SlideShare a Scribd company logo
Computational Motor
Control Summer School
01: Kinematics, Dynamics,
and Coordinate
transformation.
Hirokazu Tanaka
School of Information Science
Japan Institute of Science and Technology
Kinematics, dynamics and coordinate transformations.
In this lecture, you will learn…
• Kinematics
• Redundancy (ill-posed) problem
• Dynamics
• Equations of motion: Euler-Lagrange & Newton-Euler
methods
• Neurophysiology: Gain fields in parietal cortex
• Coordinate transformation in the brain
• Human psychophysics experiments
Kinematics: two coordinate systems for the body.
Atkeson (1989) Ann Rev Neurosci
(x, y): Cartesian coordinates
“Extrinsic coordinates”
(θ1, θ2): Joint angle coordinates
“Intrinsic coordinates”
1.1. Forward kinematics from joint angles to Cartesian positions.
 
 
1 1 2 1 2
1 1 2 1 2
cos cos
sin sin
x l l
y l l
  
  


 

 
Atkeson (1989) Ann Rev Neurosci
Forward kinematics
= Computation of extrinsic coordinates
from intrinsic coordinates
1.1. Inverse kinematics from Cartesian positions to joint angles.
2 2 2 2
1 2
1
1 2
2 2
2
1 1 2
arccos
2
sin
arcta arctann
cos
y
l
x l l
l
l l
l
y
x




  









Atkeson (1989) Ann Rev Neurosci
Inverse kinematics
= Computation of intrinsic coordinates
from extrinsic coordinates
Ill-posedness: many-to-one mappings from joints to positions.
1.2. Dynamics = Equations of motion in joint angle and space coordinates.
 
   
   
2 2 2
1 1 2 1 1 2 2 2 1 2 1 2 2 1
2
2 2 2 2 1 2 2 2 2 1 2 1 2 2 2
2 2
2 2 2 2 2 1 2 2 1 2 2 2 2
2
2 1 2 1 2
2 cos
cos 2 sin
cos
sin
I I m r m r m l m l r
I m r m l r m l r
I m r m l r I m r
m l r
  
     
   
 
     
    
    

2 1
1 2 20 20 21 21 1 10 10 10 102 2
2 1
2
2 2 21 20 21 212
2
Z
Z
I I
m X A X A m X A X A
r r
I
m X A X A
r


 
        
 
 
    
 
Euler-Lagrange method: Dynamics based on joint angles
Newton-Euler method: Dynamics based on spatial vectors
Tanaka & Sejnowski (2013) J Neurophysiol
Dynamics based on Joint angles: Euler-Lagrange method.
   0
, ,
ft
xS x x L x dt 
     
   
0
0 0
0
0
, ,
, , ,
f
f f
f
f
t t
t
t t
t
t
L x dt L x dt
L
S x x S x x x x S x x
x
L
dt
x x
L d L L
dt
x dt
x x x
x
x
x
x x
x
  
 
 
 


 
  
    
    
        
   
 

 


0
d L L
dt x x
  
  
   0
0
ft t t
L L
x
x
x
x 
 
 
 
 
Principle of least action
Action:  ,L x xLagrangian:
Euler-Lagrange equation:
Dynamics based on Joint angles: Euler-Lagrange method.
 0 1,2
ii
d L L
i
dt  
  
   
  
     
2
2 2
2 2
1 1 1
1 1
,
2 2
i
i i i i i i j
i i j
L m X Y I  
  
 
       
 
  
1 1 1
1 1 1
cos
sin
X r
Y r





 
 
2 1 1 2 1 2
2 1 1 2 1 2
cos cos
sin sin
X l r
Y l r
  
  
   

  
       
      
 
2 2
1 1 1 1 1
2 2
1 1 2 1 2 1 1 2 1 2
2
2
1
2
21 21
1
, cos sin
2
1
cos cos sin sin
2
1 1
2 2
i i
d d
L m r r
dt dt
d d
m l r l r
dt dt
I I
 
     
  
 
 
                  
    
       
     
  
Dynamics based on Cartesian vectors: Newton-Euler method.
 
