SlideShare a Scribd company logo
Carbohydrate
Metabolism
Digestion & Absorption of
Carbohydrate
I. Introduction:
A. More than 60% of our foods are carbohydrates.
Starch, glycogen, sucrose, lactose and cellulose are
the chief carbohydrates in our food. Before intestinal
absorption, they are hydrolysed to hexose sugars
(glucose, galactose and fructose).
B. A family of a glycosidases that degrade
carbohydrate into their monohexose components
catalyzes hydrolysis of glycocidic bonds. These
enzymes are usually specific to the type of bond to
be broken.
Digestion of carbohydrate by salivary α -amylase (ptylin)
in the mouth:
A. This enzyme is produced by salivary glands. Its optimum pH is
6.7.
B. It is activated by chloride ions (cl-).
C. It acts on cooked starch and glycogen breaking α 1-4 bonds,
converting them into maltose [a disaccharide containing two
glucose molecules attached by α 1-4 linkage]. This bond is not
attacked by alpha-amylase.
Because both starch and glycogen also contain 1-6 bonds, the
resulting digest contains isomaltose [a disaccharide in which two
glucose molecules are attached by 1-6 linkage].
E. Because food remains for a short time in the mouth, digestion of
starch and glycogen may be incomplete and gives a partial
digestion products called: starch dextrins (amylodextrin,
erythrodextrin and achrodextrin).
F. Therefore, digestion of starch and glycogen in the mouth gives
maltose, isomaltose and starch dextrins.
ln the stomach: carbohydrate digestion stops
temporarily due to the high acidity which
inactivates the salivary - amylase.
IV. Digestion of carbohydrate by the pancreatic - amylase small
intestine in the small intestine.
A. α-amylase enzyme is produced by pancreas and acts in small
intestine. Its optimum pH is 7.1.
B. It is also activated by chloride ions.
C. It acts on cooked and uncooked starch, hydrolysing them into
maltose and isomaltose.
Final carbohydrate digestion by intestinal enzymes:
A. The final digestive processes occur at the small intestine and
include the action of several disaccharidases. These enzymes
are secreted through and remain associated with the brush
border of the intestinal mucosal cells.
B. The disaccharidases include:
1. Lactase (β-galactosidase) which hydrolyses lactose into two
molecules of glucose and galactose:
Lactase
Lactose Glucose + Galactose
2. Maltase ( α-glucosidase), which hydrolyses maltose into two
molecules of glucose:
Maltase
Maltose Glucose + Glucose
3. Sucrose (α-fructofuranosidase), which hydrolyses sucrose into
two molecules of glucose and fructose:
Sucrose
Sucrose Glucose + Fructose
4. α - dextrinase (oligo-1,6 glucosidase) which hydrolyze (1 ,6)
linkage of isomaltose.
Dextrinase
Isomaltose Glucose + Glucose
Digestion of cellulose:
A. Cellulose contains β(1-4) bonds between glucose molecules.
B. In humans, there is no β (1-4) glucosidase that can digest
such bonds. So cellulose passes as such in stool.
C. Cellulose helps water retention during the passage of food
along the intestine  producing larger and softer feces 
preventing constipation.
Absorptions
A.The end products of carbohydrate digestion are monosaccharides:
glucose, galactose and fructose. They are absorbed from the
jejunum to portal veins to the liver, where fructose and galactose
are transformed into glucose.
B.Two mechanisms are responsible for absorption of
monosaccharides: active transport (against concentration
gradient i.e. from low to high concentration) and passive transport
(by facilitated diffusion).
C. For active transport to take place, the structure of sugar should
have:
1. Hexose ring.
2. OH group at position 2 at the right side. Both of which are present
in glucose and galactose. Fructose, which does not contain -OH
group to the right at position 2 is absorbed more slowly than
glucose and galactose by passive diffusion (slow process).
