The document provides information about the Chi-square test, including:
- It is a non-parametric test used to evaluate categorical data using contingency tables. The test statistic follows a Chi-square distribution.
- It can test for independence between variables and goodness of fit to theoretical distributions.
- Key steps involve calculating expected frequencies, taking the difference between observed and expected, and summing the results.
- The test interprets higher Chi-square values as less likelihood the results are due to chance. Modifications like Yates' correction and Fisher's exact test address limitations for small sample sizes.