SlideShare a Scribd company logo
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Control Systems
B.Madhuri
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Second order system
H(s)
G(s)
R(s) C(s)+
-
𝐺 𝑠 =
𝜔 𝑛
2
𝑠(𝑠 + 2𝜉𝜔 𝑛) 22
2
2)(
)(
nn
n
sssR
sC




If H(s)=1
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Steady-State Error Definition
Steady-state error is the
difference between the input and
the output for a prescribed test
input as time approaches infinity
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Steady-State Error - Test Input
1.Step input
2.Ramp input
3.Parabolic input
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Steady-State Error – Introduction
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Evaluating Steady-State Error
Steady-state error analysis only
applicable when the system
response is stable. Unstable
system cannot be analyzed for
steady-state error
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Evaluating Steady-State Error – Step
input
Error = 0
Error = constant
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Evaluating Steady-State Error – Ramp
input
Error = 0
Error = constant
Error = ∞
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Evaluating Steady-State Error – General
Block Diagram
E(s) = R(s) – C(s)
E(s) = R(s) – C(s)
General Representation (unity and non-unity feedback)
Unity feedback System
Error Calculation
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Evaluating Steady-State Error –
Sources of Error
1.Non-linear elements
2.System configuration
3.Type of applied input
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Evaluating Steady-State Error – Sources of
Error by System Configuration
Since K is nonzero and
positive, e(t) will never be
zero for a step input
K
te
K
te
KsK
s
K
sR
sE
sRsKEsE
sKEsC
sCsRsE
t














1
1
)(
1
1
)(
)1(
1
1
1
1
)(
)(
)()()(
)()(
)()()(
The pure gain configuration
will never produce zero
steady-state error.
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Evaluating Steady-State Error – Sources of
Error by System Configuration
Since K is nonzero and
positive, e(t) will always
approach zero for a step
input.
The integrator
configuration will
always produce zero
steady-state error.
0)(
)(
1
1
)(
1
)(
)(
)()()(
)()(
)()()(















t
Kt
te
ete
Ks
s
Ks
s
s
Ks
sR
s
K
sR
sE
sRsE
s
K
sE
sE
s
K
sC
sCsRsE
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Steady-State Error for Unity Feedback System
Using Closed Loop Transfer Function
 )(1)()(
)()()()(
)()()(
)()()(
sTsRsE
sTsRsRsE
sTsRsC
sCsRsE




Since we are interested to
find the steady-state error
(not the transient error), we
can use final value theorem
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Steady-State Error for Unity Feedback System
Using Closed Loop Transfer Function
)(lim)(lim)(
0
ssEtee
st 

Final Value Theorem
 )(1)(lim)(lim)(
00
sTssRssEe
ss


ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Steady-State Error for Unity Feedback System
Using Closed Loop Transfer Function - Example
s
sR
ss
sT
1
)(
107
5
)( 2



Find steady-state error?
 
5.0
107
5
1)
1
(lim)(
)(1)()(lim)(
20
0











sss
se
sTssRssEe
s
s
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Steady-State Error for Unity Feedback System Using
Forward Path Transfer Function
)(1
)(
)(
)()()()(
)()()(
)()()(
sG
sR
sE
sRsGsEsE
sGsEsC
sCsRsE





By final value theorem,
)(1
)(
lim)(lim)(
00 sG
ssR
ssEe
ss 


No need to
evaluate T(s)
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Steady-State Error for Unity Feedback System – Step
Input
)(lim1
1
)(1
1
lim)(lim)(
)(1
)(
lim)(lim)(
0
00
00
sGsG
s
s
ssEe
sG
ssR
ssEe
s
ss
ss









In order to have zero steady-
state error,


)(lim
0
sG
s
1)(lim
))((
))((
)(
0
21
21





nsG
pspss
zszs
sG
s
n


In order to have zero steady-state
error, n must be equal or greater
than one. There must exist at least
one pole at origin. If n = 0, we
have




21
21
0
21
21
)(lim
))((
))((
)(
pp
zz
sG
psps
zszs
sG
s





There is
finite
steady-
state error
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Steady-State Error for Unity Feedback System – Ramp
Input
)(lim
1
)(lim
1
)(lim1
/1
)(1
1
lim
)(1
)(
lim)(lim)(
000
2
000 ssGssGssG
s
sG
s
s
sG
ssR
ssEe
sss
sss











In order to have zero steady-state error,


)(lim
0
ssG
s
2)(lim
))((
))((
)(
0
21
21





nssG
pspss
zszs
sG
s
n


In order to have zero steady-state error, n must
be equal or greater than two. There must exist
at least two poles at origin.
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Steady-State Error for Unity Feedback System – Ramp
Input
If n = 1, we have






21
21
21
21
00
21
21
))((
))((
lim)(lim
))((
))((
)(
pp
zz
pspss
zszss
ssG
pspss
zszs
sG
ss








There is finite steady-state error
If n = 0, we have
0
))((
))((
lim)(lim
))((
))((
)(
21
21
00
21
21







 



psps
zszss
ssG
psps
zszs
sG
ss
There is infinite
steady-state error
)(lim
1
)(
0
ssG
e
s