1 ,0
e
1 , 1 ,0 , 1 1
( 1, , )
i i i i
i i i i i i i i i i i i i i
F F m A
i n
m X A X F    

   
  

        I I
 
2 2 20
2 2 21 20 2 2 2 2 2
F m A
m X A   
 

     I I
 
1 1 1 10
e
1 2 1 10 10 10 2 1 1 1 1 1
F F m A
m X A X F    
  

        I I
Otten (2003) Phil Trans R Soc Lond B
Dynamics based on Cartesian vectors: Newton-Euler method.
10 10 10 10 10 10
1 1 10 10 1 12 2 2
1 1 1
21 21 21 21 21 21
2 20 20 2 22 2 2
2 2 2
X A X V X V
m X A
r r r
X A X V X V
m X A
r r r

     
       
   
     
       
   
I I
I I
21 21 21 21 21 21
2 2 21 20 2 22 2 2
2 2 2
X A X V X V
m X A
r r r

     
       
   
I I
Tanaka & Sejnowski (2013) J Neurophysiol
Equations of motion in general 3D movements:
Dynamics based on Cartesian vectors: Newton-Euler method.
10 10 21 21
1 1 10 10 1 2 20 20 22 2
1 2 Z
X A X A
m X A I m X A I
r r

  
      
 
21 21
2 2 21 20 2 2
2 Z
X A
m X A I
r

 
   
 
Tanaka & Sejnowski (2013) J Neurophysiol
Equations of motion in 2D planar movements:
Coordinate transformation problem in the brain.
Kalaska & Crammond (1992) Science
Neural pathway for visually guided reaching movements.
Haggard (2008) Nature Rev Neurosci
Equilibrium-point control: the brain may not solve the dynamics.
Feldman (2009) Encyclopedia of Neuroscience
initial
equilibrium
new
equilibrium
final
equilibrium
Joint stiffness indicates that the brain “solves” the arm dynamics.
Gomi & Kawato (1996) Science
Neurophysiology from posterior parietal cortex (area 7a).
Andersen et al. (1985) Science
Neurophysiology from posterior parietal cortex (area 7a).
Andersen et al. (1985) Science
Retinal position
Spikecounts
Position (head-centered, h)
Gazedirection(e)
   (response) g e f r 
e: gaze direction r: retinal position
Gain fields as an intermediate step for coordinate transformation?
total activity
background activity (due to eye position)
visually evoked activity Zipser & Andersen (1988) Nature
Multilayer neural network model of coordinate transformation.
Zipser & Andersen (1988) Nature
Hidden layer units exhibit gain field modulation.
Zipser & Andersen (1988) Nature
Experiment
Model
How gain fields work for coordinate transformation.
Kakei et al. (1999) Science; Kakei et al. (2003) Neurosci Res
Parietal and motor cortices exhibit distinct coordinate systems.
Haggard (2008) Nature Rev Neurosci
PRR: eye-centered reference frame (+
gain fields)
Buneo et al. (2002) Nature
PMd: relative position representation
Pesaran et al. (2006) Neuron
Area 5d: hand-centered reference
frame
Bremner & Andersen (2012) Neuron
Human psychophysics for coordinate transformation: pointing.
Soechting & Flanders (1989) J Neurophysiol
Intrinsic coordinates
η: yaw of upper arm
θ: elevation of upper arm
α: yaw of forearm
β: elevation of forearm
Extrinsic coordinates
(x, y, z): three-dim position
𝑅2
= 𝑥2
+ 𝑦2
+ 𝑧2
tan χ =
𝑥
𝑦
tan 𝜓 =
𝑧
𝑥2 + 𝑦2
Extrinsic-intrinsic transformation is linearly approximated.
Soechting & Flanders (1989) J Neurophysiol
Reaching toward remembered target in dark (inaccurate)
Reaching toward visible target in dark (accurate)
Human psychophysics: Motion planning in visual space.
Flanagan & Rao (1995) J Neurophysiol
Summary
• Movements (kinematics) and equations of motion
(dynamics) are described either in external coordinates
(i.e., external position) or in internal coordinates (i.e.,
joint coordinates).
• Mechanisms of coordinate transformation have been
examined in human psychophysics.
• Movement planning appears to be processed in visual
coordinates.
• Gain fields are the neural mechanisms for coordinate
transformations.
References
• Atkeson, C. G. (1989). Learning arm kinematics and dynamics. Annual Review of Neuroscience, 12(1), 157-183.
• Hollerbach, J. M., & Flash, T. (1982). Dynamic interactions between limb segments during planar arm movement. Biological
cybernetics, 44(1), 67-77.
• Morasso, P., Casadio, M., Mohan, V., Rea, F., & Zenzeri, J. (2015). Revisiting the body-schema concept in the context of
whole-body postural-focal dynamics. Frontiers in Human Neuroscience, 9.
• Tanaka, H., & Sejnowski, T. J. (2013). Computing reaching dynamics in motor cortex with Cartesian spatial coordinates.
Journal of neurophysiology, 109(4), 1182-1201.
• Andersen, R. A., Essick, G. K., & Siegel, R. M. (1985). Encoding of spatial location by posterior parietal neurons. Science,
230(4724), 456-458.
• Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network that simulates response properties of a
subset of posterior parietal neurons. Nature, 331(6158), 679-684.
• Chang, S. W., Papadimitriou, C., & Snyder, L. H. (2009). Using a compound gain field to compute a reach plan. Neuron,
64(5), 744-755.
• Soechting, J. F., & Flanders, M. (1989). Sensorimotor representations for pointing to targets in three-dimensional space.
Journal of Neurophysiology, 62(2), 582-594.
• Flanagan, J. R., & Rao, A. K. (1995). Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion
planning in visually perceived space. Journal of Neurophysiology, 74(5), 2174-2178.
• Andersen, R. A., Snyder, L. H., Bradley, D. C., & Xing, J. (1997). Multimodal representation of space in the posterior parietal
cortex and its use in planning movements. Annual Review of Neuroscience, 20(1), 303-330.
• Batista, A. P., Buneo, C. A., Snyder, L. H., & Andersen, R. A. (1999). Reach plans in eye-centered coordinates. Science,
285(5425), 257-260.
• Graziano, M. S., Yap, G. S., & Gross, C. G. (1994). Coding of visual space by premotor neurons. SCIENCE-NEW YORK THEN
WASHINGTON-, 1054-1054.
• Graziano, M. S., & Gross, C. G. (1998). Spatial maps for the control of movement. Current Opinion in Neurobiology, 8(2),
195-201.
• Buneo, C. A., Jarvis, M. R., Batista, A. P., & Andersen, R. A. (2002). Direct visuomotor transformations for reaching. Nature,
416(6881), 632-636.
Exercise
1. Derive the EOMs of two-link arm model using Joint
angle representation (i.e., Euler-Lagrange method).
2. Confirm that the EOMs derived in the Newton-Euler
method equals to the EOMs derived in the Euler-
Lagrange method.

