCK CONVERTER Chaitra.J 1, Viswanatha V 2, Ashwini Kumari P 3 , Shashikiran.R 4 1Student School of Electrical Engineering, REVA University, Bangalore, Karnataka, INDIA 2,3Asst.Professor School of Electrical Engineering, REVA University, Bangalore, Karnataka, INDIA 4Student, Dept. of Electrical Engineering, UVCE, Bangalore University, Karnataka, INDIA ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - In the consumer electronic industry buck converters are the most popular converters used now-a-days. Among that Synchronous buck converters are becoming the industry standard because of their superior performance and higher efficiency. In this paper modeling and simulation of synchronous buck converter in digital mode is carried out. Now-a-days digital controllers are becoming popularbecause of their advantages like reprogrammability, immunity to analog component variations, flexibility etc. In digital controller the two nonlinear quantizes namely the analog-to- digital converter (ADC) and digital pulse width modulator (DPWM) are used. These blocks regulate the output voltage effectively against the input voltage and load current perturbations. Key Words: Buck Converter, Synchronous, ADC, DPWM. 1. INTRODUCTION DC-DC converters are used to carry out the efficient transfer of energy from the input to the output of the converter. The input voltage of the converter can bestepped down (buck converter), stepped up (boost converter), or inverted (buck-boost converter). Among other converters buck converter[1] is popular because it needs very low voltages of about 5V or 3.3V which is required by the processor ICs[2].These converters are used in applications requiring power levels from less than 1W to over 100MW [3]. The conventional buck converter typically employs a MOSFET and a freewheeling diode. These semiconductor devices have conduction losses due to their “ON “state resistances. The power losses in the converter are mainly due to diode’s forward voltage ofabout0.6Vto0.7V.This has lead to the development of Synchronous buck converter topology (fig 1) where the diode is replaced with another MOSFET, is often employed to meet better performance and higher efficiency. Replacing the diode with anotherMOSFET reduces the typical 0.5V-to-1V diode drop to about 0.3V or less, resulting in typical circuit efficiency improvements of around 5% and higher. This topology (synchronous buck converter) derives its name from the control method of the two power MOSFETs; the ON/OFF control is synchronized in order to provide a regulated output voltage and also to prevent the MOSFETs from turning on at the same time. In order to prevent shoot-through the MOSFETs are controlled synchronously [1]. Shoot through occurs when the two MOSFETs are both on at the same time, providing a direct short to ground. Figure-1: Closed loop control Synchronous buck converter The output of the converter should remain stable regardless of the changes in the input voltage, load current, and age of the components. This can be achieved through the use of control circuits to regulate the dc outputvoltageagainstload and line variations. Here the control technique employed is the digital controller which consists of ADC, Digital compensator and DPWM blocks which gives the accurate results. In this work the modeling and simulation of a synchronous buck converter is undertaken. In section II the working principle of synchronous buck converter is explained. In section III the modeling of synchronous buck converter is outlined. In section IV the simulationresultsare discussed with the aid of MATLAB/Simulink software .And finally in section V the conclusion of the work is presented. 2. WORKING PRINCIPLE A synchronous buck converter is a modified version of the basic buck converter circuit topology in which diode, D, is replaced by a second switch, S2. This modification is a tradeoff between improved efficiency and increased cost. The main switch is S1 and auxiliary switch is termed as
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2357 S2.When S1 is off and S2 is on, current flows upward out of the drain of S2.The advantage of thisconfigurationisthatthe second MOSFET will have a much lower voltage drop across it compared to a diode resulting in higher circuit efficiency. This is especially important in low- voltage, high- current applications. ThesecondMOSFETwill haveanextremelylow voltage drop due to an on-state resistance as low as in terms of milliohms. This circuit has a control scheme known as synchronous rectification. The second MOSFET S2 is known as synchronous rectifier. The two MOSFETs must not be on at the same time to prevent a short circuit across the source, so a dead time is built into the switching control-one MOSFET is turned off before the other is turned on. A diode is placed in parallel with the second MOSFET to provide a conducting path for inductor current during the dead time when both MOSFETs are off. Figure -2: Synchronous buck converter 3.MODELINGOFSYNCHRONOUSBUCKCONVERTER In all switching converters , the output voltage V(t) is