SlideShare a Scribd company logo
Computational Motor
Control Summer School
03: State space models
for motor adaptation.
Hirokazu Tanaka
School of Information Science
Japan Institute of Science and Technology
State-space modeling of motor adaptation.
In this lecture, we will learn:
• Motor adaptation paradigms
• Continuous-time state-space models
• Discrete-time state-space models
• Controllability
• Observability
• State-space description for motor adaptation
• Multi-rate models
• Motor memory of errors
• Mirror reversal (non-error based learning)
Motor adaptation paradigms to dynamical perturbations: Force-field adaptation.
Shadmehr & Mussa-Ivaldi (1994) J Neurosci
Baseline (no field) Initial exposures
adaptation catch trials
Motor adaptation paradigms to kinematical perturbations: Visuomotor rotation.
Krakauer et al. (2000) J Neurosc; Krakauer (2009) Progress in Motor Control
Adaptation to prism displacements.
Martin et al. (1996) Brain ;Kitazawa et al. (1995) J Neurosci
Adaptation to prism displacements.
Kitazawa et al. (1995) J Neurosci
1 1n n ne e ke  1
1
1
n
in
i
e e k e


  
Continuous-time state-space models.
F ma mx 
x v
Fv a
m


 
x
v
 
  
 
x
Newton’s equation of dynamics
0 1 0
0 0 1/
x x
F
v v m
      
          
      
x Ax Bu
 x Ax Bu
State-space representation
A x B u
State-space vector
Discrete-time state-space models.
Discrete-time representation
 k k t x x
 
 
 
1 ( 1)k
k k
k k k
k k
k t
t
t
t t
   
  
   
    
x x
x x
x Ax Bu
I A x B u
1
ˆ ˆ
k k k  x Ax Bu  
 
2
2ˆ
ˆ t
t
t t
te t
e
t


  
  
 


 
A
A
A I A
B BB
t
Δt 2Δt 3Δt (k-1)Δt kΔt (k+1)Δt0
k-1 k k+10 1 2 3
time (continuous)
time steps
(discrete)
Deterministic and stochastic state-space models.
1k k k
k k
  


x Ax Bu
z Cx
1
k
kk k
kk
k   

 
w
v
x Ax Bu
z Cx
Deterministic Stochastic
XkXk-1 Xk+1
zk-1 zk zk+1
uk-1 uk uk+1
Linear time-variant and time-invariant state-space models.
1k k k
k k
k k
k
  


x x u
xCz
A B
Time-variant model
1k k k
k k
  


x x u
xCz
A B
Time-invariant model
Throughout these lectures, we will use linear time-invariant (LTI) models
for mathematical simplicity.
State-space models in an explicit component form.
1k k k  x Ax Bu
k kz Cx
1, 1
2, 1
, 1
k
k
N k
x
x
x



1,
2,
,
k
k
N k
x
x
x
11 12 1
21 21
11 1
N
N
a a a
a a
a a
11
21
1
1
L
N NL
b b
b
b b
1
L
u
u
= +
1,
2,
,
k
k
N k
x
x
x
1
M
z
z
11 12 1
1 112
N
MM
c c c
c c c
=
Process equation
Measurement equation
N vector N×N matrix N vector N×L matrix L vector
M vector M×N matrix N vector
Controllability: the ability of driving a system into desired final state.
1k k k  x Ax Bu
, , ,N L N N
k k
N L 
   x u A B
Controllability is the ability of external inputs {uk} to drive a state from any
initial condition to any final condition in a finite time. A state-space model
is controllable if the N×NL controllability matrix has full row rank:
2 1n
   B AB A B A B
Sketch of proof:
0
1 1
2
2 2 1
1
1
0
2
N N N
N N
NN
N
N
N
 
  


 
  
 
 
       
 
 
x Ax Bu
A x ABu Bu
u
u
A x B AB A B
u
Kalman (1963) SIAM J Contr
Observability: determining hidden state from measurements.
k kz Cx
, ,N M N
k
M
k

  x z C
Observability is the ability to determine a (latent) state from a sequence
of measurements {zk}. A state space model is called observable if the
MN×N observability has full rank N:
Kalman (1963) SIAM J Contr
1N 
 
 
 
 



 
C
CA
C A
State-space models for dynamic (force-field) motor adaptation.
Thoroughman & Shadmehr (2000) Nature; Donchin et al. (2003) J Neurosci
1n n n
n n n
  
 
x Ax Bu
z Cx Du
State-space models for dynamic (force-field) motor adaptation.
Thoroughman & Shadmehr (2000) Nature; Donchin et al. (2003) J Neurosci
1n n n
n n n
  
 
x Ax Bu
z Cx Du
State-space models for kinematic (visual rotation) motor adaptation.
Tanaka et al. (2006) J Neurophysiol
T
1k k k k
k k k
z
z
   

x Ax BH
H x
Trial-by-trial generalization width reflects directional tuning width.
   