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Steady-State Error for Unity Feedback System –
Parabolic Input
)(lim
1
)(lim
1
)(1
1
lim
)(1
)(
lim)(lim)( 2
0
2
0
2
3
000 sGssGsssG
s
s
sG
ssR
ssEe
ss
sss









In order to have zero steady-state error, 

)(lim 2
0
sGs
s
3)(lim
))((
))((
)(
2
0
21
21





nsGs
pspss
zszs
sG
s
n

 In order to have zero steady-state
error, n must be equal or greater
than three. There must exist at
least three poles at origin.
If n = 2, then finite error If n = 1 or less, then infinite error
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Static Error Constants
)(lim1
1
)(
0
sG
e
s
step



Step input
)(lim
1
)(
0
ssG
e
s
ramp


Ramp input
)(lim
1
)( 2
0
sGs
e
s
parabola


Parabolic input
Static Error ConstantSteady-state error
)(lim
0
sGK
s
p


Position error constant
Velocity error constant
Acceleration error constant
)(lim 2
0
sGsK
s
a


)(lim
0
ssGK
s
v


22 February 2015
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Static Error Constants
22
)(lim
0
sGK
s
p


The static error constants can
assume three values:
1.Zero
2.Finite constant
3.Infinity
)(lim 2
0
sGsK
s
a

)(lim
0
ssGK
s
v


The value of steady-state error
decreases as the value of static
error constant increases
p
step
K
e


1
1
)(
v
ramp
K
e
1
)( 
a
parabola
K
e
1
)( 
22 February 2015
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION22 February 2015
Static Error Constants - Example
Evaluate steady-state error
constants and the steady
state errors for step, ramp
and parabolic inputs?
208.5
)12)(10)(8(
)5)(2(500
)12)(10)(8(
)5)(2(500
lim)(lim
00




 sss
ss
sGK
ss
p
161.0
208.51
1
1
1
)( 




p
step
K
e
0
)12)(10)(8(
)5)(2(500
lim)(lim
00




 sss
ss
sssGK
ss
v
0
)12)(10)(8(
)5)(2(500
lim)(lim 2
0
2
0




 sss
ss
ssGsK
ss
a

0
11
)(
a
parabola
K
e

0
11
)(
v
ramp
K
e
Step Input
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Static Error Constants - Example
Evaluate steady-state error
constants and the steady
state errors for step, ramp
and parabolic inputs?




 )12)(10)(8)(0(
)6)(5)(2(500
)12)(10)(8(
)6)(5)(2(500
lim)(lim
00 ssss
sss
sGK
ss
p
0
1
1
1
1
)( 




p
step
K
e
25.31
)12)(10)(8(
)6)(5)(2(500
lim)(lim
00




 ssss
sss
sssGK
ss
v
0
)12)(10)(8(
)6)(5)(2(500
lim)(lim 2
0
2
0




 ssss
sss
ssGsK
ss
a 
0
11
)(
a
parabola
K
e
032.0
25.31
11
)( 
v
ramp
K
e
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Static Error Constants - Example
Evaluate steady-state error
constants and the steady
state errors for step, ramp
and parabolic inputs?




 )12)(10)(8(
)7)(6)(5)(4)(2(500
lim)(lim 200 ssss
sssss
sGK
ss
p
0
1
1
1
1
)( 




p
step
K
e




 )12)(10)(8(
)7)(6)(5)(4)(2(500
lim)(lim 200 ssss
sssss
sssGK
ss
v
875
)12)(10)(8(
)7)(6)(5)(4)(2(500
lim)(lim 2
2
0
2
0




 ssss
sssss
ssGsK
ss
a
1014.1
875
11
)( 
a
parabola
K
e
0
11
)( 


v
ramp
K
e
22 February 2015
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Steady-State Error for Unity Feedback System –
Example
Find steady-state error for input
5u(t), 5tu(t) and 5t2u(t).
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
Steady-State Error for Unity Feedback System –
Example
Find steady-state error for input
5u(t), 5tu(t) and 5t2u(t).
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
H(s)
G(s)
R(s) C(s)+
-
Steady state error for non-unity feedback
system
𝑒𝑠𝑠 = lim
𝑠→0
𝑠𝑅(𝑠)
1 + 𝐺 𝑠 𝐻(𝑠)
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
22 February 2015
System Types
System type is the value of n.
n = 0, System type 0
n = 1, System type 1
n = 2, system type 2
Etc.
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
System Types
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION
System Types - Example
Evaluate steady-state error constants
and the steady state errors for step,
ramp and parabolic inputs?
Check for stability first
)9)(7(
)8(1000
)(



ss
s
sG
2
s
1
s
0
s
1 8063
1016 0
8063
No sign changes.
Therefore, all poles are in the left-half plane.
Therefore, the closed-loop system is stable.

