SlideShare a Scribd company logo
EE325, CMOS Design, Lab 7: Analog Switch




        Colorado Technical University



L-Edit Designed & PSpice Simulation of an Analog Switch




                               Lab 7 Report
                 Submitted to Professor R. Hoffmeister
             In Partial Fulfillment of the Requirements for
                          EE 325-CMOS Design




                                 By
                  Loren Karl Robinson Schwappach
                   Student Number: 06B7050651




                      Colorado Springs, Colorado
                          Due: 16 June 2010
                       Completed: 16 June 2010




                                                                            1
EE325, CMOS Design, Lab 7: Analog Switch


                                                                                    Table of Contents

Lab Objectives ....................................................................................................................................................................................................3

Requirements and Design Approaches/Trade-Offs ..........................................................................................................................3

L-Edit Analog Switch ............................................................................................................................................................................... 4-10

                Analog Switch Design Details ............................................................................................................................................... 4-6

                Analog Switch L-Edit Model .......................................................................................................................................................7

                Analog Switch Cross Sections....................................................................................................................................................8

                 Analog Switch Design Rule Check ..........................................................................................................................................8

                Analog Switch L-Edit Extracted SW.SPC File ......................................................................................................................9

                Analog Switch Modified SCNA.SPC File .............................................................................................................................. 10

                Analog Switch Test Plan ........................................................................................................................................................... 10

Analog Switch Proof of Function ........................................................................................................................................................... 11

                Circuit Layout ................................................................................................................................................................................ 11

                PSpice Simulation Results........................................................................................................................................................ 11

Analog Switch Frequency Response / Bandwidth ......................................................................................................................... 12

                Circuit Layout ................................................................................................................................................................................ 12

                PSpice Simulation Results........................................................................................................................................................ 12

Analog Switch Resistance .......................................................................................................................................................................... 13

                Circuit Layout ................................................................................................................................................................................ 13

                PSpice Simulation Results........................................................................................................................................................ 13




                                                                                                                                                                                                                 2
EE325, CMOS Design, Lab 7: Analog Switch


                                    Lab Objectives

The objective of this lab is to create an analog switch using L-Edit and verify the switches
operation using PSpice. The Analog switch must be able to achieve an on-resistance of four
hundred ohms or less while the input voltage ranges from 0V to 5V. A formal lab report is
not required for this lab.

              Requirements and Design Approaches / Trade-offs

The requirements for this lab are to design an analog switch with appropriate sizes
necessary for achieving an on-resistance of four hundred ohms or less. The design must
use the MORBN20 design rules, and use the default 2 micron, 11-mask CMOS SCNA
technology design constraints. After the design calculations determine the required W/L
for the pFET and nFET devices the model is built in L-Edit, and a design rule check must be
completed with zero DRC errors. Finally the device must be extracted for use in PSpice and
its’ switching operation, resistance, and bandwidth verified.




                                                                                           3
EE325, CMOS Design, Lab 7: Analog Switch


                         L-Edit Analog Switch Design Details

In order to achieve the design specifications required by this lab the following procedures
and calculations were made in order to determine the required width and lengths of the L-
Edit Analog Switches pFET and nFET devices. The design approach and calculations follow
as illustrated by figures 1, 2, and 3.




Figure 1: Explanation of the Analog Switch and initial model and calculation plan for determining the
                                     device (W/L)n and (W/L)p.


                                                                                                    4
EE325, CMOS Design, Lab 7: Analog Switch




Figure 2: Hand Calculations continued.




                                                           5
EE325, CMOS Design, Lab 7: Analog Switch




Figure 3: Hand Calculations concluded. Final (W/L)n = 50/2, (W/L)p = 200/2 {4*50/2)




                                                                                      6
EE325, CMOS Design, Lab 7: Analog Switch


                            L-Edit Analog Switch Layout

With the results from the hand calculations the design phase began using the Analog Switch
model proposed by figure 1 and the calculated W/Ls in figure 3.




                         Figure 4: L-Edit Analog Switch Design Layout.




                                                                                        7
EE325, CMOS Design, Lab 7: Analog Switch


                        L-Edit CMOS NAND Gate Cross Section

Obtaining the Analog Switch’s cross section was accomplished by clicking Tools/Cross-
Section and clicking on the Analog Switch by using the “Pick” button.




  Figure 5: L-Edit Analog Switch Cross Section, NMOS section is on left, PMOS section is on the right.


                 L-Edit Analog Switch Design Rule Check Results

                         -------------------- SW_DRC.DRC ---------------------
         DRC Errors in cell Cell0 of file C:Documents and SettingsLorenDesktopLAB 7Lab7.
                                                  0 errors.
                        DRC Merge/Gen Layers Elapsed Time: 0.000000 seconds.
                                DRC Test Elapsed Time: 0.000000 seconds.
                                        DRC Elapsed Time: 0 seconds.
                           -------------------------------------------------------