 
 
 
1
1i i N
i
N
g
g
g

 

 
 
   
  
r r r r Rg
 T
k k k  rR g
         1 1 1
T
k k k k k k k k        R R g R g gr g
Suppose that, for target direction θ, the motor output is a weighted sum of
population activity {gi(θ)} multiplied with preferred directions {ri}:
A gradient descent learning rule specifies the change of preferred directions
according to the movement error Δrk and the population activity {g(θk)} :
This change affects the motor output at the next trial as:
Two-rate model of motor adaptation: fast and slow learners.
Smith et al. (2006) PLoS Biol
1n n nu  x Ax B
 
 
 
 
 
 
 
 
f ff f
1
s ss s
1
0
0
n n
n
n n
x xa b
u
x xa b


      
       
      
      
n nz  Cx
 
 
 
   
f
f s1
1 1s
1
1 1 n
n n n
n
x
z x x
x

 

 
   
 
 
       f s s f
,a a b b 
There are two learners in the brain; the fast learner (x(f)) learns
quickly but forgets quickly, while slow learner (x(s)) learns slowly
but maintains its memory longer.
Motor output is a sum of the fast
and slow learners.
State vector consists of fast
(x(f)) and slow learners (x(s)).
The model explains savings, spontaneous recovery.
Smith et al. (2006) PLoS Biol
Savings Spontaneous recovery
The prediction of spontaneous recovery is confirmed in humans.
Smith et al. (2006) PLoS Biol
The slow process contributes to motor memory consolidation.
Joiner & Smith (2008) J Neurophysiol
The slow process, but not the fast process, contributes to motor memory consolidation.
Explicit (strategic) and implicit (error-based) learning.
Mazzoni & Krakauer (2006) J Neurosci
Strategy (aiming the adjacent target) cancels the “error” without
any adaptation!
Explicit (strategic) and implicit (error-based) learning.
Mazzoni & Krakauer (2006) J Neurosci
Explicit (strategic) and implicit (error-based) learning.
Mazzoni & Krakauer (2006) J Neurosci
What is “motor error?”: Aiming error and target error.
Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res
State-space model for strategic and error-based learning.
Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res
yn: target direction
rn: rotation angle
xn: adaptation variable
sn: strategy variable
yn
sn
sn-rn+xn
 aiming
n n n nn n ne s s r x r x    
     target
n n n n n n nn ne y s r x y sx r     
aiming
netarget
ne
State-space model for strategic and error-based learning.
Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res
yn
sn
sn-rn+xn
 aiming
n n n nn n ne s s r x r x    
     target
n n n n n n nn ne y s r x y sx r     
aiming
netarget
ne
aiming
targ
1
e
1
t
n n n
nn n
x ax be
s cs de


 
 
a=0.99, b=0.015,
c=0.999, d=0.022
Steepest descent learning rule for optimization.
Lecture 6, in Neural Networks for Machine Learning, Geoff Hinton
E
( 1) ( )n n E
 
 

w w
w
optimum
E
w
E
w
Descent learning rule:
RPROP: Adjustment of learning rate.
E
w
gradient
learning rate
     
1  1 
Motor memory of experienced errors.
Herzfeld et al. (2014) Science
( ) ( ) ( )
( 1) ( ) ( ) ( )
ˆ
ˆ ˆ
n n n
n n n n
e y y
x ax e
  

 
( )
( )
( )
( )
( )
: perturbation
ˆ : estimated perturbation ("belief")
: sensory consequence
ˆ : predicted sensory consequence
: control signal
n
n
n
n
n
x
x
y
y
u
State-space model: memory of environments
Population-coding model: memory of errors
 ( ) ( )n n
i i
i
w g e    
 
2
2
exp
2
i
i
e e
g e

 
  
 
 
 
 
   
( 1)
( 1) ( 1) ( 1) ( )
T ( 1) ( 1)
sgn
n
n n n n
n n
e
e e
e e


  
 