More Related Content

What's hot

Web development ppt
Web development pptWeb development ppt
Web development ppt
ParasJain222
 
Webservices
WebservicesWebservices
Webservices
Gerard Sylvester
 
Bootstrap for Beginners
Bootstrap for BeginnersBootstrap for Beginners
Bootstrap for Beginners
D'arce Hess
 
peer to peer and client server model
peer to peer and client server modelpeer to peer and client server model
peer to peer and client server model
Bharath Nair
 
Javascript
JavascriptJavascript
Javascript
Nagarajan
 
Flutter
FlutterFlutter
OSI Model
OSI ModelOSI Model
OSI Model
Rahul Bandhe
 
JavaScript Objects
JavaScript ObjectsJavaScript Objects
JavaScript Objects
Reem Alattas
 
Beginners css tutorial for web designers
Beginners css tutorial for web designersBeginners css tutorial for web designers
Beginners css tutorial for web designers
Singsys Pte Ltd
 
CSS Basics
CSS BasicsCSS Basics
CSS Basics
WordPress Memphis
 
Internet Concepts Ch 1
Internet Concepts Ch 1Internet Concepts Ch 1
Internet Concepts Ch 1
mroberts
 
Raid
RaidRaid
Introdução ao ASP .NET Web API
Introdução ao ASP .NET Web APIIntrodução ao ASP .NET Web API
Introdução ao ASP .NET Web API
Vinicius Mussak
 
6 mobile user interface design bb
6   mobile user interface design bb6   mobile user interface design bb
6 mobile user interface design bb
Shahid Riaz
 
Introduction to HTML
Introduction to HTMLIntroduction to HTML
Introduction to HTML
MayaLisa
 
HCI 3e - Ch 15: Task analysis
HCI 3e - Ch 15:  Task analysisHCI 3e - Ch 15:  Task analysis
HCI 3e - Ch 15: Task analysis
Alan Dix
 
Build responsive applications with google flutter
Build responsive applications with  google flutterBuild responsive applications with  google flutter
Build responsive applications with google flutter
Ahmed Abu Eldahab
 
What is JavaScript? Edureka
What is JavaScript? EdurekaWhat is JavaScript? Edureka
What is JavaScript? Edureka
Edureka!
 