                                                                                                         8
EE325, CMOS Design, Lab 7: Analog Switch


                         L-Edit Analog Switch Extracted File

Some important things to not about this file, are the “Node Name Aliases”, these are the net
aliases names that must be used in PSpice. Also mentioned are PMOS and NMOS lengths
and widths.
                         -------------------- SW.SPC ---------------------
                 * Circuit Extracted by Tanner Research's L-Edit V7.12 / Extract V4.00 ;
            * TDB File: C:Documents and SettingsLorenDesktopLAB 7Lab7, Cell: Cell0
                         * Extract Definition File: C:LEditmosismorbn20.ext
                              * Extract Date and Time: 06/07/2010 - 16:23
                        * WARNING: Layers with Unassigned AREA Capacitance.
                                              * <Poly Resistor>
                                             * <Poly2 Resistor>
                                            * <N Diff Resistor>
                                             * <P Diff Resistor>
                                            * <N Well Resistor>
                                            * <P Base Resistor>
                       * WARNING: Layers with Unassigned FRINGE Capacitance.
                                             * <Pad Comment>
                                              * <Poly Resistor>
                                             * <Poly2 Resistor>
                                            * <N Diff Resistor>
                                             * <P Diff Resistor>
                                            * <N Well Resistor>
                                            * <P Base Resistor>
                                        * <Poly1-Poly2 Capacitor>
                                 * WARNING: Layers with Zero Resistance.
                                             * <Pad Comment>
                                        * <Poly1-Poly2 Capacitor>
                                           * <NMOS Capacitor>
                                           * <PMOS Capacitor>
                                          * NODE NAME ALIASES
                                           *      1 = VDD (-24,62)
                                               *    2 = G (38,-8)
                                             *     3 = GB (-24,-8)
                                             *     4 = VSS (52,-8)
                                              *     5 = A (10,62)
                                               *    6 = Y (10,-8)
               M1 A GB Y VDD PMOS L=2u W=50u AD=900p PD=336u AS=600p PS=224u
                              * M1 DRAIN GATE SOURCE BULK (13 5 15 55)
               M2 Y GB A VDD PMOS L=2u W=50u AD=600p PD=224u AS=900p PS=336u
                                * M2 DRAIN GATE SOURCE BULK (5 5 7 55)
               M3 A GB Y VDD PMOS L=2u W=50u AD=900p PD=336u AS=600p PS=224u
                               * M3 DRAIN GATE SOURCE BULK (-3 5 -1 55)
               M4 Y GB A VDD PMOS L=2u W=50u AD=600p PD=224u AS=900p PS=336u
                              * M4 DRAIN GATE SOURCE BULK (-11 5 -9 55)
                M5 Y G A VSS NMOS L=2u W=50u AD=300p PD=112u AS=300p PS=112u
                              * M5 DRAIN GATE SOURCE BULK (37 5 39 55)
                                                * Total Nodes: 6
                                             * Total Elements: 5
                                    * Extract Elapsed Time: 0 seconds
                                                      .END



                                                                                           9
EE325, CMOS Design, Lab 7: Analog Switch


       Edited SCNA.CSE File Required for using L-Edit Analog Switch

Lines 2 and 11 of this file were edited to change CMOSN to NMOS and CMOSP to PMOS.

                        -------------------- SCNA.SPC ---------------------
                       * THESE ARE TYPICAL SCNA SPICE LEVEL 2 PARAMETERS
                 .MODEL NMOS NMOS LEVEL=2 LD=0.250000U TOX=417.000008E-10
               + NSUB=6.108619E+14 VTO=0.825008 KP=4.919000E-05 GAMMA=0.172
                          + PHI=0.6 UO=594 UEXP=6.682275E-02 UCRIT=5000
               + DELTA=5.08308 VMAX=65547.3 XJ=0.250000U LAMBDA=6.636197E-03
                      + NFS=1.98E+11 NEFF=1 NSS=1.000000E+10 TPG=1.000000
          + RSH=32.740000 CGDO=3.105345E-10 CGSO=3.105345E-10 CGBO=3.848530E-10
         + CJ=9.494900E-05 MJ=0.847099 CJSW=4.410100E-10 MJSW=0.334060 PB=0.800000
                                      * Weff = Wdrawn - Delta_W
                                  * The suggested Delta_W is -0.25 um
                  .MODEL PMOS PMOS LEVEL=2 LD=0.227236U TOX=417.000008E-10
               + NSUB=1.056124E+16 VTO=-0.937048 KP=1.731000E-05 GAMMA=0.715
                           + PHI=0.6 UO=209 UEXP=0.233831 UCRIT=47509.9
               + DELTA=1.07179 VMAX=100000 XJ=0.250000U LAMBDA=4.391428E-02
                    + NFS=3.27E+11 NEFF=1.001 NSS=1.000000E+10 TPG=-1.000000
          + RSH=72.960000 CGDO=2.822585E-10 CGSO=2.822585E-10 CGBO=5.292375E-10
         + CJ=3.224200E-04 MJ=0.584956 CJSW=2.979100E-10 MJSW=0.310807 PB=0.800000
                                      * Weff = Wdrawn - Delta_W
                                  * The suggested Delta_W is -1.14 um
                       --------------------------------------------------------


                               Analog Switch Test Plan

Now that the L-Edit Analog Switch has been created, passed its DRC, and extracted, we will
check whether or not the device works (Proof of functionality), check out its bandwidth
(Frequency Response), and verify the on-resistance.




                                                                                           10
EE325, CMOS Design, Lab 7: Analog Switch


                                                  Analog Switch Proof of Function

To prove the analog switch functions correctly the circuit shown in figure 6 was created
and a time domain analysis simulation was completed. The results shown in figure 7
illustrate that the switch is on when G is high and off when G is low as required.

                                                                                                            0
                                                  V1 = 0      TR = 1ns
                                                  V2 = 5      TF = 1ns
                                                  PER = 200us TD = 0
                                                  PW = 100us
                                                                                                                    V1
                                                           VGB
                                                                                                                    5Vdc
                                              0



                                                                  GB                                            VDD


                                          A       Transmission Gate / Analog Switch                                                Y

                                   V2
                                                  Net Aliases {VDD, G, GB, VSS, A, Y}
                                                                                                                                       V
                    VOFF = 2.5                                                                                                                  RL
                    VAMPL = 1                                     G                                             VSS                             400
                    FREQ = 10k

                                   0     V1 = 5      TR = 1ns                                                       Rg
                                         V2 = 0      TF = 1ns           VG                                          1
                                                                                                                                            0
                                         PER = 200us TD = 0
                                         PW = 100us

                                                                   0                                            0

                            Figure 6: PSpice Analog Switch Circuit Diagram for testing functionality.