More Related Content

What's hot

Cst1
Cst1Cst1
Cst1
kodam2512
 
Week 10 part2 pe 6282
Week 10 part2 pe 6282Week 10 part2 pe 6282
Week 10 part2 pe 6282
Charlton Inao
 
Csl6 28 j15
Csl6 28 j15Csl6 28 j15
Csl6 28 j15
kodam2512
 
Transfer function, determination of transfer function in mechanical and elect...
Transfer function, determination of transfer function in mechanical and elect...Transfer function, determination of transfer function in mechanical and elect...
Transfer function, determination of transfer function in mechanical and elect...
Saad Mohammad Araf
 
Lecture 6 modelling-of_electrical__electronic_systems
Lecture 6 modelling-of_electrical__electronic_systemsLecture 6 modelling-of_electrical__electronic_systems
Lecture 6 modelling-of_electrical__electronic_systems
Saifullah Memon
 
Modeling of mechanical_systems
Modeling of mechanical_systemsModeling of mechanical_systems
Modeling of mechanical_systems
Julian De Marcos
 
Csl14 16 f15
Csl14 16 f15Csl14 16 f15
Csl14 16 f15
kodam2512
 
Lecture 4 ME 176 2 Mathematical Modeling
Lecture 4 ME 176 2 Mathematical ModelingLecture 4 ME 176 2 Mathematical Modeling
Lecture 4 ME 176 2 Mathematical Modeling
Leonides De Ocampo
 
Transfer function and mathematical modeling
Transfer  function  and  mathematical  modelingTransfer  function  and  mathematical  modeling
Transfer function and mathematical modeling
vishalgohel12195
 
Ch.02 modeling in frequency domain
Ch.02 modeling in frequency domainCh.02 modeling in frequency domain
Ch.02 modeling in frequency domain
Nguyen_Tan_Tien
 
Transfer Function Cse ppt
Transfer Function Cse pptTransfer Function Cse ppt
Transfer Function Cse ppt
sanjaytron
 
Analogous system 4
Analogous system 4Analogous system 4
Analogous system 4
Syed Saeed
 
Lecture 2 ME 176 2 Mathematical Modeling
Lecture 2 ME 176 2 Mathematical ModelingLecture 2 ME 176 2 Mathematical Modeling
Lecture 2 ME 176 2 Mathematical Modeling
Leonides De Ocampo
 
Lecture 7 modelling-of__real_world_systems
Lecture 7 modelling-of__real_world_systemsLecture 7 modelling-of__real_world_systems
Lecture 7 modelling-of__real_world_systems
Saifullah Memon
 
3 modelling of physical systems
3 modelling of physical systems3 modelling of physical systems
3 modelling of physical systems
Joanna Lock
 
Lecture 1 ME 176 1 Introduction
Lecture 1 ME 176 1 IntroductionLecture 1 ME 176 1 Introduction
Lecture 1 ME 176 1 Introduction
Leonides De Ocampo
 
Week 10 part 3 pe 6282 mecchanical liquid and electrical
Week 10 part 3 pe 6282 mecchanical liquid and electricalWeek 10 part 3 pe 6282 mecchanical liquid and electrical
Week 10 part 3 pe 6282 mecchanical liquid and electrical
Charlton Inao
 
Ch.01 inroduction
Ch.01 inroductionCh.01 inroduction
Ch.01 inroduction
Nguyen_Tan_Tien
 
ME-314- Control Engineering - Week 03-04
ME-314- Control Engineering - Week 03-04ME-314- Control Engineering - Week 03-04
ME-314- Control Engineering - Week 03-04
Dr. Bilal Siddiqui, C.Eng., MIMechE, FRAeS
 
Chapter 3 mathematical modeling of dynamic system
Chapter 3 mathematical modeling of dynamic systemChapter 3 mathematical modeling of dynamic system
Chapter 3 mathematical modeling of dynamic system
LenchoDuguma
 

What's hot (20)

Cst1
Cst1Cst1
Cst1
 
Week 10 part2 pe 6282
Week 10 part2 pe 6282Week 10 part2 pe 6282
Week 10 part2 pe 6282
 
Csl6 28 j15
Csl6 28 j15Csl6 28 j15
Csl6 28 j15
 
Transfer function, determination of transfer function in mechanical and elect...
Transfer function, determination of transfer function in mechanical and elect...Transfer function, determination of transfer function in mechanical and elect...
Transfer function, determination of transfer function in mechanical and elect...
 
Lecture 6 modelling-of_electrical__electronic_systems
Lecture 6 modelling-of_electrical__electronic_systemsLecture 6 modelling-of_electrical__electronic_systems
Lecture 6 modelling-of_electrical__electronic_systems
 
Modeling of mechanical_systems
Modeling of mechanical_systemsModeling of mechanical_systems
Modeling of mechanical_systems
 
Csl14 16 f15
Csl14 16 f15Csl14 16 f15
Csl14 16 f15
 
Lecture 4 ME 176 2 Mathematical Modeling
Lecture 4 ME 176 2 Mathematical ModelingLecture 4 ME 176 2 Mathematical Modeling
Lecture 4 ME 176 2 Mathematical Modeling
 
Transfer function and mathematical modeling
Transfer  function  and  mathematical  modelingTransfer  function  and  mathematical  modeling
Transfer function and mathematical modeling
 
Ch.02 modeling in frequency domain
Ch.02 modeling in frequency domainCh.02 modeling in frequency domain
Ch.02 modeling in frequency domain
 