Chapter 2 Flutter Basics Lecture 1.pptx
Chapter 2 Flutter Basics Lecture 1.pptxChapter 2 Flutter Basics Lecture 1.pptx
Chapter 2 Flutter Basics Lecture 1.pptx
farxaanfarsamo
 

What's hot (20)

Web development ppt
Web development pptWeb development ppt
Web development ppt
 
Webservices
WebservicesWebservices
Webservices
 
Bootstrap for Beginners
Bootstrap for BeginnersBootstrap for Beginners
Bootstrap for Beginners
 
peer to peer and client server model
peer to peer and client server modelpeer to peer and client server model
peer to peer and client server model
 
Javascript
JavascriptJavascript
Javascript
 
CSS
CSSCSS
CSS
 
Flutter
FlutterFlutter
Flutter
 
OSI Model
OSI ModelOSI Model
OSI Model
 
JavaScript Objects
JavaScript ObjectsJavaScript Objects
JavaScript Objects
 
Beginners css tutorial for web designers
Beginners css tutorial for web designersBeginners css tutorial for web designers
Beginners css tutorial for web designers
 
CSS Basics
CSS BasicsCSS Basics
CSS Basics
 
Internet Concepts Ch 1
Internet Concepts Ch 1Internet Concepts Ch 1
Internet Concepts Ch 1
 
Raid
RaidRaid
Raid
 
Introdução ao ASP .NET Web API
Introdução ao ASP .NET Web APIIntrodução ao ASP .NET Web API
Introdução ao ASP .NET Web API
 
6 mobile user interface design bb
6   mobile user interface design bb6   mobile user interface design bb
6 mobile user interface design bb
 
Introduction to HTML
Introduction to HTMLIntroduction to HTML
Introduction to HTML
 
HCI 3e - Ch 15: Task analysis
HCI 3e - Ch 15:  Task analysisHCI 3e - Ch 15:  Task analysis
HCI 3e - Ch 15: Task analysis
 
Build responsive applications with google flutter
Build responsive applications with  google flutterBuild responsive applications with  google flutter
Build responsive applications with google flutter
 
What is JavaScript? Edureka
What is JavaScript? EdurekaWhat is JavaScript? Edureka
What is JavaScript? Edureka
 
Chapter 2 Flutter Basics Lecture 1.pptx
Chapter 2 Flutter Basics Lecture 1.pptxChapter 2 Flutter Basics Lecture 1.pptx
Chapter 2 Flutter Basics Lecture 1.pptx
 

Viewers also liked

Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
hirokazutanaka
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
Reza Ezuan
 
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
hirokazutanaka
 
Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)
hirokazutanaka
 
Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course) Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course)
hirokazutanaka
 
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
hirokazutanaka
 
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
hirokazutanaka
 
Fundamental of robotic manipulator
Fundamental of robotic manipulatorFundamental of robotic manipulator
Fundamental of robotic manipulatorsnkalepvpit
 
From epilepsy to migraine to stroke: A unifying framework.
From epilepsy to migraine to stroke: A unifying framework. From epilepsy to migraine to stroke: A unifying framework.
From epilepsy to migraine to stroke: A unifying framework.
MPI Dresden / HU Berlin
 
Migraine: A dynamics disease
Migraine: A dynamics diseaseMigraine: A dynamics disease
Migraine: A dynamics disease
MPI Dresden / HU Berlin
 
Slow and large: Dynamics in migraine and opportunities to intervene
Slow and large: Dynamics in migraine and opportunities to interveneSlow and large: Dynamics in migraine and opportunities to intervene
Slow and large: Dynamics in migraine and opportunities to intervene
MPI Dresden / HU Berlin
 
Reentrant and retracting waves of cortical spreading depression in migraine
Reentrant and retracting waves of cortical spreading depression in migraineReentrant and retracting waves of cortical spreading depression in migraine
Reentrant and retracting waves of cortical spreading depression in migraine
MPI Dresden / HU Berlin
 
A Prediction Technique for Chaotic Time Series
A Prediction Technique for Chaotic Time SeriesA Prediction Technique for Chaotic Time Series
A Prediction Technique for Chaotic Time Series
Suhel Mulla
 
Migraine: A dynamical disease
Migraine: A dynamical diseaseMigraine: A dynamical disease
Migraine: A dynamical disease
MPI Dresden / HU Berlin
 
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
Recurrence Quantification Analysis :Tutorial & application to eye-movement dataRecurrence Quantification Analysis :Tutorial & application to eye-movement data
Recurrence Quantification Analysis : Tutorial & application to eye-movement dataDeb Aks
 
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron modelsJAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
hirokazutanaka
 
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
JAISTサマースクール2016「脳を知るための理論」講義03 Network DynamicsJAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
hirokazutanaka
 
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rulesJAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
hirokazutanaka
 
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
hirokazutanaka
 
Dynamical network biomarkers in migraine
Dynamical network biomarkers in migraineDynamical network biomarkers in migraine
Dynamical network biomarkers in migraine
MPI Dresden / HU Berlin
 

Viewers also liked (20)

Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
Computational Motor Control: Optimal Control for Stochastic Systems (JAIST su...
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
 
Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)Computational Motor Control: Introduction (JAIST summer course)
Computational Motor Control: Introduction (JAIST summer course)
 
Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course) Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course)
 
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
Computational Motor Control: Optimal Estimation in Noisy World (JAIST summer ...
 