      V
      o 3.0V                                                              (174.997u,1.5000)                 V(A) = 2 Vpp
      l
      t
      s                                             (124.996u,3.5000)
        2.0V


                  V(A)
        5.0V
      V
      o
      l
      t 2.5V
      s

          0V
                  V(G)
        5.0V
      V
      o
      l
      t 2.5V
      s

          0V
                  V(GB)
      V
      o 2.0V      Rsw = (RL/Gain) - RL = 209.18                            (174.997u,901.561m)      V(Y) = 1.313239 Vpp
      l
      t
        1.0V
      s                                               (124.996u,2.2148)
       SEL>>                                                                                        Gain = 656.6195mV/V
          0V
             0s                  50us              100us            150us               200us           250us              300us           350us      400us
                  V(Y)
                                                                                         Time
 Figure 7: PSpice Analog Switch Simulation Results. Notice that the switch is on (only passes the input V(A))
  when V(G) is high (5V), and V(GB) is low. However, when V(G) is low (0V) and V(GB) is high the switch is
                                             ‘off” and V(Y) = 0V.


                                                                                                                                                              11
EE325, CMOS Design, Lab 7: Analog Switch


                              Analog Switch Frequency Response / Bandwidth

To find the frequency response of the analog switch the circuit shown in figure 8 was
created and an AC Sweep simulation was ran to find the bandwidth as shown in figure 9.
This bandwidth was noted as 1.4GHz.

                                                                                                0



                                                                                                        V1
                                            VGB
                                                                                                        5Vdc
                                      0
                                            0Vdc


                                                     GB                                             VDD


                                A      Transmission Gate / Analog Switch                                                   Y

                          VA
                                       Net Aliases {VDD, G, GB, VSS, A, Y}
                 1Vac                                                                                                                     RL
               2.5Vdc                                G                                              VSS                                   400


                          0                               VG                                            Rg
                                                          5Vdc                                          1
                                                                                                                                      0



                                                     0                                              0

                        Figure 8: PSpice Analog Switch Circuit Diagram for plotting frequency response.

           0
     G
     a
     i
     n
                                                     Bandwidth = 1.4019GHz
                                                              LP Filter                             (1.4019G,-5.9542)
     (
     d                                                                                        Corner Frequency = f*3dB
     B                                                                                                       1.4019GHz
     ) -10



                                                                                                                 -16.9368 dB/decade




         -20

                                                                                                                  (14.019G,-22.891)




         -30




         -40
          1.0Hz        10Hz         100Hz   1.0KHz        10KHz       100KHz       1.0MHz   10MHz            100MHz       1.0GHz      10GHz     100GHz
              DB(V(Y)/V(A))
                                                                           Frequency

Figure 9: PSpice Analog Switch Frequency Response Simulation Results. Bandwidth is approximately 1.4 GHz.


                                                                                                                                                         12
EE325, CMOS Design, Lab 7: Analog Switch




                                  Analog Switch Resistance

To find the on-resistance of the analog switch the circuit shown by figure 10 below was
created and a bias analysis simulation was ran. The voltage and current results showed
that Iswitch = 3.838 mA and Vswitch = 965mV. Thus the on-resistance was calculated to be
approximately 251 ohms. Thus, the design constraint was met.




Figure 10: PSpice Analog Switch Circuit and Voltage and Current Results. The On-Resistance is approximately
               251 ohms which is less than 400 ohms. Thus the device meets all requirements.




                                                                                                        13

More Related Content

What's hot

Lecture 2 verilog
Lecture 2   verilogLecture 2   verilog
Lecture 2 verilog
venravi10
 
Itc Theater09 Sep1420 P Redits Done
Itc Theater09 Sep1420 P Redits DoneItc Theater09 Sep1420 P Redits Done
Itc Theater09 Sep1420 P Redits Done
ra3197
 
Msp 430 addressing modes module 2
Msp 430 addressing modes module 2Msp 430 addressing modes module 2
Msp 430 addressing modes module 2
SARALA T
 
Vlsi lab manual exp:1
Vlsi lab manual exp:1Vlsi lab manual exp:1
Vlsi lab manual exp:1
komala vani
 
[Harvard CS264] 13 - The R-Stream High-Level Program Transformation Tool / Pr...
[Harvard CS264] 13 - The R-Stream High-Level Program Transformation Tool / Pr...[Harvard CS264] 13 - The R-Stream High-Level Program Transformation Tool / Pr...
[Harvard CS264] 13 - The R-Stream High-Level Program Transformation Tool / Pr...
npinto
 

What's hot (20)

Design and Simulation of 4-bit DAC Decoder Using Custom Designer
Design and Simulation of 4-bit DAC Decoder Using Custom DesignerDesign and Simulation of 4-bit DAC Decoder Using Custom Designer
Design and Simulation of 4-bit DAC Decoder Using Custom Designer
 
Modules and ports in Verilog HDL
Modules and ports in Verilog HDLModules and ports in Verilog HDL
Modules and ports in Verilog HDL
 
Arm assembly language programming
Arm assembly language programmingArm assembly language programming
Arm assembly language programming
 
Lecture 2 verilog
Lecture 2   verilogLecture 2   verilog
Lecture 2 verilog
 
100 103
100 103100 103
100 103
 
Itc Theater09 Sep1420 P Redits Done
Itc Theater09 Sep1420 P Redits DoneItc Theater09 Sep1420 P Redits Done
Itc Theater09 Sep1420 P Redits Done
 
98788885 ic-lab-maual
98788885 ic-lab-maual98788885 ic-lab-maual
98788885 ic-lab-maual
 
Lab9500
Lab9500Lab9500
Lab9500
 
Msp 430 addressing modes module 2
Msp 430 addressing modes module 2Msp 430 addressing modes module 2
Msp 430 addressing modes module 2
 
De lab manual
De lab manualDe lab manual
De lab manual
 
Fpga 03-cpld-and-fpga
Fpga 03-cpld-and-fpgaFpga 03-cpld-and-fpga
Fpga 03-cpld-and-fpga
 
Verilog lab mauual
Verilog lab mauualVerilog lab mauual
Verilog lab mauual
 
Session1
Session1Session1
Session1
 
Introduction to FPGA, VHDL
Introduction to FPGA, VHDL  Introduction to FPGA, VHDL
Introduction to FPGA, VHDL
 
Intro2 Robotic With Pic18
Intro2 Robotic With Pic18Intro2 Robotic With Pic18
Intro2 Robotic With Pic18
 
VLSI lab manual
VLSI lab manualVLSI lab manual
VLSI lab manual
 
Vlsi lab manual exp:1
Vlsi lab manual exp:1Vlsi lab manual exp:1
Vlsi lab manual exp:1
 
e CAD lab manual
e CAD lab manuale CAD lab manual
e CAD lab manual
 
[Harvard CS264] 13 - The R-Stream High-Level Program Transformation Tool / Pr...
[Harvard CS264] 13 - The R-Stream High-Level Program Transformation Tool / Pr...[Harvard CS264] 13 - The R-Stream High-Level Program Transformation Tool / Pr...
[Harvard CS264] 13 - The R-Stream High-Level Program Transformation Tool / Pr...
 