Transfer Function Cse ppt
Transfer Function Cse pptTransfer Function Cse ppt
Transfer Function Cse ppt
 
Analogous system 4
Analogous system 4Analogous system 4
Analogous system 4
 
Lecture 2 ME 176 2 Mathematical Modeling
Lecture 2 ME 176 2 Mathematical ModelingLecture 2 ME 176 2 Mathematical Modeling
Lecture 2 ME 176 2 Mathematical Modeling
 
Lecture 7 modelling-of__real_world_systems
Lecture 7 modelling-of__real_world_systemsLecture 7 modelling-of__real_world_systems
Lecture 7 modelling-of__real_world_systems
 
3 modelling of physical systems
3 modelling of physical systems3 modelling of physical systems
3 modelling of physical systems
 
Lecture 1 ME 176 1 Introduction
Lecture 1 ME 176 1 IntroductionLecture 1 ME 176 1 Introduction
Lecture 1 ME 176 1 Introduction
 
Week 10 part 3 pe 6282 mecchanical liquid and electrical
Week 10 part 3 pe 6282 mecchanical liquid and electricalWeek 10 part 3 pe 6282 mecchanical liquid and electrical
Week 10 part 3 pe 6282 mecchanical liquid and electrical
 
Ch.01 inroduction
Ch.01 inroductionCh.01 inroduction
Ch.01 inroduction
 
ME-314- Control Engineering - Week 03-04
ME-314- Control Engineering - Week 03-04ME-314- Control Engineering - Week 03-04
ME-314- Control Engineering - Week 03-04
 
Chapter 3 mathematical modeling of dynamic system
Chapter 3 mathematical modeling of dynamic systemChapter 3 mathematical modeling of dynamic system
Chapter 3 mathematical modeling of dynamic system
 

Viewers also liked

Control chap6
Control chap6Control chap6
Control chap6
Mohd Ashraf Shabarshah
 
Angle mod for stdnts 25 apr
Angle mod for stdnts  25 aprAngle mod for stdnts  25 apr
Angle mod for stdnts 25 apr
ganesh prasad mishra
 
Lecture 13 ME 176 6 Steady State Error Re
Lecture 13 ME 176 6 Steady State Error ReLecture 13 ME 176 6 Steady State Error Re
Lecture 13 ME 176 6 Steady State Error Re
Leonides De Ocampo
 
Lecture 12 ME 176 6 Steady State Error
Lecture 12 ME 176 6 Steady State ErrorLecture 12 ME 176 6 Steady State Error
Lecture 12 ME 176 6 Steady State Error
Leonides De Ocampo
 
Csl7 30 j15
Csl7 30 j15Csl7 30 j15
Csl7 30 j15
kodam2512
 
Vidyalankar final-essentials of communication systems
Vidyalankar final-essentials of communication systemsVidyalankar final-essentials of communication systems
Vidyalankar final-essentials of communication systems
anilkurhekar
 
Csl5 23 j15
Csl5 23 j15Csl5 23 j15
Csl5 23 j15
kodam2512
 
Cst2
Cst2Cst2
Cst2
kodam2512
 
Ch5 angle modulation pg 97
Ch5 angle modulation pg 97Ch5 angle modulation pg 97
Ch5 angle modulation pg 97
Prateek Omer
 
Csl9 4 f15
Csl9 4 f15Csl9 4 f15
Csl9 4 f15
kodam2512
 
Varactor diode
Varactor diodeVaractor diode
Varactor diode
Enock Seth Nyamador
 
Lecture 11 ME 176 5 Stability
Lecture 11 ME 176 5 StabilityLecture 11 ME 176 5 Stability
Lecture 11 ME 176 5 Stability
Leonides De Ocampo
 
Varactor diode
Varactor diodeVaractor diode
Varactor diode
Sindhu Nathan
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
avocado1111
 
Ecom
EcomEcom
Angle modulation
Angle modulationAngle modulation
Angle modulation
Diksha Prakash
 
Csl8 2 f15
Csl8 2 f15Csl8 2 f15
Csl8 2 f15
kodam2512
 
Fm generation
Fm generationFm generation
Fm generation
Kushagra Ganeriwal
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
nahrain university
 

Viewers also liked (19)

Control chap6
Control chap6Control chap6
Control chap6
 
Angle mod for stdnts 25 apr
Angle mod for stdnts  25 aprAngle mod for stdnts  25 apr
Angle mod for stdnts 25 apr
 
Lecture 13 ME 176 6 Steady State Error Re
Lecture 13 ME 176 6 Steady State Error ReLecture 13 ME 176 6 Steady State Error Re
Lecture 13 ME 176 6 Steady State Error Re
 
Lecture 12 ME 176 6 Steady State Error
Lecture 12 ME 176 6 Steady State ErrorLecture 12 ME 176 6 Steady State Error
Lecture 12 ME 176 6 Steady State Error
 
Csl7 30 j15
Csl7 30 j15Csl7 30 j15
Csl7 30 j15
 
Vidyalankar final-essentials of communication systems
Vidyalankar final-essentials of communication systemsVidyalankar final-essentials of communication systems
Vidyalankar final-essentials of communication systems
 