 
g
w w
g g error
activity
w1 w2 w3 wn
η
Motor memory of experienced errors.
Herzfeld et al. (2014) Science
Displacement and left-right reversal: Why so different?
Martin et al. (1996) Brain; Sekiyama et al. (2000) Nature
Displacement prism
… takes only few dozen trials. … takes a few weeks.
Left-right reversed prism
Day 3
Day 34
Mirror reversal: a distinct form of motor adaptation?
Taglen et al. (2014) J Neurosci; Lilicrap et al. (2013) Exp Brain Res
Movement number Movement number
Absoluteerror
Absoluteerror
Visual rotation Mirror reversal
Summary
• A state-space model consists of a process equation
(temporal transition) and an observation equation
(measurement).
• Humans are flexible to a novel environment, known as
motor adaptation, such as perturbations of force fields
and visual transformation.
• State-space modeling has been very successful in
describing trial-by-trial adaptation processes in humans.
References
• Thoroughman, K. A., & Shadmehr, R. (2000). Learning of action through adaptive combination of motor primitives. Nature,
407(6805), 742-747.
• Donchin, O., Francis, J. T., & Shadmehr, R. (2003). Quantifying generalization from trial-by-trial behavior of adaptive systems
that learn with basis functions: theory and experiments in human motor control. The Journal of Neuroscience, 23(27),
9032-9045.
• Tanaka, H., Sejnowski, T. J., & Krakauer, J. W. (2009). Adaptation to visuomotor rotation through interaction between
posterior parietal and motor cortical areas. Journal of Neurophysiology, 102(5), 2921-2932.
• Smith, M. A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie
short-term motor learning. PLoS Biol, 4(6), e179.
• Joiner, W. M., & Smith, M. A. (2008). Long-term retention explained by a model of short-term learning in the adaptive
control of reaching. Journal of Neurophysiology, 100(5), 2948-2955.
• Inoue, M., Uchimura, M., Karibe, A., O'Shea, J., Rossetti, Y., & Kitazawa, S. (2015). Three timescales in prism adaptation.
Journal of Neurophysiology, 113(1), 328-338.
• Mazzoni, P., & Krakauer, J. W. (2006). An implicit plan overrides an explicit strategy during visuomotor adaptation. The
Journal of Neuroscience, 26(14), 3642-3645.
• Taylor, J. A., & Ivry, R. B. (2011). Flexible cognitive strategies during motor learning. PLoS Comput Biol, 7(3), e1001096-
e1001096.
• Taylor, J. A., & Ivry, R. B. (2014). Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement
learning. Progress in Brain Research, 210, 217.
• Taylor, J. A., Krakauer, J. W., & Ivry, R. B. (2014). Explicit and implicit contributions to learning in a sensorimotor adaptation
task. The Journal of Neuroscience, 34(8), 3023-3032.
• Telgen, S., Parvin, D., & Diedrichsen, J. (2014). Telgen, S., Parvin, D., & Diedrichsen, J. (2014). Mirror reversal and visual
rotation are learned and consolidated via separate mechanisms: Recalibrating or learning de novo?. The Journal of
Neuroscience, 34(41), 13768-13779.?. The Journal of Neuroscience, 34(41), 13768-13779.
• Lillicrap, T. P., Moreno-Briseño, P., Diaz, R., Tweed, D. B., Troje, N. F., & Fernandez-Ruiz, J. (2013). Adapting to inversion of
the visual field: a new twist on an old problem. Experimental Brain Research, 228(3), 327-339.
• Ostry, D. J., Darainy, M., Mattar, A. A., Wong, J., & Gribble, P. L. (2010). Somatosensory plasticity and motor learning. The
Journal of Neuroscience, 30(15), 5384-5393.
Exercise
• Simulate the state-space model proposed by Taylor and
Ivry.
• Mirror reversal is different from most adaptation
paradigms in that learning from error worsens the
performance. Can we consider a state-space model for
mirror reversal?

More Related Content

What's hot

제어-물리적시스템의 수학적모델링
제어-물리적시스템의 수학적모델링제어-물리적시스템의 수학적모델링
제어-물리적시스템의 수학적모델링
jdo
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
Knoldus Inc.
 
Sobrecarga de Métodos
Sobrecarga de MétodosSobrecarga de Métodos
Sobrecarga de Métodos
Fernando Morante
 
EEG analysis and Machine Learning
EEG  analysis and Machine LearningEEG  analysis and Machine Learning
EEG analysis and Machine Learning
Abbas Badran
 
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
ABDERRAHMANE REGGAD
 
Methods for computing partial charges
Methods for computing partial chargesMethods for computing partial charges
Methods for computing partial charges
Jiahao Chen
 
Artifacts & Normal variants in EEG
Artifacts & Normal variants in EEGArtifacts & Normal variants in EEG
Artifacts & Normal variants in EEG
shahanaz ahamed
 
Neural Networks: Support Vector machines
Neural Networks: Support Vector machinesNeural Networks: Support Vector machines
Neural Networks: Support Vector machines
Mostafa G. M. Mostafa
 
Recurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRURecurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRU
ananth
 
Deep learning (2)
Deep learning (2)Deep learning (2)
Deep learning (2)
Muhanad Al-khalisy
 
Hotel Management system in C++
Hotel Management system in C++ Hotel Management system in C++
Hotel Management system in C++
Prince Kumar
 
Javascript
JavascriptJavascript
Javascript
Nagarajan
 
Image Indexing and Retrieval
Image Indexing and RetrievalImage Indexing and Retrieval
Image Indexing and Retrieval
Rachmat Wahid Saleh Insani
 

What's hot (15)

제어-물리적시스템의 수학적모델링
제어-물리적시스템의 수학적모델링제어-물리적시스템의 수학적모델링
제어-물리적시스템의 수학적모델링
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
 