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
 
Fundamental of robotic manipulator
Fundamental of robotic manipulatorFundamental of robotic manipulator
Fundamental of robotic manipulator
 
From epilepsy to migraine to stroke: A unifying framework.
From epilepsy to migraine to stroke: A unifying framework. From epilepsy to migraine to stroke: A unifying framework.
From epilepsy to migraine to stroke: A unifying framework.
 
Migraine: A dynamics disease
Migraine: A dynamics diseaseMigraine: A dynamics disease
Migraine: A dynamics disease
 
Slow and large: Dynamics in migraine and opportunities to intervene
Slow and large: Dynamics in migraine and opportunities to interveneSlow and large: Dynamics in migraine and opportunities to intervene
Slow and large: Dynamics in migraine and opportunities to intervene
 
Reentrant and retracting waves of cortical spreading depression in migraine
Reentrant and retracting waves of cortical spreading depression in migraineReentrant and retracting waves of cortical spreading depression in migraine
Reentrant and retracting waves of cortical spreading depression in migraine
 
A Prediction Technique for Chaotic Time Series
A Prediction Technique for Chaotic Time SeriesA Prediction Technique for Chaotic Time Series
A Prediction Technique for Chaotic Time Series
 
Migraine: A dynamical disease
Migraine: A dynamical diseaseMigraine: A dynamical disease
Migraine: A dynamical disease
 
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
Recurrence Quantification Analysis :Tutorial & application to eye-movement dataRecurrence Quantification Analysis :Tutorial & application to eye-movement data
Recurrence Quantification Analysis : Tutorial & application to eye-movement data
 
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron modelsJAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
 
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
JAISTサマースクール2016「脳を知るための理論」講義03 Network DynamicsJAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
 
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rulesJAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
 
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
 
Dynamical network biomarkers in migraine
Dynamical network biomarkers in migraineDynamical network biomarkers in migraine
Dynamical network biomarkers in migraine
 

Similar to Computational Motor Control: Kinematics & Dynamics (JAIST summer course)

Neural Networks with Anticipation: Problems and Prospects
Neural Networks with Anticipation: Problems and ProspectsNeural Networks with Anticipation: Problems and Prospects
Neural Networks with Anticipation: Problems and Prospects
SSA KPI
 
Quantum brain a recurrent quantum neural network model to describe eye trac...
Quantum brain   a recurrent quantum neural network model to describe eye trac...Quantum brain   a recurrent quantum neural network model to describe eye trac...
Quantum brain a recurrent quantum neural network model to describe eye trac...Elsa von Licy
 
Some aspects of the oldest nearby moving cluster (Ruprecht 147)
Some aspects of the oldest nearby moving cluster (Ruprecht 147)Some aspects of the oldest nearby moving cluster (Ruprecht 147)
Some aspects of the oldest nearby moving cluster (Ruprecht 147)
Premier Publishers
 
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
CSEIJJournal
 
Anatomy of human motion
Anatomy of human motionAnatomy of human motion
Anatomy of human motion
Wangdo Kim
 
Logistic map
Logistic mapLogistic map
Logistic map
Narendra Kumar
 
PR12-225 Discovering Physical Concepts With Neural Networks
PR12-225 Discovering Physical Concepts With Neural NetworksPR12-225 Discovering Physical Concepts With Neural Networks
PR12-225 Discovering Physical Concepts With Neural Networks
Kyunghoon Jung
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
ieijjournal
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
ieijjournal
 
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
ijistjournal
 
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
ijistjournal
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
Rene Kotze
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
angely alcendra
 
SPECTRAL FINITE ELEMENTAL METHOD-SHM
SPECTRAL FINITE ELEMENTAL METHOD-SHMSPECTRAL FINITE ELEMENTAL METHOD-SHM
SPECTRAL FINITE ELEMENTAL METHOD-SHMMallesh N G
 
bmi SP.ppt
bmi SP.pptbmi SP.ppt
bmi SP.ppt
UzmaBano10
 
Exploring Oscillon interactions
Exploring Oscillon interactionsExploring Oscillon interactions
Exploring Oscillon interactions
AnamitraPaul
 
A03401001005
A03401001005A03401001005
A03401001005
theijes
 
EC Presentation _ ID_ 201-15-14294
EC Presentation _ ID_ 201-15-14294EC Presentation _ ID_ 201-15-14294
EC Presentation _ ID_ 201-15-14294
SajidulIslamAkash
 