3. A methyl or a substituted methyl group should be present at
carbon 5.
I. Introduction
II. Mechanisms of absorption:
A. Active transport:
1. Mechanism of active transport:
a) In the cell membrane of the intestinal cells, there is a mobile
carrier protein called sodium dependant glucose transporter
(SGL T-1) It transports glucose to inside the cell using
energy. The energy is derived from sodium-potassium
pump. The transporter has 2 separate sites, one for sodium
and the other for glucose. It transports them from the
intestinal lumen across cell membrane to the cytoplasm.
Then both glucose and sodium are released into the
cytoplasm allowing the carrier to return for more transport
of glucose and sodium.
b) The sodium is transported from high to low concentration
(with concentration gradient) and at the same time causes the
carrier to transport glucose against its concentration gradient.
The Na+ is expelled outside the cell by sodium pump. Which
needs ATP as a source of energy. The reaction is catalyzed by
an enzyme called "Adenosine triphosphatase (ATPase)".
Active transport is much more faster than passive transport.
c) Insulin increases the number of glucose transporters in
tissues containing insulin receptors e.g. muscles and adipose
tissue.
B. Transport Proteins
Transport proteins = Integral membrane proteins that
transport specific molecules or ions across
biological membranes.
Protein
(Figure 8.9)
B. Passive transport (facilitated diffusion):
Sugars pass with concentration gradient i.e. from high to low
concentration. It needs no energy. It occurs by means of a sodium
independent facilitative transporter (GLUT -5). Fructose and
pentoses are absorbed by this mechanism. Glucose and
galactose can also use the same transporter if the concentration
gradient is favorable.
C. There is also sodium – independent transporter (GLUT-2), that
facilitates transport of sugars out of the cell i.e. to circulation.
2. Inhibitors of active transport:
a) Ouabin (cardiac glycoside): Inhibits adenosine triphosphatase
(ATPase) necessary for hydrolysis of ATP that produces energy
of sodium pump.
b) Phlorhizin; Inhibits the binding of sodium in the carrier protein.
Summary of types of functions of most
important glucose transporters:
SiteFunction
Intestine and renal
tubules.
Absorption of glucose
by active transport
(energy is derived from
Na+- K+ pump)
SGLT-
1
Intestine and spermFructose transport and
to a lesser extent
glucose and galactose.
GLUT -
5
-Intestine and renal
tubule
-β cells of islets-liver
Transport glucose out
of intestinal and renal
cells  circulation
GLUT -
2
III. Defects of carbohydrate digestion and
absorption:
A. Lactase deficiency = lactose intolerance:
1. Definition:
a) This is a deficiency of lactase enzyme which digest lactose into
glucose and galactose
b) It may be:
(i) Congenital: which occurs very soon after birth (rare).
(ii) Acquired: which occurs later on in life (common).
2. Effect: The presence of lactose in intestine causes:
a) Increased osmotic pressure: So water will be drawn from the tissue
(causing dehydration) into the large intestine (causing diarrhoea).
b) Increased fermentation of lactose by bacteria: Intestinal bacteria
ferment lactose with subsequent production of CO2 gas. This causes
distention and abdominal cramps.
c) Treatment: Treatment of this disorder is simply by removing lactose
(milk) from diet.
B. Sucrose deficiency:
A rare condition, showing the signs and symptoms of lactase deficiency. It
occurs early in childhood.
C. Monosaccharide malabsorption:
This is a congenital condition in which glucose and galactose are absorbed
only slowly due to defect in the carrier mechanism. Because fructose is not
absorbed by the carrier system, its absorption is normal.
IV. Fate of absorbed sugars:
Monosaccharides (glucose, galactose and fructose) resulting from
carbohydrate digestion are absorbed and undergo the following:
A. Uptake by tissues (liver):
After absorption the liver takes up sugars, where galactose and fructose
are converted into glucose.
B. Glucose utilization by tissues:
Glucose may undergo as one of the following fate:
1. Oxidation: through
a) Major pathways (glycolysis and Krebs' cycle) for production of energy.
b) Hexose monophosphate pathway: for production of ribose, deoxyribose
and NADPH + H+
c) Uronic acid pathway, for production of glucuronic acid, which is used in
detoxication and enters in the formation of mucopolysaccharide.
2. Storage: in the form of:
a) Glycogen: glycogenesis.
b) Fat: lipogenesis.
3. Conversion: to substances of biological importance:
a) Ribose, deoxyribose  RNA and DNA.
b) Lactose  milk.
c) Glucosamine, galactosamine  mucopolysaccharides.
d) Glucoronic acid  mucopolysaccharides.
e) Fructose  in semen.
Glucose Oxidation
major Pathway
I. Glycolysis (Embden Meyerhof
Pathway):
A. Definition:
1. Glycolysis means oxidation of glucose to give pyruvate (in the
presence of oxygen) or lactate (in the absence of oxygen).
B. Site:
cytoplasm of all tissue cells, but it is of physiological importance in:
1. Tissues with no mitochondria: mature RBCs, cornea and lens.
2. Tissues with few mitochondria: Testis, leucocytes, medulla of the
kidney, retina, skin and gastrointestinal tract.
3. Tissues undergo frequent oxygen lack: skeletal muscles especially
during exercise.
C. Steps:
Stages of glycolysis
1. Stage one (the energy requiring stage):
a) One molecule of glucose is converted into two molecules of
glycerosldhyde-3-phosphate.
b) These steps requires 2 molecules of ATP (energy loss)
2. Stage two (the energy producing stage(:
a) The 2 molecules of glyceroaldehyde-3-phosphate are converted into
pyruvate (aerobic glycolysis) or lactate (anaerobic glycolysis(.
b) These steps produce ATP molecules (energy production).
D. Energy (ATP) production of glycolysis:
ATP production = ATP produced - ATP utilized
•In the energy investment phase, ATP provides
activation energy by phosphorylating glucose.
–This requires 2 ATP per glucose.
•In the energy payoff
phase, ATP is
produced by
substrate-level
phosphorylation
and NAD+ is
reduced to NADH.
•2 ATP (net) and
2 NADH are produced
per glucose.
Fig. 9.8
Fig. 9.9a
Energy Investment Phase (steps 1-5)
Fig. 9.9b Energy-Payoff Phase (Steps 6-10)
Energy production of glycolysis:
Net energyATP utilizedATP produced
2 ATP2ATP
From glucose to
glucose -6-p.
From fructose -6-p to
fructose 1,6 p.
4 ATP
(Substrate level
phosphorylation)
2ATP from 1,3 DPG.
2ATP from
phosphoenol
pyruvate
In absence of oxygen
(anaerobic
glycolysis)
6 ATP
Or
8 ATP
2ATP
-From glucose to
glucose -6-p.
From fructose -6-p to
fructose 1,6 p.
4 ATP
(substrate level
phosphorylation)
2ATP from 1,3 BPG.
2ATP from
phosphoenol
pyruvate.
In presence of
oxygen (aerobic
glycolysis)
+ 4ATP or 6ATP
(from oxidation of 2
NADH + H in
mitochondria).
E. Oxidation of extramitochondrial NADH+H+:
1. cytoplasmic NADH+H+ cannot penetrate mitochondrial membrane,
however, it can be used to produce energy (4 or 6 ATP) by respiratory
chain phosphorylation in the mitochondria.
2. This can be done by using special carriers for hydrogen of NADH+H+
These carriers are either dihydroxyacetone phosphate (Glycerophosphate
shuttle) or oxaloacetate (aspartate malate shuttle).
a) Glycerophosphate shuttle:
1) It is important in certain muscle and nerve cells.
2) The final energy produced is 4 ATP.
3) Mechanism: -
The coenzyme of cytoplasmic glycerol-3- phosphate dehydrogenase
is NAD+.
- The coenzyme of mitochodrial glycerol-3-phosphate dehydogenase is
FAD.
-Oxidation of FADH, in respiratory chain gives 2 ATP. As glycolysis
gives 2 cytoplasmic NADH + H+  2 mitochondrial FADH, 2 x 2
ATP  = 4 ATP.
b) Malate – aspartate shuttle:
1) It is important in other tissues patriculary liver and heart.
2) The final energy produced is 6 ATP.