Normal awake and sleep EEG
Normal awake and sleep EEGNormal awake and sleep EEG
Normal awake and sleep EEG
 
Sobrecarga de Métodos
Sobrecarga de MétodosSobrecarga de Métodos
Sobrecarga de Métodos
 
EEG analysis and Machine Learning
EEG  analysis and Machine LearningEEG  analysis and Machine Learning
EEG analysis and Machine Learning
 
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
 
Methods for computing partial charges
Methods for computing partial chargesMethods for computing partial charges
Methods for computing partial charges
 
Artifacts & Normal variants in EEG
Artifacts & Normal variants in EEGArtifacts & Normal variants in EEG
Artifacts & Normal variants in EEG
 
Neural Networks: Support Vector machines
Neural Networks: Support Vector machinesNeural Networks: Support Vector machines
Neural Networks: Support Vector machines
 
GSM Report_2013
GSM Report_2013GSM Report_2013
GSM Report_2013
 
Recurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRURecurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRU
 
Deep learning (2)
Deep learning (2)Deep learning (2)
Deep learning (2)
 
Hotel Management system in C++
Hotel Management system in C++ Hotel Management system in C++
Hotel Management system in C++
 
Javascript
JavascriptJavascript
Javascript
 
Image Indexing and Retrieval
Image Indexing and RetrievalImage Indexing and Retrieval
Image Indexing and Retrieval
 

Viewers also liked

Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
hirokazutanaka
 
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)Computational Motor Control: Kinematics & Dynamics (JAIST summer course)
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)
hirokazutanaka
 
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
hirokazutanaka
 
Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course) Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course)
hirokazutanaka
 
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
hirokazutanaka
 
A Non Linear Model to explain persons with Stroke
A Non Linear Model to explain persons with StrokeA Non Linear Model to explain persons with Stroke
A Non Linear Model to explain persons with Stroke
Hariohm Pandian
 
Slow and large: Dynamics in migraine and opportunities to intervene
Slow and large: Dynamics in migraine and opportunities to interveneSlow and large: Dynamics in migraine and opportunities to intervene
Slow and large: Dynamics in migraine and opportunities to intervene
MPI Dresden / HU Berlin
 
Migraine: A dynamics disease
Migraine: A dynamics diseaseMigraine: A dynamics disease
Migraine: A dynamics disease
MPI Dresden / HU Berlin
 
From epilepsy to migraine to stroke: A unifying framework.
From epilepsy to migraine to stroke: A unifying framework. From epilepsy to migraine to stroke: A unifying framework.
From epilepsy to migraine to stroke: A unifying framework.
MPI Dresden / HU Berlin
 
Reentrant and retracting waves of cortical spreading depression in migraine
Reentrant and retracting waves of cortical spreading depression in migraineReentrant and retracting waves of cortical spreading depression in migraine
Reentrant and retracting waves of cortical spreading depression in migraine
MPI Dresden / HU Berlin
 
Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)
hirokazutanaka
 
A Prediction Technique for Chaotic Time Series
A Prediction Technique for Chaotic Time SeriesA Prediction Technique for Chaotic Time Series
A Prediction Technique for Chaotic Time Series
Suhel Mulla
 
Differentiation and Linearization
Differentiation and LinearizationDifferentiation and Linearization
Differentiation and Linearization
RAVI PRASAD K.J.
 
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
Boris Fackovec
 
Migraine: A dynamical disease
Migraine: A dynamical diseaseMigraine: A dynamical disease
Migraine: A dynamical disease
MPI Dresden / HU Berlin
 
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
Recurrence Quantification Analysis :Tutorial & application to eye-movement dataRecurrence Quantification Analysis :Tutorial & application to eye-movement data
Recurrence Quantification Analysis : Tutorial & application to eye-movement dataDeb Aks
 
Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05
Charlton Inao
 
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron modelsJAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
hirokazutanaka
 
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
JAISTサマースクール2016「脳を知るための理論」講義03 Network DynamicsJAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
hirokazutanaka
 
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
hirokazutanaka
 

Viewers also liked (20)

Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
 
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)Computational Motor Control: Kinematics & Dynamics (JAIST summer course)
Computational Motor Control: Kinematics & Dynamics (JAIST summer course)
 
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
 
Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course) Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course)
 
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
 
A Non Linear Model to explain persons with Stroke
A Non Linear Model to explain persons with StrokeA Non Linear Model to explain persons with Stroke
A Non Linear Model to explain persons with Stroke
 
Slow and large: Dynamics in migraine and opportunities to intervene
Slow and large: Dynamics in migraine and opportunities to interveneSlow and large: Dynamics in migraine and opportunities to intervene
Slow and large: Dynamics in migraine and opportunities to intervene
 
Migraine: A dynamics disease
Migraine: A dynamics diseaseMigraine: A dynamics disease
Migraine: A dynamics disease
 
From epilepsy to migraine to stroke: A unifying framework.
From epilepsy to migraine to stroke: A unifying framework. From epilepsy to migraine to stroke: A unifying framework.
From epilepsy to migraine to stroke: A unifying framework.
 