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Fuad Anwar
 

Similar to Computational Motor Control: Kinematics & Dynamics (JAIST summer course) (20)

Neural Networks with Anticipation: Problems and Prospects
Neural Networks with Anticipation: Problems and ProspectsNeural Networks with Anticipation: Problems and Prospects
Neural Networks with Anticipation: Problems and Prospects
 
Quantum brain a recurrent quantum neural network model to describe eye trac...
Quantum brain   a recurrent quantum neural network model to describe eye trac...Quantum brain   a recurrent quantum neural network model to describe eye trac...
Quantum brain a recurrent quantum neural network model to describe eye trac...
 
Some aspects of the oldest nearby moving cluster (Ruprecht 147)
Some aspects of the oldest nearby moving cluster (Ruprecht 147)Some aspects of the oldest nearby moving cluster (Ruprecht 147)
Some aspects of the oldest nearby moving cluster (Ruprecht 147)
 
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
Global Chaos Synchronization of Hyperchaotic Pang and Hyperchaotic Wang Syste...
 
Anatomy of human motion
Anatomy of human motionAnatomy of human motion
Anatomy of human motion
 
Logistic map
Logistic mapLogistic map
Logistic map
 
PR12-225 Discovering Physical Concepts With Neural Networks
PR12-225 Discovering Physical Concepts With Neural NetworksPR12-225 Discovering Physical Concepts With Neural Networks
PR12-225 Discovering Physical Concepts With Neural Networks
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
 
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
 
SPECTRAL FINITE ELEMENTAL METHOD-SHM
SPECTRAL FINITE ELEMENTAL METHOD-SHMSPECTRAL FINITE ELEMENTAL METHOD-SHM
SPECTRAL FINITE ELEMENTAL METHOD-SHM
 
bmi SP.ppt
bmi SP.pptbmi SP.ppt
bmi SP.ppt
 
iit
iitiit
iit
 
Exploring Oscillon interactions
Exploring Oscillon interactionsExploring Oscillon interactions
Exploring Oscillon interactions
 
A03401001005
A03401001005A03401001005
A03401001005
 
EC Presentation _ ID_ 201-15-14294
EC Presentation _ ID_ 201-15-14294EC Presentation _ ID_ 201-15-14294
EC Presentation _ ID_ 201-15-14294
 
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
 

More from hirokazutanaka

東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
hirokazutanaka
 
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
hirokazutanaka
 
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
hirokazutanaka
 
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
hirokazutanaka
 
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
hirokazutanaka
 
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
hirokazutanaka
 
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
hirokazutanaka
 
東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2
hirokazutanaka
 
東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1
hirokazutanaka
 

More from hirokazutanaka (9)

東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
東京都市大学 データ解析入門 10 ニューラルネットワークと深層学習 1
 
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
東京都市大学 データ解析入門 9 クラスタリングと分類分析 2
 
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
東京都市大学 データ解析入門 8 クラスタリングと分類分析 1
 
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
東京都市大学 データ解析入門 7 回帰分析とモデル選択 2
 
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
 
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
 
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
 
東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2東京都市大学 データ解析入門 3 行列分解 2
東京都市大学 データ解析入門 3 行列分解 2
 
東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1東京都市大学 データ解析入門 2 行列分解 1
東京都市大学 データ解析入門 2 行列分解 1
 

Recently uploaded

insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
anitaento25
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
muralinath2
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
ossaicprecious19
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Management
subedisuryaofficial
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
Sérgio Sacani
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
pablovgd
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
aishnasrivastava
 
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
ssuserbfdca9
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
IqrimaNabilatulhusni
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
sachin783648
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
AADYARAJPANDEY1
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 

Recently uploaded (20)

insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Management
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
 
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 

Computational Motor Control: Kinematics & Dynamics (JAIST summer course)