Csl5 23 j15
Csl5 23 j15Csl5 23 j15
Csl5 23 j15
 
Cst2
Cst2Cst2
Cst2
 
Ch5 angle modulation pg 97
Ch5 angle modulation pg 97Ch5 angle modulation pg 97
Ch5 angle modulation pg 97
 
Csl9 4 f15
Csl9 4 f15Csl9 4 f15
Csl9 4 f15
 
Varactor diode
Varactor diodeVaractor diode
Varactor diode
 
Lecture 11 ME 176 5 Stability
Lecture 11 ME 176 5 StabilityLecture 11 ME 176 5 Stability
Lecture 11 ME 176 5 Stability
 
Varactor diode
Varactor diodeVaractor diode
Varactor diode
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 
Ecom
EcomEcom
Ecom
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 
Csl8 2 f15
Csl8 2 f15Csl8 2 f15
Csl8 2 f15
 
Fm generation
Fm generationFm generation
Fm generation
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 

Similar to Csl11 11 f15

frequency responce.ppt
frequency responce.pptfrequency responce.ppt
frequency responce.ppt
IbrahimKhawaji3
 
Ies electronics engineering - control system
Ies   electronics engineering - control systemIes   electronics engineering - control system
Ies electronics engineering - control system
Phaneendra Pgr
 
Ppt control
Ppt controlPpt control
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOM
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOMDistance Algorithm for Transmission Line with Mid-Point Connected STATCOM
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOM
IRJET Journal
 
P73
P73P73
time response analysis
time response analysistime response analysis
time response analysis
Raviraj solanki
 
D0372027037
D0372027037D0372027037
D0372027037
theijes
 
Tarea 2 francisco_moya_mena_a74449_grupo02
Tarea 2 francisco_moya_mena_a74449_grupo02Tarea 2 francisco_moya_mena_a74449_grupo02
Tarea 2 francisco_moya_mena_a74449_grupo02
FrankMoya3
 
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Amr E. Mohamed
 
Work
WorkWork
PG Project
PG ProjectPG Project
PG Project
mathew1122
 
PhD Defence Part 1
PhD Defence Part 1PhD Defence Part 1
PhD Defence Part 1
Daniel Theis
 
Ae11 sol
Ae11 solAe11 sol
Final Project
Final ProjectFinal Project
Final Project
Mohnish Puri Goswami
 
Modelling design and control of an electromechanical mass lifting system usin...
Modelling design and control of an electromechanical mass lifting system usin...Modelling design and control of an electromechanical mass lifting system usin...
Modelling design and control of an electromechanical mass lifting system usin...
Mustefa Jibril
 
Design and Implementation of Schmitt Trigger using Operational Amplifier
Design and Implementation of Schmitt Trigger using Operational AmplifierDesign and Implementation of Schmitt Trigger using Operational Amplifier
Design and Implementation of Schmitt Trigger using Operational Amplifier
IJERA Editor
 
Three phase diode.pdf
Three phase diode.pdfThree phase diode.pdf
Three phase diode.pdf
RajatRaj47
 
Wavelet Based Fault Detection, Classification in Transmission System with TCS...
Wavelet Based Fault Detection, Classification in Transmission System with TCS...Wavelet Based Fault Detection, Classification in Transmission System with TCS...
Wavelet Based Fault Detection, Classification in Transmission System with TCS...
IJERA Editor
 
ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
VasantkumarUpadhye
 
Fault modeling and parametric fault detection in analog VLSI circuits using d...
Fault modeling and parametric fault detection in analog VLSI circuits using d...Fault modeling and parametric fault detection in analog VLSI circuits using d...
Fault modeling and parametric fault detection in analog VLSI circuits using d...
IJECEIAES
 

Similar to Csl11 11 f15 (20)

frequency responce.ppt
frequency responce.pptfrequency responce.ppt
frequency responce.ppt
 
Ies electronics engineering - control system
Ies   electronics engineering - control systemIes   electronics engineering - control system
Ies electronics engineering - control system
 
Ppt control
Ppt controlPpt control
Ppt control
 
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOM
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOMDistance Algorithm for Transmission Line with Mid-Point Connected STATCOM
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOM
 
P73
P73P73
P73
 
time response analysis
time response analysistime response analysis
time response analysis
 
D0372027037
D0372027037D0372027037
D0372027037
 
Tarea 2 francisco_moya_mena_a74449_grupo02
Tarea 2 francisco_moya_mena_a74449_grupo02Tarea 2 francisco_moya_mena_a74449_grupo02
Tarea 2 francisco_moya_mena_a74449_grupo02
 
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
 
Work
WorkWork
Work
 
PG Project
PG ProjectPG Project
PG Project
 
PhD Defence Part 1
PhD Defence Part 1PhD Defence Part 1
PhD Defence Part 1
 
Ae11 sol
Ae11 solAe11 sol
Ae11 sol
 
Final Project
Final ProjectFinal Project
Final Project
 
Modelling design and control of an electromechanical mass lifting system usin...
Modelling design and control of an electromechanical mass lifting system usin...Modelling design and control of an electromechanical mass lifting system usin...
Modelling design and control of an electromechanical mass lifting system usin...
 