Reentrant and retracting waves of cortical spreading depression in migraine
Reentrant and retracting waves of cortical spreading depression in migraineReentrant and retracting waves of cortical spreading depression in migraine
Reentrant and retracting waves of cortical spreading depression in migraine
 
Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)
 
A Prediction Technique for Chaotic Time Series
A Prediction Technique for Chaotic Time SeriesA Prediction Technique for Chaotic Time Series
A Prediction Technique for Chaotic Time Series
 
Differentiation and Linearization
Differentiation and LinearizationDifferentiation and Linearization
Differentiation and Linearization
 
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
 
Migraine: A dynamical disease
Migraine: A dynamical diseaseMigraine: A dynamical disease
Migraine: A dynamical disease
 
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
Recurrence Quantification Analysis :Tutorial & application to eye-movement dataRecurrence Quantification Analysis :Tutorial & application to eye-movement data
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
 
Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05
 
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron modelsJAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
 
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
JAISTサマースクール2016「脳を知るための理論」講義03 Network DynamicsJAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
 
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
 

Similar to Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

bmi SP.ppt
bmi SP.pptbmi SP.ppt
bmi SP.ppt
UzmaBano10
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01laboratoridalbasso
 
Manish Kurse PhD research slides
Manish Kurse PhD research slidesManish Kurse PhD research slides
Manish Kurse PhD research slides
manishkurse
 
PR12-225 Discovering Physical Concepts With Neural Networks
PR12-225 Discovering Physical Concepts With Neural NetworksPR12-225 Discovering Physical Concepts With Neural Networks
PR12-225 Discovering Physical Concepts With Neural Networks
Kyunghoon Jung
 
Introduction to fMRI
Introduction to fMRIIntroduction to fMRI
Introduction to fMRI
Katharina Seidl-Rathkopf
 
EC Presentation _ ID_ 201-15-14294
EC Presentation _ ID_ 201-15-14294EC Presentation _ ID_ 201-15-14294
EC Presentation _ ID_ 201-15-14294
SajidulIslamAkash
 
Straus r7-Software Dynamics Analysis
Straus r7-Software Dynamics AnalysisStraus r7-Software Dynamics Analysis
Straus r7-Software Dynamics Analysis
gulilero
 
A03401001005
A03401001005A03401001005
A03401001005
theijes
 
Sampling based motion planning method and shallow survey
Sampling based motion planning method and shallow surveySampling based motion planning method and shallow survey
Sampling based motion planning method and shallow survey
ssuser165ef9
 
Deep learning-for-pose-estimation-wyang-defense
Deep learning-for-pose-estimation-wyang-defenseDeep learning-for-pose-estimation-wyang-defense
Deep learning-for-pose-estimation-wyang-defense
Wei Yang
 
Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...
Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...
Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...
Beniamino Murgante
 
Limamali
LimamaliLimamali
Limamali
alilimam
 
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURONANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
csandit
 
Analysis of a chaotic spiking neural model the nds neuron
Analysis of a chaotic spiking neural model  the nds neuronAnalysis of a chaotic spiking neural model  the nds neuron
Analysis of a chaotic spiking neural model the nds neuron
csandit
 
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURONANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
cscpconf
 
Detection of jargon words in a text using semi supervised learning
Detection of jargon words in a text using semi supervised learningDetection of jargon words in a text using semi supervised learning
Detection of jargon words in a text using semi supervised learning
csandit
 
Analysis of large scale spiking networks dynamics with spatio-temporal constr...
Analysis of large scale spiking networks dynamics with spatio-temporal constr...Analysis of large scale spiking networks dynamics with spatio-temporal constr...
Analysis of large scale spiking networks dynamics with spatio-temporal constr...
Hassan Nasser
 
Lecture 4 neural networks
Lecture 4 neural networksLecture 4 neural networks
Lecture 4 neural networks
ParveenMalik18
 
Physics class 11 chapter 3 alakh pandey honest
Physics class 11 chapter 3 alakh pandey honestPhysics class 11 chapter 3 alakh pandey honest
Physics class 11 chapter 3 alakh pandey honest
pixelyuo
 

Similar to Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course) (20)

bmi SP.ppt
bmi SP.pptbmi SP.ppt
bmi SP.ppt
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01
 
Manish Kurse PhD research slides
Manish Kurse PhD research slidesManish Kurse PhD research slides
Manish Kurse PhD research slides
 
PR12-225 Discovering Physical Concepts With Neural Networks
PR12-225 Discovering Physical Concepts With Neural NetworksPR12-225 Discovering Physical Concepts With Neural Networks
PR12-225 Discovering Physical Concepts With Neural Networks
 
Introduction to fMRI
Introduction to fMRIIntroduction to fMRI
Introduction to fMRI
 