  • 1. Computational Motor Control Summer School 01: Kinematics, Dynamics, and Coordinate transformation. Hirokazu Tanaka School of Information Science Japan Institute of Science and Technology
  • 2. Kinematics, dynamics and coordinate transformations. In this lecture, you will learn… • Kinematics • Redundancy (ill-posed) problem • Dynamics • Equations of motion: Euler-Lagrange & Newton-Euler methods • Neurophysiology: Gain fields in parietal cortex • Coordinate transformation in the brain • Human psychophysics experiments
  • 3. Kinematics: two coordinate systems for the body. Atkeson (1989) Ann Rev Neurosci (x, y): Cartesian coordinates “Extrinsic coordinates” (θ1, θ2): Joint angle coordinates “Intrinsic coordinates”
  • 4. 1.1. Forward kinematics from joint angles to Cartesian positions.     1 1 2 1 2 1 1 2 1 2 cos cos sin sin x l l y l l              Atkeson (1989) Ann Rev Neurosci Forward kinematics = Computation of extrinsic coordinates from intrinsic coordinates
  • 5. 1.1. Inverse kinematics from Cartesian positions to joint angles. 2 2 2 2 1 2 1 1 2 2 2 2 1 1 2 arccos 2 sin arcta arctann cos y l x l l l l l l y x                 Atkeson (1989) Ann Rev Neurosci Inverse kinematics = Computation of intrinsic coordinates from extrinsic coordinates
  • 6. Ill-posedness: many-to-one mappings from joints to positions.
  • 7. 1.2. Dynamics = Equations of motion in joint angle and space coordinates.           2 2 2 1 1 2 1 1 2 2 2 1 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2 1 2 1 2 2 cos cos 2 sin cos sin I I m r m r m l m l r I m r m l r m l r I m r m l r I m r m l r                                 2 1 1 2 20 20 21 21 1 10 10 10 102 2 2 1 2 2 2 21 20 21 212 2 Z Z I I m X A X A m X A X A r r I m X A X A r                         Euler-Lagrange method: Dynamics based on joint angles Newton-Euler method: Dynamics based on spatial vectors Tanaka & Sejnowski (2013) J Neurophysiol
  • 8. Dynamics based on Joint angles: Euler-Lagrange method.    0 , , ft xS x x L x dt            0 0 0 0 0 , , , , , f f f f f t t t t t t t L x dt L x dt L S x x S x x x x S x x x L dt x x L d L L dt x dt x x x x x x x x x                                               0 d L L dt x x          0 0 ft t t L L x x x x          Principle of least action Action:  ,L x xLagrangian: Euler-Lagrange equation:
  • 9. Dynamics based on Joint angles: Euler-Lagrange method.  0 1,2 ii d L L i dt                   2 2 2 2 2 1 1 1 1 1 , 2 2 i i i i i i i j i i j L m X Y I                     1 1 1 1 1 1 cos sin X r Y r          2 1 1 2 1 2 2 1 1 2 1 2 cos cos sin sin X l r Y l r                                2 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 2 1 2 2 2 1 2 21 21 1 , cos sin 2 1 cos cos sin sin 2 1 1 2 2 i i d d L m r r dt dt d d m l r l r dt dt I I                                                        
  • 10. Dynamics based on Cartesian vectors: Newton-Euler method.   1 ,0 e 1 , 1 ,0 , 1 1 ( 1, , ) i i i i i i i i i i i i i i i i i i F F m A i n m X A X F                      I I   2 2 20 2 2 21 20 2 2 2 2 2 F m A m X A            I I   1 1 1 10 e 1 2 1 10 10 10 2 1 1 1 1 1 F F m A m X A X F                 I I Otten (2003) Phil Trans R Soc Lond B
  • 11. Dynamics based on Cartesian vectors: Newton-Euler method. 10 10 10 10 10 10 1 1 10 10 1 12 2 2 1 1 1 21 21 21 21 21 21 2 20 20 2 22 2 2 2 2 2 X A X V X V m X A r r r X A X V X V m X A r r r                                      I I I I 21 21 21 21 21 21 2 2 21 20 2 22 2 2 2 2 2 X A X V X V m X A r r r                    I I Tanaka & Sejnowski (2013) J Neurophysiol Equations of motion in general 3D movements:
  • 12. Dynamics based on Cartesian vectors: Newton-Euler method. 10 10 21 21 1 1 10 10 1 2 20 20 22 2 1 2 Z X A X A m X A I m X A I r r              21 21 2 2 21 20 2 2 2 Z X A m X A I r          Tanaka & Sejnowski (2013) J Neurophysiol Equations of motion in 2D planar movements:
  • 13. Coordinate transformation problem in the brain. Kalaska & Crammond (1992) Science
  • 14. Neural pathway for visually guided reaching movements. Haggard (2008) Nature Rev Neurosci
  • 15. Equilibrium-point control: the brain may not solve the dynamics. Feldman (2009) Encyclopedia of Neuroscience initial equilibrium new equilibrium final equilibrium
  • 16. Joint stiffness indicates that the brain “solves” the arm dynamics. Gomi & Kawato (1996) Science
  • 17. Neurophysiology from posterior parietal cortex (area 7a). Andersen et al. (1985) Science