Differences between aerobic and
anaerobic glycolysis:
AnaerobicAerobic
LactatePyruvate1. End product
2 ATP6 or 8 ATP2 Energy
Through Lactate
formation
Through respiration
chain in mitochondria
3. Regeneration of
NAD+
Not available as lactate
is cytoplasmic substrate
Available and 2 Pyruvate
can oxidize to give 30
ATP
4. Availability to TCA in
mitochondria
Substrate level phosphorylation:
This means phosphorylation of ADP to ATP at the reaction itself .in
glycolysis there are 2 examples:
- 1-3 Bisphosphoglycerate + ADP 3 Phosphoglycerate + ATP
- Phospho-enol pyruvate + ADP Enolpyruvate + ATP
I. Special features of glycolysis in RBCs:
1. Mature RBCs contain no mitochondria, thus:
a) They depend only upon glycolysis for energy production (=2 ATP).
b) Lactate is always the end product.
2. Glucose uptake by RBCs is independent on insulin hormone.
3. Reduction of met-hemoglobin: Glycolysis produces NADH+H+, which is
used for reduction of met-hemoglobin in red cells.
Biological importance (functions) of glycolysis:
1. Energy production:
a) anaerobic glycolysis gives 2 ATP.
b) aerobic glycolysis gives 8 ATP.
2. Oxygenation of tissues:
Through formation of 2,3 bisphosphoglycerate, which decreases the
affinity of Hemoglobin to O2.
3. Provides important intermediates:
a) Dihydroxyacetone phosphate: can give glycerol-3phosphate, which is
used for synthesis of triacylglycerols and phospholipids (lipogenesis).
b) 3 Phosphoglycerate: which can be used for synthesis of amino acid
serine.
c) Pyruvate: which can be used in synthesis of amino acid alanine.
4. Aerobic glycolysis provides the mitochondria with pyruvate, which gives
acetyl CoA Krebs' cycle.
Reversibility of glycolysis (Gluconeogenesis):
1. Reversible reaction means that the same enzyme can catalyzes the
reaction in both directions.
2. all reactions of glycolysis -except 3- are reversible.
3. The 3 irreversible reactions (those catalyzed by kinase enzymes) can be
reversed by using other enzymes.
Glucose-6-p  Glucose
F1, 6 Bisphosphate  Fructose-6-p
Pyruvate  Phosphoenol pyruvate
4. During fasting, glycolysis is reversed for synthesis of glucose from non-
carbohydrate sources e.g. lactate.
This mechanism is called: Gluconeogenesis.
Comparison between glucokinase and
hexokinase enzymes:
HexokinaseGlucokinaase
All tissue cellsLiver only1. Site
High affinity (low km) i.e. it acts
even in the presence of low blood
glucose concentration.
Low affinity (high km) i.e. it
acts only in the presence of
high blood glucose
concentration.
2. Affinity to glucose
Glucose, galactose and fructoseGlucose only3. Substrate
No effectInduces synthesis of
glucokinase.
4. Effect of insulin
Allosterically inhibits hexokinaseNo effect5. Effect of glucose-6-p
It phosphorylates glucose inside
the body cells. This makes glucose
concentration more in blood than
inside the cells. This leads to
continuous supply of glucose for
the tissues even in the presence of
low blood glucose concentration.
Acts in liver after meals. It
removes glucose coming in
portal circulation, converting
it into glucose -6-phosphate.
6. Function
Importance of lactate production in anerobic
glycolysis:
1. In absence of oxygen, lactate is the end product of glycolysis:
2. In absence of oxygen, NADH + H+ is not oxidized by the
respiratory chain.
3. The conversion of pyruvate to lactate is the mechanism for
regeneration of NAD+.
4. This helps continuity of glycolysis, as the generated NAD+ will be
used once more for oxidation of another glucose molecule.
Glucose  Pyruvate  Lactate
•As pyruvate enters the mitochondrion, a
multienzyme complex modifies pyruvate to
acetyl CoA which enters the Krebs cycle in the
matrix.
–A carboxyl group is removed as CO2
–A pair of electrons is transferred from the
remaining two-carbon fragment to NAD+ to
form NADH.
–The oxidized
fragment, acetate,
combines with
coenzyme A to
form acetyl CoA.