a function of the input voltage Vg(t), the duty cycle D(t) and the load current, i load (t), as well as converter circuit element values[5]. The important equations that describe the operation of the converter are given below, The current through the inductor is given by the equation, diL/dt= (1/L) (VgD-iLRL-V0) (1) And the change of voltage across the capacitor is given by, dvc/dt = (1/C ) (iL – io) (2) The output voltage is given by the equation V0= Vc + Resr ( iL – i out ) (3) Figure -3 :Functional block diagram Figure 3 gives the functional block diagram illustrating the dependence of V on Vg, D, iload [5]. The buck converter model is given in figure 2. This block represents the power section modeling where inductor current and capacitor voltage are the state variables.The operation of a converter is said to be eitheropen–loop, when there is no feedback connected totheoutputoftheconverter or closed-loop when a feedback is connected totheoutput of the converter.In open loop there is no way of controlling the output parameter even when unwantedperturbationsoccur in the input or output of the converter. In closed- loop, however, a degree of control overtheoutputcanbeachieved through the use of a feedback network. Figure- 4: Digital controller block diagram The digital controller block diagram is shown in the fig . 4 The output voltage is compared with the reference voltage and is given to the ADC(ZOH) block which holds the value of error and this error signal is given to quantizer and the ADC limits are set. After applying ADC limits,thesignal is given to PI controller and then to DAC(Digital-to-analog) quantizer, to which DAC limit is applied.Finallytheoutputis obtained and given as pulses to the switches.
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2358 Figure- 5: Control Section 4. SIMULATION RESULTS The results for the simulation of the synchronous buck converter are given in this section. It can be seen that the converter steps down the input voltage from 5V to 2V as expected. The transient that is common with most of the converters can be seen at the start of the simulation. Figure-6: Output Voltage Waveform. The unwanted transient in the output voltage has been removed and the converter steps down the voltage to 2V as expected. The above figure 6 gives the output voltage waveform. A digital integral-controlled Buck converter with the specifications listed in table-1 is studied in this paper. According to the specifications the results are verified with the simulation. 5. SPECIFICATIONS Table-1: Specifications of the synchronous buck converter 6. HARDWARE IMPLEMENTATION For implementing it inhardwaretwoMOSFETswitches, capacitor load resistor, buffer IC 4047, one 89S52 microcontroller board and oscilloscope is required. Supply for the converter is taken from regulated power supply as dc voltage. This voltage is applied directly to the MOSFET switch as this waveform is pulsating dc a filter capacitor is used to remove the ripples.Filtercircuitconsists of inductor and capacitor. After this microcontroller is used as a feedback block and so it is given to it which controls the switching of MOSFETs. If any disturbances arise at the output of microcontroller then thesignal isgiventothe4047 IC chip which in turn generates the square pulses based on the received instruction by microcontroller. So a fixed dc voltage is obtained at the output. Figure-7: Hardware Implementation Parameter Value Unit Input voltage 5 V Output voltage 2 V Inductor(L) 4.7 µH Inductor ESR (RL) 200 mΩ Output Capacitor(C) 10 µF Capacitor ESR(RC) 100 mΩ
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2359 . Figure-8: Gate Pulse The figure.8 represents the gate pulses which are given to the gate of MOSFET switch from the buffer IC 4047 which is controlled by the microcontroller. Figure-9: Output Voltage The figure.9 represents the outputvoltageobtainedfrom the hardware of synchronous buck converter. 6. CONCLUSIONS The modeling and simulation of a synchronous buck converter is carried out in this work. A transient and a steady-state error are observed from the result of the simulation. To solve these problems and to tackle the line and the load current variations a feedback is connected to the converter using a digital integral controller. The results show that the feedback circuit is very effective in handling the problems identified above. The transient is eliminated and the steady-state error is effectively reduced to zero. REFERENCES 1) M. H. Rashid, Power Electronics: Circuits, Devices and Applications, 3rd edition, Pearson, 2004 2) V. R. Moorthi, Power Electronics: Devices, Circuits and Industrial Applications, Oxford University Press, 2007 3) N. Mohan, T. Undeland, and W. Robbins, Power Electronics: Converters, Applications, and Design, 2nd ed., New York: John Wiley & Sons, 1995. 4) R. Miftakhutdinov and J.Zbib, “Synchronous Buck converter with increased efficiency “,in proc. IEEE Applied Power Electronics Conference, 2007 pp.714-718 5) Z. Zhang, “Buck converter controlbook”,Alpha andOmega Semiconductor,August ,2008