  • 18. Neurophysiology from posterior parietal cortex (area 7a). Andersen et al. (1985) Science Retinal position Spikecounts Position (head-centered, h) Gazedirection(e)    (response) g e f r  e: gaze direction r: retinal position
  • 19. Gain fields as an intermediate step for coordinate transformation? total activity background activity (due to eye position) visually evoked activity Zipser & Andersen (1988) Nature
  • 20. Multilayer neural network model of coordinate transformation. Zipser & Andersen (1988) Nature
  • 21. Hidden layer units exhibit gain field modulation. Zipser & Andersen (1988) Nature Experiment Model
  • 22. How gain fields work for coordinate transformation. Kakei et al. (1999) Science; Kakei et al. (2003) Neurosci Res
  • 23. Parietal and motor cortices exhibit distinct coordinate systems. Haggard (2008) Nature Rev Neurosci PRR: eye-centered reference frame (+ gain fields) Buneo et al. (2002) Nature PMd: relative position representation Pesaran et al. (2006) Neuron Area 5d: hand-centered reference frame Bremner & Andersen (2012) Neuron
  • 24. Human psychophysics for coordinate transformation: pointing. Soechting & Flanders (1989) J Neurophysiol Intrinsic coordinates η: yaw of upper arm θ: elevation of upper arm α: yaw of forearm β: elevation of forearm Extrinsic coordinates (x, y, z): three-dim position 𝑅2 = 𝑥2 + 𝑦2 + 𝑧2 tan χ = 𝑥 𝑦 tan 𝜓 = 𝑧 𝑥2 + 𝑦2
  • 25. Extrinsic-intrinsic transformation is linearly approximated. Soechting & Flanders (1989) J Neurophysiol Reaching toward remembered target in dark (inaccurate) Reaching toward visible target in dark (accurate)
  • 26. Human psychophysics: Motion planning in visual space. Flanagan & Rao (1995) J Neurophysiol
  • 27. Summary • Movements (kinematics) and equations of motion (dynamics) are described either in external coordinates (i.e., external position) or in internal coordinates (i.e., joint coordinates). • Mechanisms of coordinate transformation have been examined in human psychophysics. • Movement planning appears to be processed in visual coordinates. • Gain fields are the neural mechanisms for coordinate transformations.
  • 28. References • Atkeson, C. G. (1989). Learning arm kinematics and dynamics. Annual Review of Neuroscience, 12(1), 157-183. • Hollerbach, J. M., & Flash, T. (1982). Dynamic interactions between limb segments during planar arm movement. Biological cybernetics, 44(1), 67-77. • Morasso, P., Casadio, M., Mohan, V., Rea, F., & Zenzeri, J. (2015). Revisiting the body-schema concept in the context of whole-body postural-focal dynamics. Frontiers in Human Neuroscience, 9. • Tanaka, H., & Sejnowski, T. J. (2013). Computing reaching dynamics in motor cortex with Cartesian spatial coordinates. Journal of neurophysiology, 109(4), 1182-1201. • Andersen, R. A., Essick, G. K., & Siegel, R. M. (1985). Encoding of spatial location by posterior parietal neurons. Science, 230(4724), 456-458. • Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331(6158), 679-684. • Chang, S. W., Papadimitriou, C., & Snyder, L. H. (2009). Using a compound gain field to compute a reach plan. Neuron, 64(5), 744-755. • Soechting, J. F., & Flanders, M. (1989). Sensorimotor representations for pointing to targets in three-dimensional space. Journal of Neurophysiology, 62(2), 582-594. • Flanagan, J. R., & Rao, A. K. (1995). Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. Journal of Neurophysiology, 74(5), 2174-2178. • Andersen, R. A., Snyder, L. H., Bradley, D. C., & Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neuroscience, 20(1), 303-330. • Batista, A. P., Buneo, C. A., Snyder, L. H., & Andersen, R. A. (1999). Reach plans in eye-centered coordinates. Science, 285(5425), 257-260. • Graziano, M. S., Yap, G. S., & Gross, C. G. (1994). Coding of visual space by premotor neurons. SCIENCE-NEW YORK THEN WASHINGTON-, 1054-1054. • Graziano, M. S., & Gross, C. G. (1998). Spatial maps for the control of movement. Current Opinion in Neurobiology, 8(2), 195-201. • Buneo, C. A., Jarvis, M. R., Batista, A. P., & Andersen, R. A. (2002). Direct visuomotor transformations for reaching. Nature, 416(6881), 632-636.
  • 29. Exercise 1. Derive the EOMs of two-link arm model using Joint angle representation (i.e., Euler-Lagrange method). 2. Confirm that the EOMs derived in the Newton-Euler method equals to the EOMs derived in the Euler- Lagrange method.