Design and Implementation of Schmitt Trigger using Operational Amplifier
Design and Implementation of Schmitt Trigger using Operational AmplifierDesign and Implementation of Schmitt Trigger using Operational Amplifier
Design and Implementation of Schmitt Trigger using Operational Amplifier
 
Three phase diode.pdf
Three phase diode.pdfThree phase diode.pdf
Three phase diode.pdf
 
Wavelet Based Fault Detection, Classification in Transmission System with TCS...
Wavelet Based Fault Detection, Classification in Transmission System with TCS...Wavelet Based Fault Detection, Classification in Transmission System with TCS...
Wavelet Based Fault Detection, Classification in Transmission System with TCS...
 
ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
 
Fault modeling and parametric fault detection in analog VLSI circuits using d...
Fault modeling and parametric fault detection in analog VLSI circuits using d...Fault modeling and parametric fault detection in analog VLSI circuits using d...
Fault modeling and parametric fault detection in analog VLSI circuits using d...
 

Recently uploaded

Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
Roger Rozario
 
Digital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptxDigital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptx
aryanpankaj78
 
一比一原版(USF毕业证)旧金山大学毕业证如何办理
一比一原版(USF毕业证)旧金山大学毕业证如何办理一比一原版(USF毕业证)旧金山大学毕业证如何办理
一比一原版(USF毕业证)旧金山大学毕业证如何办理
uqyfuc
 
FULL STACK PROGRAMMING - Both Front End and Back End
FULL STACK PROGRAMMING - Both Front End and Back EndFULL STACK PROGRAMMING - Both Front End and Back End
FULL STACK PROGRAMMING - Both Front End and Back End
PreethaV16
 
Generative AI Use cases applications solutions and implementation.pdf
Generative AI Use cases applications solutions and implementation.pdfGenerative AI Use cases applications solutions and implementation.pdf
Generative AI Use cases applications solutions and implementation.pdf
mahaffeycheryld
 
smart pill dispenser is designed to improve medication adherence and safety f...
smart pill dispenser is designed to improve medication adherence and safety f...smart pill dispenser is designed to improve medication adherence and safety f...
smart pill dispenser is designed to improve medication adherence and safety f...
um7474492
 
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
PriyankaKilaniya
 
Unit -II Spectroscopy - EC I B.Tech.pdf
Unit -II Spectroscopy - EC  I B.Tech.pdfUnit -II Spectroscopy - EC  I B.Tech.pdf
Unit -II Spectroscopy - EC I B.Tech.pdf
TeluguBadi
 
Open Channel Flow: fluid flow with a free surface
Open Channel Flow: fluid flow with a free surfaceOpen Channel Flow: fluid flow with a free surface
Open Channel Flow: fluid flow with a free surface
Indrajeet sahu
 
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
Paris Salesforce Developer Group
 
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
upoux
 
Ericsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.pptEricsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.ppt
wafawafa52
 
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdfAsymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
felixwold
 
Zener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and ApplicationsZener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and Applications
Shiny Christobel
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
ecqow
 
openshift technical overview - Flow of openshift containerisatoin
openshift technical overview - Flow of openshift containerisatoinopenshift technical overview - Flow of openshift containerisatoin
openshift technical overview - Flow of openshift containerisatoin
snaprevwdev
 
This study Examines the Effectiveness of Talent Procurement through the Imple...
This study Examines the Effectiveness of Talent Procurement through the Imple...This study Examines the Effectiveness of Talent Procurement through the Imple...
This study Examines the Effectiveness of Talent Procurement through the Imple...
DharmaBanothu
 
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptxSENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
b0754201
 
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
OKORIE1
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
21UME003TUSHARDEB
 

Recently uploaded (20)

Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
 
Digital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptxDigital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptx
 
一比一原版(USF毕业证)旧金山大学毕业证如何办理
一比一原版(USF毕业证)旧金山大学毕业证如何办理一比一原版(USF毕业证)旧金山大学毕业证如何办理
一比一原版(USF毕业证)旧金山大学毕业证如何办理
 
FULL STACK PROGRAMMING - Both Front End and Back End
FULL STACK PROGRAMMING - Both Front End and Back EndFULL STACK PROGRAMMING - Both Front End and Back End
FULL STACK PROGRAMMING - Both Front End and Back End
 
Generative AI Use cases applications solutions and implementation.pdf
Generative AI Use cases applications solutions and implementation.pdfGenerative AI Use cases applications solutions and implementation.pdf
Generative AI Use cases applications solutions and implementation.pdf
 
smart pill dispenser is designed to improve medication adherence and safety f...
smart pill dispenser is designed to improve medication adherence and safety f...smart pill dispenser is designed to improve medication adherence and safety f...
smart pill dispenser is designed to improve medication adherence and safety f...
 