VLSI & E-CAD Lab Manual
VLSI & E-CAD Lab ManualVLSI & E-CAD Lab Manual
VLSI & E-CAD Lab Manual
 

Viewers also liked

Water Quality Labs Evalutaion (NO3)
Water Quality Labs Evalutaion (NO3)Water Quality Labs Evalutaion (NO3)
Water Quality Labs Evalutaion (NO3)
Aryana Mitchell
 
Report on alkalinity test
Report on alkalinity testReport on alkalinity test
Report on alkalinity test
Azlan
 
Alkalinity in Water
Alkalinity in WaterAlkalinity in Water
Alkalinity in Water
FirasMfarrej
 

Viewers also liked (12)

Water Quality Labs Evalutaion (NO3)
Water Quality Labs Evalutaion (NO3)Water Quality Labs Evalutaion (NO3)
Water Quality Labs Evalutaion (NO3)
 
Lab 2 the spectrometer &; beer`s law
Lab 2 the spectrometer &; beer`s lawLab 2 the spectrometer &; beer`s law
Lab 2 the spectrometer &; beer`s law
 
Bod
BodBod
Bod
 
Report on alkalinity test
Report on alkalinity testReport on alkalinity test
Report on alkalinity test
 
Lab 3 acid base titration curves and acid_base indicators
Lab 3 acid base titration curves and acid_base indicatorsLab 3 acid base titration curves and acid_base indicators
Lab 3 acid base titration curves and acid_base indicators
 
Alkalinity in Water
Alkalinity in WaterAlkalinity in Water
Alkalinity in Water
 
Lab5 determination of hardness of water
Lab5 determination of hardness of waterLab5 determination of hardness of water
Lab5 determination of hardness of water
 
pH - Understanding titration curve
pH - Understanding titration curvepH - Understanding titration curve
pH - Understanding titration curve
 
Lab 1 solid determination
Lab 1 solid determinationLab 1 solid determination
Lab 1 solid determination
 
Lab 4 alkalinity –acidity and determination of alkalinity in water
Lab 4 alkalinity –acidity and determination of alkalinity in waterLab 4 alkalinity –acidity and determination of alkalinity in water
Lab 4 alkalinity –acidity and determination of alkalinity in water
 
Environmental Engineering Lab Manual
Environmental Engineering Lab ManualEnvironmental Engineering Lab Manual
Environmental Engineering Lab Manual
 
Determination of hardness of water
Determination of hardness of waterDetermination of hardness of water
Determination of hardness of water
 

Similar to Ee325 cmos design lab 7 report - loren k schwappach

Ee325 cmos design lab 5 report - loren k schwappach
Ee325 cmos design   lab 5 report - loren k schwappachEe325 cmos design   lab 5 report - loren k schwappach
Ee325 cmos design lab 5 report - loren k schwappach
Loren Schwappach
 
Ee325 cmos design lab 4 report - loren k schwappach
Ee325 cmos design   lab 4 report - loren k schwappachEe325 cmos design   lab 4 report - loren k schwappach
Ee325 cmos design lab 4 report - loren k schwappach
Loren Schwappach
 
Ee325 cmos design lab 3 report - loren k schwappach
Ee325 cmos design   lab 3 report - loren k schwappachEe325 cmos design   lab 3 report - loren k schwappach
Ee325 cmos design lab 3 report - loren k schwappach
Loren Schwappach
 
Power Over Fiber_PCBProject
Power Over Fiber_PCBProjectPower Over Fiber_PCBProject
Power Over Fiber_PCBProject
Inbar Kinarty
 
Micro controller(pratheesh)
Micro controller(pratheesh)Micro controller(pratheesh)
Micro controller(pratheesh)
Pratheesh Pala
 
EELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docx
EELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docxEELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docx
EELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docx
toltonkendal
 
Digital Alarm Clock 446 project report
Digital Alarm Clock 446 project reportDigital Alarm Clock 446 project report
Digital Alarm Clock 446 project report
Akash Mhankale
 
My profile
My profileMy profile
My profile
dhruv_63
 

Similar to Ee325 cmos design lab 7 report - loren k schwappach (20)

Ee325 cmos design lab 5 report - loren k schwappach
Ee325 cmos design   lab 5 report - loren k schwappachEe325 cmos design   lab 5 report - loren k schwappach
Ee325 cmos design lab 5 report - loren k schwappach
 
Ee325 cmos design lab 4 report - loren k schwappach
Ee325 cmos design   lab 4 report - loren k schwappachEe325 cmos design   lab 4 report - loren k schwappach
Ee325 cmos design lab 4 report - loren k schwappach
 
Ee325 cmos design lab 3 report - loren k schwappach
Ee325 cmos design   lab 3 report - loren k schwappachEe325 cmos design   lab 3 report - loren k schwappach
Ee325 cmos design lab 3 report - loren k schwappach
 
System design using HDL - Module 3
System design using HDL - Module 3System design using HDL - Module 3
System design using HDL - Module 3
 
Power Over Fiber_PCBProject
Power Over Fiber_PCBProjectPower Over Fiber_PCBProject
Power Over Fiber_PCBProject
 
JamesEndl
JamesEndlJamesEndl
JamesEndl
 
Intro to IO-Link
Intro to IO-LinkIntro to IO-Link
Intro to IO-Link
 
Low power and efficiency test pattern generator
Low power and efficiency  test pattern generatorLow power and efficiency  test pattern generator
Low power and efficiency test pattern generator
 