More Related Content

What's hot

Glycogen metabolism
Glycogen metabolismGlycogen metabolism
Glycogen metabolism
Namrata Chhabra
 
Class 1 digestion and absorption of carbohydrate
Class 1 digestion and absorption of carbohydrateClass 1 digestion and absorption of carbohydrate
Class 1 digestion and absorption of carbohydrate
Dhiraj Trivedi
 
Glycogenesis ---Sir Khalid (Biochem)
Glycogenesis ---Sir Khalid (Biochem)Glycogenesis ---Sir Khalid (Biochem)
Glycogenesis ---Sir Khalid (Biochem)
Soft-Learners
 
Diabetes Mellitus - In Terms of Biochemistry
Diabetes Mellitus - In Terms of BiochemistryDiabetes Mellitus - In Terms of Biochemistry
Diabetes Mellitus - In Terms of Biochemistry
Ashok Katta
 
Gluconeogenesis
GluconeogenesisGluconeogenesis
Gluconeogenesis
Dr. Waheeda Nargis
 
Glycogenolysis
GlycogenolysisGlycogenolysis
Glycogenolysis
Gul Muneer
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
Haseeb Quadri
 
Digestion of carbohydrates
Digestion of carbohydratesDigestion of carbohydrates
Digestion of carbohydrates
Dr. Aamir Ali Khan
 
DIGESTION & ABSORPTION OF LIPIDS
DIGESTION & ABSORPTION OF LIPIDSDIGESTION & ABSORPTION OF LIPIDS
DIGESTION & ABSORPTION OF LIPIDS
YESANNA
 
Metabolism of Carbohydrates
Metabolism of CarbohydratesMetabolism of Carbohydrates
Metabolism of Carbohydrates
Cecille Larong
 
Class 9 galactose metabolism
Class 9 galactose metabolismClass 9 galactose metabolism
Class 9 galactose metabolism
Dhiraj Trivedi
 
Digestion & absorption of carbohydrate.pptx
Digestion  & absorption of carbohydrate.pptxDigestion  & absorption of carbohydrate.pptx
Digestion & absorption of carbohydrate.pptx
ABHIJIT BHOYAR
 
DIGESTION & ABSORPTION OF PROTEINS
DIGESTION & ABSORPTION OF PROTEINSDIGESTION & ABSORPTION OF PROTEINS
DIGESTION & ABSORPTION OF PROTEINS
YESANNA
 
16 Biochemistry _ Metabolism
16 Biochemistry _ Metabolism16 Biochemistry _ Metabolism
16 Biochemistry _ Metabolism
Prabesh Raj Jamkatel
 
Absorption of carbohydrates ppt
Absorption of carbohydrates pptAbsorption of carbohydrates ppt
Absorption of carbohydrates ppt
Ibad khan
 
FRUCTOSE METABOLISM
FRUCTOSE METABOLISMFRUCTOSE METABOLISM
FRUCTOSE METABOLISM
Rabia Khan Baber
 
Digestion &absorbtion of carbohydates
Digestion &absorbtion of carbohydatesDigestion &absorbtion of carbohydates
Digestion &absorbtion of carbohydates
Akshay Parmar
 
Absorption of carbohydrate
Absorption of carbohydrateAbsorption of carbohydrate
Absorption of carbohydrate
Haya Cihan
 
Carbohydrates
Carbohydrates Carbohydrates
Carbohydrates
Kate Alyssa Caton
 
Digestion and Absorption of Carbohydrates
Digestion and Absorption of CarbohydratesDigestion and Absorption of Carbohydrates
Digestion and Absorption of Carbohydrates
Sohil Takodara
 