EC Presentation _ ID_ 201-15-14294
EC Presentation _ ID_ 201-15-14294EC Presentation _ ID_ 201-15-14294
EC Presentation _ ID_ 201-15-14294
 
Straus r7-Software Dynamics Analysis
Straus r7-Software Dynamics AnalysisStraus r7-Software Dynamics Analysis
Straus r7-Software Dynamics Analysis
 
Technical
TechnicalTechnical
Technical
 
A03401001005
A03401001005A03401001005
A03401001005
 
Sampling based motion planning method and shallow survey
Sampling based motion planning method and shallow surveySampling based motion planning method and shallow survey
Sampling based motion planning method and shallow survey
 
Deep learning-for-pose-estimation-wyang-defense
Deep learning-for-pose-estimation-wyang-defenseDeep learning-for-pose-estimation-wyang-defense
Deep learning-for-pose-estimation-wyang-defense
 
Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...
Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...
Theories and Applications of Spatial-Temporal Data Mining and Knowledge Disco...
 
Limamali
LimamaliLimamali
Limamali
 
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURONANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
 
Analysis of a chaotic spiking neural model the nds neuron
Analysis of a chaotic spiking neural model  the nds neuronAnalysis of a chaotic spiking neural model  the nds neuron
Analysis of a chaotic spiking neural model the nds neuron
 
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURONANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
ANALYSIS OF A CHAOTIC SPIKING NEURAL MODEL : THE NDS NEURON
 
Detection of jargon words in a text using semi supervised learning
Detection of jargon words in a text using semi supervised learningDetection of jargon words in a text using semi supervised learning
Detection of jargon words in a text using semi supervised learning
 
Analysis of large scale spiking networks dynamics with spatio-temporal constr...
Analysis of large scale spiking networks dynamics with spatio-temporal constr...Analysis of large scale spiking networks dynamics with spatio-temporal constr...
Analysis of large scale spiking networks dynamics with spatio-temporal constr...
 
Lecture 4 neural networks
Lecture 4 neural networksLecture 4 neural networks
Lecture 4 neural networks
 
Physics class 11 chapter 3 alakh pandey honest
Physics class 11 chapter 3 alakh pandey honestPhysics class 11 chapter 3 alakh pandey honest
Physics class 11 chapter 3 alakh pandey honest
 

More from hirokazutanaka

東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
hirokazutanaka
 
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
hirokazutanaka
 
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
hirokazutanaka
 
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
hirokazutanaka
 
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
hirokazutanaka
 
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
hirokazutanaka
 
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
hirokazutanaka
 
東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2
hirokazutanaka
 
東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1
hirokazutanaka
 
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rulesJAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
hirokazutanaka
 

More from hirokazutanaka (10)

東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
 
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
 
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
 
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
 
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
 
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
 
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
 
東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2
 
東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1
 
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rulesJAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
 

Recently uploaded

(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
Scintica Instrumentation
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
ronaldlakony0
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
Nistarini College, Purulia (W.B) India
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
IqrimaNabilatulhusni
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Areesha Ahmad
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
fafyfskhan251kmf
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
sanjana502982
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Studia Poinsotiana
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
sachin783648
 

Recently uploaded (20)