Project Report
Project ReportProject Report
Project Report
 
Embedded For You - Online sample magazine
Embedded For You - Online sample magazineEmbedded For You - Online sample magazine
Embedded For You - Online sample magazine
 
Micro controller(pratheesh)
Micro controller(pratheesh)Micro controller(pratheesh)
Micro controller(pratheesh)
 
Making a peaking filter by Julio Marqués
Making a peaking filter by Julio MarquésMaking a peaking filter by Julio Marqués
Making a peaking filter by Julio Marqués
 
Embedded system
Embedded systemEmbedded system
Embedded system
 
EELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docx
EELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docxEELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docx
EELE 5331 Digital ASIC DesignLab ManualDr. Yushi Zhou.docx
 
Digital Alarm Clock 446 project report
Digital Alarm Clock 446 project reportDigital Alarm Clock 446 project report
Digital Alarm Clock 446 project report
 
Ed help
Ed helpEd help
Ed help
 
My profile
My profileMy profile
My profile
 
A 1.2V 10-bit 165MSPS Video ADC
A 1.2V 10-bit 165MSPS Video ADCA 1.2V 10-bit 165MSPS Video ADC
A 1.2V 10-bit 165MSPS Video ADC
 
TechRef_RelFdetabb.pdf
TechRef_RelFdetabb.pdfTechRef_RelFdetabb.pdf
TechRef_RelFdetabb.pdf
 
Layout Design Analysis of SR Flip Flop using CMOS Technology
Layout Design Analysis of SR Flip Flop using CMOS TechnologyLayout Design Analysis of SR Flip Flop using CMOS Technology
Layout Design Analysis of SR Flip Flop using CMOS Technology
 

More from Loren Schwappach

Loren k. schwappach ee331 - lab 4
Loren k. schwappach   ee331 - lab 4Loren k. schwappach   ee331 - lab 4
Loren k. schwappach ee331 - lab 4
Loren Schwappach
 
Loren k. schwappach ee331 - lab 3
Loren k. schwappach   ee331 - lab 3Loren k. schwappach   ee331 - lab 3
Loren k. schwappach ee331 - lab 3
Loren Schwappach
 
Ee343 signals and systems - lab 2 - loren schwappach
Ee343   signals and systems - lab 2 - loren schwappachEe343   signals and systems - lab 2 - loren schwappach
Ee343 signals and systems - lab 2 - loren schwappach
Loren Schwappach
 
Ee343 signals and systems - lab 1 - loren schwappach
Ee343   signals and systems - lab 1 - loren schwappachEe343   signals and systems - lab 1 - loren schwappach
Ee343 signals and systems - lab 1 - loren schwappach
Loren Schwappach
 
Ee 352 lab 1 (tutorial) - schwappach - 15 oct 09
Ee 352   lab 1 (tutorial) - schwappach - 15 oct 09Ee 352   lab 1 (tutorial) - schwappach - 15 oct 09
Ee 352 lab 1 (tutorial) - schwappach - 15 oct 09
Loren Schwappach
 
EE375 Electronics 1: lab 3
EE375   Electronics 1: lab 3EE375   Electronics 1: lab 3
EE375 Electronics 1: lab 3
Loren Schwappach
 
EE375 Electronics 1: lab 1
EE375   Electronics 1: lab 1EE375   Electronics 1: lab 1
EE375 Electronics 1: lab 1
Loren Schwappach
 
Ee395 lab 2 - loren - victor - taylor
Ee395   lab 2 - loren - victor - taylorEe395   lab 2 - loren - victor - taylor
Ee395 lab 2 - loren - victor - taylor
Loren Schwappach
 
Ee395 lab 1 - bjt - loren - victor - taylor
Ee395   lab 1 - bjt - loren - victor - taylorEe395   lab 1 - bjt - loren - victor - taylor
Ee395 lab 1 - bjt - loren - victor - taylor
Loren Schwappach
 
5 ee415 - adv electronics - presentation - schwappach
5   ee415 - adv electronics - presentation - schwappach5   ee415 - adv electronics - presentation - schwappach
5 ee415 - adv electronics - presentation - schwappach
Loren Schwappach
 
4 ee414 - adv electroncs - lab 3 - loren schwappach
4   ee414 - adv electroncs - lab 3 - loren schwappach4   ee414 - adv electroncs - lab 3 - loren schwappach
4 ee414 - adv electroncs - lab 3 - loren schwappach
Loren Schwappach
 
3 ee414 - adv electroncs - lab 2 - loren schwappach
3   ee414 - adv electroncs - lab 2 - loren schwappach3   ee414 - adv electroncs - lab 2 - loren schwappach
3 ee414 - adv electroncs - lab 2 - loren schwappach
Loren Schwappach
 
2 ee414 - adv electroncs - lab 1 - loren schwappach
2   ee414 - adv electroncs - lab 1 - loren schwappach2   ee414 - adv electroncs - lab 1 - loren schwappach
2 ee414 - adv electroncs - lab 1 - loren schwappach
Loren Schwappach
 
Ee443 phase locked loop - presentation - schwappach and brandy
Ee443   phase locked loop - presentation - schwappach and brandyEe443   phase locked loop - presentation - schwappach and brandy
Ee443 phase locked loop - presentation - schwappach and brandy
Loren Schwappach
 
Ee443 phase locked loop - paper - schwappach and brandy
Ee443   phase locked loop - paper - schwappach and brandyEe443   phase locked loop - paper - schwappach and brandy
Ee443 phase locked loop - paper - schwappach and brandy
Loren Schwappach
 
Ee443 communications 1 - lab 2 - loren schwappach
Ee443   communications 1 - lab 2 - loren schwappachEe443   communications 1 - lab 2 - loren schwappach
Ee443 communications 1 - lab 2 - loren schwappach
Loren Schwappach
 
Ee463 synchronization - loren schwappach
Ee463   synchronization - loren schwappachEe463   synchronization - loren schwappach
Ee463 synchronization - loren schwappach
Loren Schwappach
 