What's hot (20)

Glycogen metabolism
Glycogen metabolismGlycogen metabolism
Glycogen metabolism
 
Class 1 digestion and absorption of carbohydrate
Class 1 digestion and absorption of carbohydrateClass 1 digestion and absorption of carbohydrate
Class 1 digestion and absorption of carbohydrate
 
Glycogenesis ---Sir Khalid (Biochem)
Glycogenesis ---Sir Khalid (Biochem)Glycogenesis ---Sir Khalid (Biochem)
Glycogenesis ---Sir Khalid (Biochem)
 
Diabetes Mellitus - In Terms of Biochemistry
Diabetes Mellitus - In Terms of BiochemistryDiabetes Mellitus - In Terms of Biochemistry
Diabetes Mellitus - In Terms of Biochemistry
 
Gluconeogenesis
GluconeogenesisGluconeogenesis
Gluconeogenesis
 
Glycogenolysis
GlycogenolysisGlycogenolysis
Glycogenolysis
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
 
Digestion of carbohydrates
Digestion of carbohydratesDigestion of carbohydrates
Digestion of carbohydrates
 
DIGESTION & ABSORPTION OF LIPIDS
DIGESTION & ABSORPTION OF LIPIDSDIGESTION & ABSORPTION OF LIPIDS
DIGESTION & ABSORPTION OF LIPIDS
 
Metabolism of Carbohydrates
Metabolism of CarbohydratesMetabolism of Carbohydrates
Metabolism of Carbohydrates
 
Class 9 galactose metabolism
Class 9 galactose metabolismClass 9 galactose metabolism
Class 9 galactose metabolism
 
Digestion & absorption of carbohydrate.pptx
Digestion  & absorption of carbohydrate.pptxDigestion  & absorption of carbohydrate.pptx
Digestion & absorption of carbohydrate.pptx
 
DIGESTION & ABSORPTION OF PROTEINS
DIGESTION & ABSORPTION OF PROTEINSDIGESTION & ABSORPTION OF PROTEINS
DIGESTION & ABSORPTION OF PROTEINS
 
16 Biochemistry _ Metabolism
16 Biochemistry _ Metabolism16 Biochemistry _ Metabolism
16 Biochemistry _ Metabolism
 
Absorption of carbohydrates ppt
Absorption of carbohydrates pptAbsorption of carbohydrates ppt
Absorption of carbohydrates ppt
 
FRUCTOSE METABOLISM
FRUCTOSE METABOLISMFRUCTOSE METABOLISM
FRUCTOSE METABOLISM
 
Digestion &absorbtion of carbohydates
Digestion &absorbtion of carbohydatesDigestion &absorbtion of carbohydates
Digestion &absorbtion of carbohydates
 
Absorption of carbohydrate
Absorption of carbohydrateAbsorption of carbohydrate
Absorption of carbohydrate
 
Carbohydrates
Carbohydrates Carbohydrates
Carbohydrates
 
Digestion and Absorption of Carbohydrates
Digestion and Absorption of CarbohydratesDigestion and Absorption of Carbohydrates
Digestion and Absorption of Carbohydrates
 

Similar to Carbohydrate metabolism

Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
Cecille Larong
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
Dentist(Umar Ali )
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
Sachith Gamage
 
Carbohydrate.ppt
Carbohydrate.pptCarbohydrate.ppt
1. COH met1 .pptx
1. COH met1 .pptx1. COH met1 .pptx
1. COH met1 .pptx
Mohammed669214
 
002 carbohydrate Metabolism 1.ppt
002 carbohydrate Metabolism 1.ppt002 carbohydrate Metabolism 1.ppt
002 carbohydrate Metabolism 1.ppt
MutaiKiprotich4
 
CHO METABOL-3.ppt
CHO METABOL-3.pptCHO METABOL-3.ppt
CHO METABOL-3.ppt
AnnaKhurshid
 
CHO metabolism MDBC803.ppt
CHO metabolism MDBC803.pptCHO metabolism MDBC803.ppt
CHO metabolism MDBC803.ppt
AnnaKhurshid
 