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
 
Unit -II Spectroscopy - EC I B.Tech.pdf
Unit -II Spectroscopy - EC  I B.Tech.pdfUnit -II Spectroscopy - EC  I B.Tech.pdf
Unit -II Spectroscopy - EC I B.Tech.pdf
 
Open Channel Flow: fluid flow with a free surface
Open Channel Flow: fluid flow with a free surfaceOpen Channel Flow: fluid flow with a free surface
Open Channel Flow: fluid flow with a free surface
 
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
 
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
 
Ericsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.pptEricsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.ppt
 
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdfAsymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
 
Zener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and ApplicationsZener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and Applications
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
 
openshift technical overview - Flow of openshift containerisatoin
openshift technical overview - Flow of openshift containerisatoinopenshift technical overview - Flow of openshift containerisatoin
openshift technical overview - Flow of openshift containerisatoin
 
This study Examines the Effectiveness of Talent Procurement through the Imple...
This study Examines the Effectiveness of Talent Procurement through the Imple...This study Examines the Effectiveness of Talent Procurement through the Imple...
This study Examines the Effectiveness of Talent Procurement through the Imple...
 
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptxSENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
 
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
 

Csl11 11 f15

  • 1. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Control Systems B.Madhuri
  • 2. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Second order system H(s) G(s) R(s) C(s)+ - 𝐺 𝑠 = 𝜔 𝑛 2 𝑠(𝑠 + 2𝜉𝜔 𝑛) 22 2 2)( )( nn n sssR sC     If H(s)=1
  • 3. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Steady-State Error Definition Steady-state error is the difference between the input and the output for a prescribed test input as time approaches infinity
  • 4. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Steady-State Error - Test Input 1.Step input 2.Ramp input 3.Parabolic input
  • 5. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Steady-State Error – Introduction
  • 6. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Evaluating Steady-State Error Steady-state error analysis only applicable when the system response is stable. Unstable system cannot be analyzed for steady-state error
  • 7. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Evaluating Steady-State Error – Step input Error = 0 Error = constant
  • 8. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Evaluating Steady-State Error – Ramp input Error = 0 Error = constant Error = ∞
  • 9. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Evaluating Steady-State Error – General Block Diagram E(s) = R(s) – C(s) E(s) = R(s) – C(s) General Representation (unity and non-unity feedback) Unity feedback System Error Calculation
  • 10. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Evaluating Steady-State Error – Sources of Error 1.Non-linear elements 2.System configuration 3.Type of applied input
  • 11. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Evaluating Steady-State Error – Sources of Error by System Configuration Since K is nonzero and positive, e(t) will never be zero for a step input K te K te KsK s K sR sE sRsKEsE sKEsC sCsRsE t               1 1 )( 1 1 )( )1( 1 1 1 1 )( )( )()()( )()( )()()( The pure gain configuration will never produce zero steady-state error.
  • 12. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Evaluating Steady-State Error – Sources of Error by System Configuration Since K is nonzero and positive, e(t) will always approach zero for a step input. The integrator configuration will always produce zero steady-state error. 0)( )( 1 1 )( 1 )( )( )()()( )()( )()()(                t Kt te ete Ks s Ks s s Ks sR s K sR sE sRsE s K sE sE s K sC sCsRsE
  • 13. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Steady-State Error for Unity Feedback System Using Closed Loop Transfer Function  )(1)()( )()()()( )()()( )()()( sTsRsE sTsRsRsE sTsRsC sCsRsE     Since we are interested to find the steady-state error (not the transient error), we can use final value theorem
  • 14. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Steady-State Error for Unity Feedback System Using Closed Loop Transfer Function )(lim)(lim)( 0 ssEtee st   Final Value Theorem  )(1)(lim)(lim)( 00 sTssRssEe ss  
  • 15. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Steady-State Error for Unity Feedback System Using Closed Loop Transfer Function - Example s sR ss sT 1 )( 107 5 )( 2    Find steady-state error?   5.0 107 5 1) 1 (lim)( )(1)()(lim)( 20 0            sss se sTssRssEe s s
  • 16. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Steady-State Error for Unity Feedback System Using Forward Path Transfer Function )(1 )( )( )()()()( )()()( )()()( sG sR sE sRsGsEsE sGsEsC sCsRsE      By final value theorem, )(1 )( lim)(lim)( 00 sG ssR ssEe ss    No need to evaluate T(s)