(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
 

Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

  • 1. Computational Motor Control Summer School 03: State space models for motor adaptation. Hirokazu Tanaka School of Information Science Japan Institute of Science and Technology
  • 2. State-space modeling of motor adaptation. In this lecture, we will learn: • Motor adaptation paradigms • Continuous-time state-space models • Discrete-time state-space models • Controllability • Observability • State-space description for motor adaptation • Multi-rate models • Motor memory of errors • Mirror reversal (non-error based learning)
  • 3. Motor adaptation paradigms to dynamical perturbations: Force-field adaptation. Shadmehr & Mussa-Ivaldi (1994) J Neurosci Baseline (no field) Initial exposures adaptation catch trials
  • 4. Motor adaptation paradigms to kinematical perturbations: Visuomotor rotation. Krakauer et al. (2000) J Neurosc; Krakauer (2009) Progress in Motor Control
  • 5. Adaptation to prism displacements. Martin et al. (1996) Brain ;Kitazawa et al. (1995) J Neurosci
  • 6. Adaptation to prism displacements. Kitazawa et al. (1995) J Neurosci 1 1n n ne e ke  1 1 1 n in i e e k e     
  • 7. Continuous-time state-space models. F ma mx  x v Fv a m     x v        x Newton’s equation of dynamics 0 1 0 0 0 1/ x x F v v m                          x Ax Bu  x Ax Bu State-space representation A x B u State-space vector
  • 8. Discrete-time state-space models. Discrete-time representation  k k t x x       1 ( 1)k k k k k k k k k t t t t t                 x x x x x Ax Bu I A x B u 1 ˆ ˆ k k k  x Ax Bu     2 2ˆ ˆ t t t t te t e t               A A A I A B BB t Δt 2Δt 3Δt (k-1)Δt kΔt (k+1)Δt0 k-1 k k+10 1 2 3 time (continuous) time steps (discrete)
  • 9. Deterministic and stochastic state-space models. 1k k k k k      x Ax Bu z Cx 1 k kk k kk k       w v x Ax Bu z Cx Deterministic Stochastic XkXk-1 Xk+1 zk-1 zk zk+1 uk-1 uk uk+1
  • 10. Linear time-variant and time-invariant state-space models. 1k k k k k k k k      x x u xCz A B Time-variant model 1k k k k k      x x u xCz A B Time-invariant model Throughout these lectures, we will use linear time-invariant (LTI) models for mathematical simplicity.
  • 11. State-space models in an explicit component form. 1k k k  x Ax Bu k kz Cx 1, 1 2, 1 , 1 k k N k x x x    1, 2, , k k N k x x x 11 12 1 21 21 11 1 N N a a a a a a a 11 21 1 1 L N NL b b b b b 1 L u u = + 1, 2, , k k N k x x x 1 M z z 11 12 1 1 112 N MM c c c c c c = Process equation Measurement equation N vector N×N matrix N vector N×L matrix L vector M vector M×N matrix N vector
  • 12. Controllability: the ability of driving a system into desired final state. 1k k k  x Ax Bu , , ,N L N N k k N L     x u A B Controllability is the ability of external inputs {uk} to drive a state from any initial condition to any final condition in a finite time. A state-space model is controllable if the N×NL controllability matrix has full row rank: 2 1n    B AB A B A B Sketch of proof: 0 1 1 2 2 2 1 1 1 0 2 N N N N N NN N N N                             x Ax Bu A x ABu Bu u u A x B AB A B u Kalman (1963) SIAM J Contr
  • 13. Observability: determining hidden state from measurements. k kz Cx , ,N M N k M k    x z C Observability is the ability to determine a (latent) state from a sequence of measurements {zk}. A state space model is called observable if the MN×N observability has full rank N: Kalman (1963) SIAM J Contr 1N               C CA C A
  • 14. State-space models for dynamic (force-field) motor adaptation. Thoroughman & Shadmehr (2000) Nature; Donchin et al. (2003) J Neurosci 1n n n n n n      x Ax Bu z Cx Du
  • 15. State-space models for dynamic (force-field) motor adaptation. Thoroughman & Shadmehr (2000) Nature; Donchin et al. (2003) J Neurosci 1n n n n n n      x Ax Bu z Cx Du
  • 16. State-space models for kinematic (visual rotation) motor adaptation. Tanaka et al. (2006) J Neurophysiol T 1k k k k k k k z z      x Ax BH H x
  • 17. Trial-by-trial generalization width reflects directional tuning width.           1 1i i N i N g g g                r r r r Rg  T k k k  rR g          1 1 1 T k k k k k k k k        R R g R g gr g Suppose that, for target direction θ, the motor output is a weighted sum of population activity {gi(θ)} multiplied with preferred directions {ri}: A gradient descent learning rule specifies the change of preferred directions according to the movement error Δrk and the population activity {g(θk)} : This change affects the motor output at the next trial as:
  • 18. Two-rate model of motor adaptation: fast and slow learners. Smith et al. (2006) PLoS Biol 1n n nu  x Ax B                 f ff f 1 s ss s 1 0 0 n n n n n x xa b u x xa b                                n nz  Cx           f f s1 1 1s 1 1 1 n n n n n x z x x x                      f s s f ,a a b b  There are two learners in the brain; the fast learner (x(f)) learns quickly but forgets quickly, while slow learner (x(s)) learns slowly but maintains its memory longer. Motor output is a sum of the fast and slow learners. State vector consists of fast (x(f)) and slow learners (x(s)).
  • 19. The model explains savings, spontaneous recovery. Smith et al. (2006) PLoS Biol Savings Spontaneous recovery
  • 20. The prediction of spontaneous recovery is confirmed in humans. Smith et al. (2006) PLoS Biol
  • 21. The slow process contributes to motor memory consolidation. Joiner & Smith (2008) J Neurophysiol The slow process, but not the fast process, contributes to motor memory consolidation.