Lec5 level3-nucarbohydratemetabolismi-130204053503-phpapp01
Lec5 level3-nucarbohydratemetabolismi-130204053503-phpapp01Lec5 level3-nucarbohydratemetabolismi-130204053503-phpapp01
Lec5 level3-nucarbohydratemetabolismi-130204053503-phpapp01
Cleophas Rwemera
 
Carbohydrate digestion
Carbohydrate digestionCarbohydrate digestion
Carbohydrate digestion
Ali Mehdi
 
6. Met of CHO.pptx
6. Met of CHO.pptx6. Met of CHO.pptx
6. Met of CHO.pptx
Obsa2
 
Cell body defense CBD DIGESTION-GLYCOLYSIS.pptx
Cell body defense CBD DIGESTION-GLYCOLYSIS.pptxCell body defense CBD DIGESTION-GLYCOLYSIS.pptx
Cell body defense CBD DIGESTION-GLYCOLYSIS.pptx
AlabiDavid4
 
3. carbohydrates
3. carbohydrates3. carbohydrates
Carbohydrate metabolism an overview
Carbohydrate metabolism an overviewCarbohydrate metabolism an overview
Carbohydrate metabolism an overview
Ramesh Gupta
 
Carbohydrate metabolism.
Carbohydrate metabolism.Carbohydrate metabolism.
Carbohydrate metabolism.
DiptanuDeb3
 
Metabolism of Carbohydrates.ppt
Metabolism of Carbohydrates.pptMetabolism of Carbohydrates.ppt
Metabolism of Carbohydrates.ppt
PrernaGoyal25
 
Diegestion Absorption of CHO and Hexose sugar metabolism.pdf
Diegestion Absorption of CHO and Hexose sugar metabolism.pdfDiegestion Absorption of CHO and Hexose sugar metabolism.pdf
Diegestion Absorption of CHO and Hexose sugar metabolism.pdf
TeshaleTekle1
 
carbohydrat emetabolism (2).pptx
carbohydrat emetabolism (2).pptxcarbohydrat emetabolism (2).pptx
carbohydrat emetabolism (2).pptx
DrSachinPandey2
 
Lec 5 level 3-nu(carbohydrate metabolism i)
Lec 5  level 3-nu(carbohydrate metabolism i)Lec 5  level 3-nu(carbohydrate metabolism i)
Lec 5 level 3-nu(carbohydrate metabolism i)
dream10f
 
CARBOHYDRATES.pptx
CARBOHYDRATES.pptxCARBOHYDRATES.pptx
CARBOHYDRATES.pptx
amanjotkaursidhu
 

Similar to Carbohydrate metabolism (20)

Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
 
Carbohydrate.ppt
Carbohydrate.pptCarbohydrate.ppt
Carbohydrate.ppt
 
1. COH met1 .pptx
1. COH met1 .pptx1. COH met1 .pptx
1. COH met1 .pptx
 
002 carbohydrate Metabolism 1.ppt
002 carbohydrate Metabolism 1.ppt002 carbohydrate Metabolism 1.ppt
002 carbohydrate Metabolism 1.ppt
 
CHO METABOL-3.ppt
CHO METABOL-3.pptCHO METABOL-3.ppt
CHO METABOL-3.ppt
 
CHO metabolism MDBC803.ppt
CHO metabolism MDBC803.pptCHO metabolism MDBC803.ppt
CHO metabolism MDBC803.ppt
 
Lec5 level3-nucarbohydratemetabolismi-130204053503-phpapp01
Lec5 level3-nucarbohydratemetabolismi-130204053503-phpapp01Lec5 level3-nucarbohydratemetabolismi-130204053503-phpapp01
Lec5 level3-nucarbohydratemetabolismi-130204053503-phpapp01
 
Carbohydrate digestion
Carbohydrate digestionCarbohydrate digestion
Carbohydrate digestion
 