More from Loren Schwappach (20)

Ubuntu OS Presentation
Ubuntu OS PresentationUbuntu OS Presentation
Ubuntu OS Presentation
 
Loren k. schwappach ee331 - lab 4
Loren k. schwappach   ee331 - lab 4Loren k. schwappach   ee331 - lab 4
Loren k. schwappach ee331 - lab 4
 
Loren k. schwappach ee331 - lab 3
Loren k. schwappach   ee331 - lab 3Loren k. schwappach   ee331 - lab 3
Loren k. schwappach ee331 - lab 3
 
Ee343 signals and systems - lab 2 - loren schwappach
Ee343   signals and systems - lab 2 - loren schwappachEe343   signals and systems - lab 2 - loren schwappach
Ee343 signals and systems - lab 2 - loren schwappach
 
Ee343 signals and systems - lab 1 - loren schwappach
Ee343   signals and systems - lab 1 - loren schwappachEe343   signals and systems - lab 1 - loren schwappach
Ee343 signals and systems - lab 1 - loren schwappach
 
Ee 352 lab 1 (tutorial) - schwappach - 15 oct 09
Ee 352   lab 1 (tutorial) - schwappach - 15 oct 09Ee 352   lab 1 (tutorial) - schwappach - 15 oct 09
Ee 352 lab 1 (tutorial) - schwappach - 15 oct 09
 
EE375 Electronics 1: lab 3
EE375   Electronics 1: lab 3EE375   Electronics 1: lab 3
EE375 Electronics 1: lab 3
 
EE375 Electronics 1: lab 1
EE375   Electronics 1: lab 1EE375   Electronics 1: lab 1
EE375 Electronics 1: lab 1
 
Ee395 lab 2 - loren - victor - taylor
Ee395   lab 2 - loren - victor - taylorEe395   lab 2 - loren - victor - taylor
Ee395 lab 2 - loren - victor - taylor
 
Ee395 lab 1 - bjt - loren - victor - taylor
Ee395   lab 1 - bjt - loren - victor - taylorEe395   lab 1 - bjt - loren - victor - taylor
Ee395 lab 1 - bjt - loren - victor - taylor
 
5 ee415 - adv electronics - presentation - schwappach
5   ee415 - adv electronics - presentation - schwappach5   ee415 - adv electronics - presentation - schwappach
5 ee415 - adv electronics - presentation - schwappach
 
4 ee414 - adv electroncs - lab 3 - loren schwappach
4   ee414 - adv electroncs - lab 3 - loren schwappach4   ee414 - adv electroncs - lab 3 - loren schwappach
4 ee414 - adv electroncs - lab 3 - loren schwappach
 
3 ee414 - adv electroncs - lab 2 - loren schwappach
3   ee414 - adv electroncs - lab 2 - loren schwappach3   ee414 - adv electroncs - lab 2 - loren schwappach
3 ee414 - adv electroncs - lab 2 - loren schwappach
 
2 ee414 - adv electroncs - lab 1 - loren schwappach
2   ee414 - adv electroncs - lab 1 - loren schwappach2   ee414 - adv electroncs - lab 1 - loren schwappach
2 ee414 - adv electroncs - lab 1 - loren schwappach
 
Ee443 phase locked loop - presentation - schwappach and brandy
Ee443   phase locked loop - presentation - schwappach and brandyEe443   phase locked loop - presentation - schwappach and brandy
Ee443 phase locked loop - presentation - schwappach and brandy
 
Ee443 phase locked loop - paper - schwappach and brandy
Ee443   phase locked loop - paper - schwappach and brandyEe443   phase locked loop - paper - schwappach and brandy
Ee443 phase locked loop - paper - schwappach and brandy
 
EE443 - Communications 1 - Lab 3 - Loren Schwappach.pdf
EE443 - Communications 1 - Lab 3 - Loren Schwappach.pdfEE443 - Communications 1 - Lab 3 - Loren Schwappach.pdf
EE443 - Communications 1 - Lab 3 - Loren Schwappach.pdf
 
Ee443 communications 1 - lab 2 - loren schwappach
Ee443   communications 1 - lab 2 - loren schwappachEe443   communications 1 - lab 2 - loren schwappach
Ee443 communications 1 - lab 2 - loren schwappach
 
EE443 - Communications 1 - Lab 1 - Loren Schwappach.pdf
EE443 - Communications 1 - Lab 1 - Loren Schwappach.pdf EE443 - Communications 1 - Lab 1 - Loren Schwappach.pdf
EE443 - Communications 1 - Lab 1 - Loren Schwappach.pdf
 
Ee463 synchronization - loren schwappach
Ee463   synchronization - loren schwappachEe463   synchronization - loren schwappach
Ee463 synchronization - loren schwappach
 

Recently uploaded

Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Peter Udo Diehl
 

Recently uploaded (20)

Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
In-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT ProfessionalsIn-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT Professionals
 
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
Demystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John StaveleyDemystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John Staveley
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
Exploring UiPath Orchestrator API: updates and limits in 2024 🚀
Exploring UiPath Orchestrator API: updates and limits in 2024 🚀Exploring UiPath Orchestrator API: updates and limits in 2024 🚀
Exploring UiPath Orchestrator API: updates and limits in 2024 🚀
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 