  • 22. Explicit (strategic) and implicit (error-based) learning. Mazzoni & Krakauer (2006) J Neurosci Strategy (aiming the adjacent target) cancels the “error” without any adaptation!
  • 23. Explicit (strategic) and implicit (error-based) learning. Mazzoni & Krakauer (2006) J Neurosci
  • 24. Explicit (strategic) and implicit (error-based) learning. Mazzoni & Krakauer (2006) J Neurosci
  • 25. What is “motor error?”: Aiming error and target error. Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res
  • 26. State-space model for strategic and error-based learning. Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res yn: target direction rn: rotation angle xn: adaptation variable sn: strategy variable yn sn sn-rn+xn  aiming n n n nn n ne s s r x r x          target n n n n n n nn ne y s r x y sx r      aiming netarget ne
  • 27. State-space model for strategic and error-based learning. Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res yn sn sn-rn+xn  aiming n n n nn n ne s s r x r x          target n n n n n n nn ne y s r x y sx r      aiming netarget ne aiming targ 1 e 1 t n n n nn n x ax be s cs de       a=0.99, b=0.015, c=0.999, d=0.022
  • 28. Steepest descent learning rule for optimization. Lecture 6, in Neural Networks for Machine Learning, Geoff Hinton E ( 1) ( )n n E      w w w optimum E w E w Descent learning rule: RPROP: Adjustment of learning rate. E w gradient learning rate       1  1 
  • 29. Motor memory of experienced errors. Herzfeld et al. (2014) Science ( ) ( ) ( ) ( 1) ( ) ( ) ( ) ˆ ˆ ˆ n n n n n n n e y y x ax e       ( ) ( ) ( ) ( ) ( ) : perturbation ˆ : estimated perturbation ("belief") : sensory consequence ˆ : predicted sensory consequence : control signal n n n n n x x y y u State-space model: memory of environments Population-coding model: memory of errors  ( ) ( )n n i i i w g e       2 2 exp 2 i i e e g e                   ( 1) ( 1) ( 1) ( 1) ( ) T ( 1) ( 1) sgn n n n n n n n e e e e e          g w w g g error activity w1 w2 w3 wn η
  • 30. Motor memory of experienced errors. Herzfeld et al. (2014) Science
  • 31. Displacement and left-right reversal: Why so different? Martin et al. (1996) Brain; Sekiyama et al. (2000) Nature Displacement prism … takes only few dozen trials. … takes a few weeks. Left-right reversed prism Day 3 Day 34
  • 32. Mirror reversal: a distinct form of motor adaptation? Taglen et al. (2014) J Neurosci; Lilicrap et al. (2013) Exp Brain Res Movement number Movement number Absoluteerror Absoluteerror Visual rotation Mirror reversal
  • 33. Summary • A state-space model consists of a process equation (temporal transition) and an observation equation (measurement). • Humans are flexible to a novel environment, known as motor adaptation, such as perturbations of force fields and visual transformation. • State-space modeling has been very successful in describing trial-by-trial adaptation processes in humans.
  • 34. References • Thoroughman, K. A., & Shadmehr, R. (2000). Learning of action through adaptive combination of motor primitives. Nature, 407(6805), 742-747. • Donchin, O., Francis, J. T., & Shadmehr, R. (2003). Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control. The Journal of Neuroscience, 23(27), 9032-9045. • Tanaka, H., Sejnowski, T. J., & Krakauer, J. W. (2009). Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas. Journal of Neurophysiology, 102(5), 2921-2932. • Smith, M. A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol, 4(6), e179. • Joiner, W. M., & Smith, M. A. (2008). Long-term retention explained by a model of short-term learning in the adaptive control of reaching. Journal of Neurophysiology, 100(5), 2948-2955. • Inoue, M., Uchimura, M., Karibe, A., O'Shea, J., Rossetti, Y., & Kitazawa, S. (2015). Three timescales in prism adaptation. Journal of Neurophysiology, 113(1), 328-338. • Mazzoni, P., & Krakauer, J. W. (2006). An implicit plan overrides an explicit strategy during visuomotor adaptation. The Journal of Neuroscience, 26(14), 3642-3645. • Taylor, J. A., & Ivry, R. B. (2011). Flexible cognitive strategies during motor learning. PLoS Comput Biol, 7(3), e1001096- e1001096. • Taylor, J. A., & Ivry, R. B. (2014). Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement learning. Progress in Brain Research, 210, 217. • Taylor, J. A., Krakauer, J. W., & Ivry, R. B. (2014). Explicit and implicit contributions to learning in a sensorimotor adaptation task. The Journal of Neuroscience, 34(8), 3023-3032. • Telgen, S., Parvin, D., & Diedrichsen, J. (2014). Telgen, S., Parvin, D., & Diedrichsen, J. (2014). Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: Recalibrating or learning de novo?. The Journal of Neuroscience, 34(41), 13768-13779.?. The Journal of Neuroscience, 34(41), 13768-13779. • Lillicrap, T. P., Moreno-Briseño, P., Diaz, R., Tweed, D. B., Troje, N. F., & Fernandez-Ruiz, J. (2013). Adapting to inversion of the visual field: a new twist on an old problem. Experimental Brain Research, 228(3), 327-339. • Ostry, D. J., Darainy, M., Mattar, A. A., Wong, J., & Gribble, P. L. (2010). Somatosensory plasticity and motor learning. The Journal of Neuroscience, 30(15), 5384-5393.
  • 35. Exercise • Simulate the state-space model proposed by Taylor and Ivry. • Mirror reversal is different from most adaptation paradigms in that learning from error worsens the performance. Can we consider a state-space model for mirror reversal?