This document provides a review of machine learning techniques used in Advanced Driver Assistance Systems (ADAS). It begins with an abstract that summarizes key applications of machine learning in ADAS, including object detection, recognition, and decision-making. The introduction discusses the integration of machine learning in ADAS and how it is transforming vehicle safety. The literature review then examines several research papers on topics like lightweight deep learning models for object detection and lane detection models using image processing. It concludes by discussing challenges and opportunities in the field, such as improving algorithm robustness and adaptability.