Ee325 cmos design lab 7 report - loren k schwappach

  • 1. EE325, CMOS Design, Lab 7: Analog Switch Colorado Technical University L-Edit Designed & PSpice Simulation of an Analog Switch Lab 7 Report Submitted to Professor R. Hoffmeister In Partial Fulfillment of the Requirements for EE 325-CMOS Design By Loren Karl Robinson Schwappach Student Number: 06B7050651 Colorado Springs, Colorado Due: 16 June 2010 Completed: 16 June 2010 1
  • 2. EE325, CMOS Design, Lab 7: Analog Switch Table of Contents Lab Objectives ....................................................................................................................................................................................................3 Requirements and Design Approaches/Trade-Offs ..........................................................................................................................3 L-Edit Analog Switch ............................................................................................................................................................................... 4-10 Analog Switch Design Details ............................................................................................................................................... 4-6 Analog Switch L-Edit Model .......................................................................................................................................................7 Analog Switch Cross Sections....................................................................................................................................................8 Analog Switch Design Rule Check ..........................................................................................................................................8 Analog Switch L-Edit Extracted SW.SPC File ......................................................................................................................9 Analog Switch Modified SCNA.SPC File .............................................................................................................................. 10 Analog Switch Test Plan ........................................................................................................................................................... 10 Analog Switch Proof of Function ........................................................................................................................................................... 11 Circuit Layout ................................................................................................................................................................................ 11 PSpice Simulation Results........................................................................................................................................................ 11 Analog Switch Frequency Response / Bandwidth ......................................................................................................................... 12 Circuit Layout ................................................................................................................................................................................ 12 PSpice Simulation Results........................................................................................................................................................ 12 Analog Switch Resistance .......................................................................................................................................................................... 13 Circuit Layout ................................................................................................................................................................................ 13 PSpice Simulation Results........................................................................................................................................................ 13 2
  • 3. EE325, CMOS Design, Lab 7: Analog Switch Lab Objectives The objective of this lab is to create an analog switch using L-Edit and verify the switches operation using PSpice. The Analog switch must be able to achieve an on-resistance of four hundred ohms or less while the input voltage ranges from 0V to 5V. A formal lab report is not required for this lab. Requirements and Design Approaches / Trade-offs The requirements for this lab are to design an analog switch with appropriate sizes necessary for achieving an on-resistance of four hundred ohms or less. The design must use the MORBN20 design rules, and use the default 2 micron, 11-mask CMOS SCNA technology design constraints. After the design calculations determine the required W/L for the pFET and nFET devices the model is built in L-Edit, and a design rule check must be completed with zero DRC errors. Finally the device must be extracted for use in PSpice and its’ switching operation, resistance, and bandwidth verified. 3
  • 4. EE325, CMOS Design, Lab 7: Analog Switch L-Edit Analog Switch Design Details In order to achieve the design specifications required by this lab the following procedures and calculations were made in order to determine the required width and lengths of the L- Edit Analog Switches pFET and nFET devices. The design approach and calculations follow as illustrated by figures 1, 2, and 3. Figure 1: Explanation of the Analog Switch and initial model and calculation plan for determining the device (W/L)n and (W/L)p. 4
  • 5. EE325, CMOS Design, Lab 7: Analog Switch Figure 2: Hand Calculations continued. 5
  • 6. EE325, CMOS Design, Lab 7: Analog Switch Figure 3: Hand Calculations concluded. Final (W/L)n = 50/2, (W/L)p = 200/2 {4*50/2) 6
  • 7. EE325, CMOS Design, Lab 7: Analog Switch L-Edit Analog Switch Layout With the results from the hand calculations the design phase began using the Analog Switch model proposed by figure 1 and the calculated W/Ls in figure 3. Figure 4: L-Edit Analog Switch Design Layout. 7
  • 8. EE325, CMOS Design, Lab 7: Analog Switch L-Edit CMOS NAND Gate Cross Section Obtaining the Analog Switch’s cross section was accomplished by clicking Tools/Cross- Section and clicking on the Analog Switch by using the “Pick” button. Figure 5: L-Edit Analog Switch Cross Section, NMOS section is on left, PMOS section is on the right. L-Edit Analog Switch Design Rule Check Results -------------------- SW_DRC.DRC --------------------- DRC Errors in cell Cell0 of file C:Documents and SettingsLorenDesktopLAB 7Lab7. 0 errors. DRC Merge/Gen Layers Elapsed Time: 0.000000 seconds. DRC Test Elapsed Time: 0.000000 seconds. DRC Elapsed Time: 0 seconds. ------------------------------------------------------- 8