  • 17. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Steady-State Error for Unity Feedback System – Step Input )(lim1 1 )(1 1 lim)(lim)( )(1 )( lim)(lim)( 0 00 00 sGsG s s ssEe sG ssR ssEe s ss ss          In order to have zero steady- state error,   )(lim 0 sG s 1)(lim ))(( ))(( )( 0 21 21      nsG pspss zszs sG s n   In order to have zero steady-state error, n must be equal or greater than one. There must exist at least one pole at origin. If n = 0, we have     21 21 0 21 21 )(lim ))(( ))(( )( pp zz sG psps zszs sG s      There is finite steady- state error
  • 18. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Steady-State Error for Unity Feedback System – Ramp Input )(lim 1 )(lim 1 )(lim1 /1 )(1 1 lim )(1 )( lim)(lim)( 000 2 000 ssGssGssG s sG s s sG ssR ssEe sss sss            In order to have zero steady-state error,   )(lim 0 ssG s 2)(lim ))(( ))(( )( 0 21 21      nssG pspss zszs sG s n   In order to have zero steady-state error, n must be equal or greater than two. There must exist at least two poles at origin.
  • 19. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Steady-State Error for Unity Feedback System – Ramp Input If n = 1, we have       21 21 21 21 00 21 21 ))(( ))(( lim)(lim ))(( ))(( )( pp zz pspss zszss ssG pspss zszs sG ss         There is finite steady-state error If n = 0, we have 0 ))(( ))(( lim)(lim ))(( ))(( )( 21 21 00 21 21             psps zszss ssG psps zszs sG ss There is infinite steady-state error )(lim 1 )( 0 ssG e s 
  • 20. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Steady-State Error for Unity Feedback System – Parabolic Input )(lim 1 )(lim 1 )(1 1 lim )(1 )( lim)(lim)( 2 0 2 0 2 3 000 sGssGsssG s s sG ssR ssEe ss sss          In order to have zero steady-state error,   )(lim 2 0 sGs s 3)(lim ))(( ))(( )( 2 0 21 21      nsGs pspss zszs sG s n   In order to have zero steady-state error, n must be equal or greater than three. There must exist at least three poles at origin. If n = 2, then finite error If n = 1 or less, then infinite error
  • 21. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Static Error Constants )(lim1 1 )( 0 sG e s step    Step input )(lim 1 )( 0 ssG e s ramp   Ramp input )(lim 1 )( 2 0 sGs e s parabola   Parabolic input Static Error ConstantSteady-state error )(lim 0 sGK s p   Position error constant Velocity error constant Acceleration error constant )(lim 2 0 sGsK s a   )(lim 0 ssGK s v   22 February 2015
  • 22. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Static Error Constants 22 )(lim 0 sGK s p   The static error constants can assume three values: 1.Zero 2.Finite constant 3.Infinity )(lim 2 0 sGsK s a  )(lim 0 ssGK s v   The value of steady-state error decreases as the value of static error constant increases p step K e   1 1 )( v ramp K e 1 )(  a parabola K e 1 )(  22 February 2015
  • 23. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION22 February 2015 Static Error Constants - Example Evaluate steady-state error constants and the steady state errors for step, ramp and parabolic inputs? 208.5 )12)(10)(8( )5)(2(500 )12)(10)(8( )5)(2(500 lim)(lim 00      sss ss sGK ss p 161.0 208.51 1 1 1 )(      p step K e 0 )12)(10)(8( )5)(2(500 lim)(lim 00      sss ss sssGK ss v 0 )12)(10)(8( )5)(2(500 lim)(lim 2 0 2 0      sss ss ssGsK ss a  0 11 )( a parabola K e  0 11 )( v ramp K e Step Input
  • 24. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Static Error Constants - Example Evaluate steady-state error constants and the steady state errors for step, ramp and parabolic inputs?      )12)(10)(8)(0( )6)(5)(2(500 )12)(10)(8( )6)(5)(2(500 lim)(lim 00 ssss sss sGK ss p 0 1 1 1 1 )(      p step K e 25.31 )12)(10)(8( )6)(5)(2(500 lim)(lim 00      ssss sss sssGK ss v 0 )12)(10)(8( )6)(5)(2(500 lim)(lim 2 0 2 0      ssss sss ssGsK ss a  0 11 )( a parabola K e 032.0 25.31 11 )(  v ramp K e
  • 25. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Static Error Constants - Example Evaluate steady-state error constants and the steady state errors for step, ramp and parabolic inputs?      )12)(10)(8( )7)(6)(5)(4)(2(500 lim)(lim 200 ssss sssss sGK ss p 0 1 1 1 1 )(      p step K e      )12)(10)(8( )7)(6)(5)(4)(2(500 lim)(lim 200 ssss sssss sssGK ss v 875 )12)(10)(8( )7)(6)(5)(4)(2(500 lim)(lim 2 2 0 2 0      ssss sssss ssGsK ss a 1014.1 875 11 )(  a parabola K e 0 11 )(    v ramp K e 22 February 2015
  • 26. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Steady-State Error for Unity Feedback System – Example Find steady-state error for input 5u(t), 5tu(t) and 5t2u(t).
  • 27. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Steady-State Error for Unity Feedback System – Example Find steady-state error for input 5u(t), 5tu(t) and 5t2u(t).
  • 28. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION H(s) G(s) R(s) C(s)+ - Steady state error for non-unity feedback system 𝑒𝑠𝑠 = lim 𝑠→0 𝑠𝑅(𝑠) 1 + 𝐺 𝑠 𝐻(𝑠)
  • 29. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION 22 February 2015 System Types System type is the value of n. n = 0, System type 0 n = 1, System type 1 n = 2, system type 2 Etc.
  • 30. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION System Types
  • 31. ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION System Types - Example Evaluate steady-state error constants and the steady state errors for step, ramp and parabolic inputs? Check for stability first )9)(7( )8(1000 )(    ss s sG 2 s 1 s 0 s 1 8063 1016 0 8063 No sign changes. Therefore, all poles are in the left-half plane. Therefore, the closed-loop system is stable.