  • 9. EE325, CMOS Design, Lab 7: Analog Switch L-Edit Analog Switch Extracted File Some important things to not about this file, are the “Node Name Aliases”, these are the net aliases names that must be used in PSpice. Also mentioned are PMOS and NMOS lengths and widths. -------------------- SW.SPC --------------------- * Circuit Extracted by Tanner Research's L-Edit V7.12 / Extract V4.00 ; * TDB File: C:Documents and SettingsLorenDesktopLAB 7Lab7, Cell: Cell0 * Extract Definition File: C:LEditmosismorbn20.ext * Extract Date and Time: 06/07/2010 - 16:23 * WARNING: Layers with Unassigned AREA Capacitance. * <Poly Resistor> * <Poly2 Resistor> * <N Diff Resistor> * <P Diff Resistor> * <N Well Resistor> * <P Base Resistor> * WARNING: Layers with Unassigned FRINGE Capacitance. * <Pad Comment> * <Poly Resistor> * <Poly2 Resistor> * <N Diff Resistor> * <P Diff Resistor> * <N Well Resistor> * <P Base Resistor> * <Poly1-Poly2 Capacitor> * WARNING: Layers with Zero Resistance. * <Pad Comment> * <Poly1-Poly2 Capacitor> * <NMOS Capacitor> * <PMOS Capacitor> * NODE NAME ALIASES * 1 = VDD (-24,62) * 2 = G (38,-8) * 3 = GB (-24,-8) * 4 = VSS (52,-8) * 5 = A (10,62) * 6 = Y (10,-8) M1 A GB Y VDD PMOS L=2u W=50u AD=900p PD=336u AS=600p PS=224u * M1 DRAIN GATE SOURCE BULK (13 5 15 55) M2 Y GB A VDD PMOS L=2u W=50u AD=600p PD=224u AS=900p PS=336u * M2 DRAIN GATE SOURCE BULK (5 5 7 55) M3 A GB Y VDD PMOS L=2u W=50u AD=900p PD=336u AS=600p PS=224u * M3 DRAIN GATE SOURCE BULK (-3 5 -1 55) M4 Y GB A VDD PMOS L=2u W=50u AD=600p PD=224u AS=900p PS=336u * M4 DRAIN GATE SOURCE BULK (-11 5 -9 55) M5 Y G A VSS NMOS L=2u W=50u AD=300p PD=112u AS=300p PS=112u * M5 DRAIN GATE SOURCE BULK (37 5 39 55) * Total Nodes: 6 * Total Elements: 5 * Extract Elapsed Time: 0 seconds .END 9
  • 10. EE325, CMOS Design, Lab 7: Analog Switch Edited SCNA.CSE File Required for using L-Edit Analog Switch Lines 2 and 11 of this file were edited to change CMOSN to NMOS and CMOSP to PMOS. -------------------- SCNA.SPC --------------------- * THESE ARE TYPICAL SCNA SPICE LEVEL 2 PARAMETERS .MODEL NMOS NMOS LEVEL=2 LD=0.250000U TOX=417.000008E-10 + NSUB=6.108619E+14 VTO=0.825008 KP=4.919000E-05 GAMMA=0.172 + PHI=0.6 UO=594 UEXP=6.682275E-02 UCRIT=5000 + DELTA=5.08308 VMAX=65547.3 XJ=0.250000U LAMBDA=6.636197E-03 + NFS=1.98E+11 NEFF=1 NSS=1.000000E+10 TPG=1.000000 + RSH=32.740000 CGDO=3.105345E-10 CGSO=3.105345E-10 CGBO=3.848530E-10 + CJ=9.494900E-05 MJ=0.847099 CJSW=4.410100E-10 MJSW=0.334060 PB=0.800000 * Weff = Wdrawn - Delta_W * The suggested Delta_W is -0.25 um .MODEL PMOS PMOS LEVEL=2 LD=0.227236U TOX=417.000008E-10 + NSUB=1.056124E+16 VTO=-0.937048 KP=1.731000E-05 GAMMA=0.715 + PHI=0.6 UO=209 UEXP=0.233831 UCRIT=47509.9 + DELTA=1.07179 VMAX=100000 XJ=0.250000U LAMBDA=4.391428E-02 + NFS=3.27E+11 NEFF=1.001 NSS=1.000000E+10 TPG=-1.000000 + RSH=72.960000 CGDO=2.822585E-10 CGSO=2.822585E-10 CGBO=5.292375E-10 + CJ=3.224200E-04 MJ=0.584956 CJSW=2.979100E-10 MJSW=0.310807 PB=0.800000 * Weff = Wdrawn - Delta_W * The suggested Delta_W is -1.14 um -------------------------------------------------------- Analog Switch Test Plan Now that the L-Edit Analog Switch has been created, passed its DRC, and extracted, we will check whether or not the device works (Proof of functionality), check out its bandwidth (Frequency Response), and verify the on-resistance. 10
  • 11. EE325, CMOS Design, Lab 7: Analog Switch Analog Switch Proof of Function To prove the analog switch functions correctly the circuit shown in figure 6 was created and a time domain analysis simulation was completed. The results shown in figure 7 illustrate that the switch is on when G is high and off when G is low as required. 0 V1 = 0 TR = 1ns V2 = 5 TF = 1ns PER = 200us TD = 0 PW = 100us V1 VGB 5Vdc 0 GB VDD A Transmission Gate / Analog Switch Y V2 Net Aliases {VDD, G, GB, VSS, A, Y} V VOFF = 2.5 RL VAMPL = 1 G VSS 400 FREQ = 10k 0 V1 = 5 TR = 1ns Rg V2 = 0 TF = 1ns VG 1 0 PER = 200us TD = 0 PW = 100us 0 0 Figure 6: PSpice Analog Switch Circuit Diagram for testing functionality. V o 3.0V (174.997u,1.5000) V(A) = 2 Vpp l t s (124.996u,3.5000) 2.0V V(A) 5.0V V o l t 2.5V s 0V V(G) 5.0V V o l t 2.5V s 0V V(GB) V o 2.0V Rsw = (RL/Gain) - RL = 209.18 (174.997u,901.561m) V(Y) = 1.313239 Vpp l t 1.0V s (124.996u,2.2148) SEL>> Gain = 656.6195mV/V 0V 0s 50us 100us 150us 200us 250us 300us 350us 400us V(Y) Time Figure 7: PSpice Analog Switch Simulation Results. Notice that the switch is on (only passes the input V(A)) when V(G) is high (5V), and V(GB) is low. However, when V(G) is low (0V) and V(GB) is high the switch is ‘off” and V(Y) = 0V. 11
  • 12. EE325, CMOS Design, Lab 7: Analog Switch Analog Switch Frequency Response / Bandwidth To find the frequency response of the analog switch the circuit shown in figure 8 was created and an AC Sweep simulation was ran to find the bandwidth as shown in figure 9. This bandwidth was noted as 1.4GHz. 0 V1 VGB 5Vdc 0 0Vdc GB VDD A Transmission Gate / Analog Switch Y VA Net Aliases {VDD, G, GB, VSS, A, Y} 1Vac RL 2.5Vdc G VSS 400 0 VG Rg 5Vdc 1 0 0 0 Figure 8: PSpice Analog Switch Circuit Diagram for plotting frequency response. 0 G a i n Bandwidth = 1.4019GHz LP Filter (1.4019G,-5.9542) ( d Corner Frequency = f*3dB B 1.4019GHz ) -10 -16.9368 dB/decade -20 (14.019G,-22.891) -30 -40 1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz 100MHz 1.0GHz 10GHz 100GHz DB(V(Y)/V(A)) Frequency Figure 9: PSpice Analog Switch Frequency Response Simulation Results. Bandwidth is approximately 1.4 GHz. 12
  • 13. EE325, CMOS Design, Lab 7: Analog Switch Analog Switch Resistance To find the on-resistance of the analog switch the circuit shown by figure 10 below was created and a bias analysis simulation was ran. The voltage and current results showed that Iswitch = 3.838 mA and Vswitch = 965mV. Thus the on-resistance was calculated to be approximately 251 ohms. Thus, the design constraint was met. Figure 10: PSpice Analog Switch Circuit and Voltage and Current Results. The On-Resistance is approximately 251 ohms which is less than 400 ohms. Thus the device meets all requirements. 13