6. Met of CHO.pptx
6. Met of CHO.pptx6. Met of CHO.pptx
6. Met of CHO.pptx
 
Cell body defense CBD DIGESTION-GLYCOLYSIS.pptx
Cell body defense CBD DIGESTION-GLYCOLYSIS.pptxCell body defense CBD DIGESTION-GLYCOLYSIS.pptx
Cell body defense CBD DIGESTION-GLYCOLYSIS.pptx
 
3. carbohydrates
3. carbohydrates3. carbohydrates
3. carbohydrates
 
Carbohydrate metabolism an overview
Carbohydrate metabolism an overviewCarbohydrate metabolism an overview
Carbohydrate metabolism an overview
 
Carbohydrate metabolism.
Carbohydrate metabolism.Carbohydrate metabolism.
Carbohydrate metabolism.
 
Metabolism of Carbohydrates.ppt
Metabolism of Carbohydrates.pptMetabolism of Carbohydrates.ppt
Metabolism of Carbohydrates.ppt
 
Diegestion Absorption of CHO and Hexose sugar metabolism.pdf
Diegestion Absorption of CHO and Hexose sugar metabolism.pdfDiegestion Absorption of CHO and Hexose sugar metabolism.pdf
Diegestion Absorption of CHO and Hexose sugar metabolism.pdf
 
carbohydrat emetabolism (2).pptx
carbohydrat emetabolism (2).pptxcarbohydrat emetabolism (2).pptx
carbohydrat emetabolism (2).pptx
 
Lec 5 level 3-nu(carbohydrate metabolism i)
Lec 5  level 3-nu(carbohydrate metabolism i)Lec 5  level 3-nu(carbohydrate metabolism i)
Lec 5 level 3-nu(carbohydrate metabolism i)
 
CARBOHYDRATES.pptx
CARBOHYDRATES.pptxCARBOHYDRATES.pptx
CARBOHYDRATES.pptx
 

More from Muhammadasif909

Wound Debridement
Wound DebridementWound Debridement
Wound Debridement
Muhammadasif909
 
Screening For Cardiovascular Disease
Screening For Cardiovascular DiseaseScreening For Cardiovascular Disease
Screening For Cardiovascular Disease
Muhammadasif909
 
Cardio pulmonary pathophysiology
Cardio pulmonary pathophysiologyCardio pulmonary pathophysiology
Cardio pulmonary pathophysiology
Muhammadasif909
 
Skin An Essential Organ
Skin An Essential OrganSkin An Essential Organ
Skin An Essential Organ
Muhammadasif909
 
Case Report
Case ReportCase Report
Case Report
Muhammadasif909
 
Case Control Study
Case Control StudyCase Control Study
Case Control Study
Muhammadasif909
 
Introduction to Research
Introduction to ResearchIntroduction to Research
Introduction to Research
Muhammadasif909
 
Biology of Aging
 Biology of Aging Biology of Aging
Biology of Aging
Muhammadasif909
 
Role of Immunomodulators
Role of ImmunomodulatorsRole of Immunomodulators
Role of Immunomodulators
Muhammadasif909
 
Endocrine Glands of The Body
Endocrine Glands of The BodyEndocrine Glands of The Body
Endocrine Glands of The Body
Muhammadasif909
 
Soft Tissue Tumors
Soft Tissue TumorsSoft Tissue Tumors
Soft Tissue Tumors
Muhammadasif909
 
Genetic & ;Development Disorders Down's syndrome.
Genetic & ;Development Disorders Down's syndrome.Genetic & ;Development Disorders Down's syndrome.
Genetic & ;Development Disorders Down's syndrome.
Muhammadasif909
 
Facial pain
Facial painFacial pain
Facial pain
Muhammadasif909
 
Lymphatic system
Lymphatic systemLymphatic system
Lymphatic system
Muhammadasif909
 
Blood pressure
Blood pressureBlood pressure
Blood pressure
Muhammadasif909
 
Gastric secretion &and its regulation
Gastric secretion &and its regulationGastric secretion &and its regulation
Gastric secretion &and its regulation
Muhammadasif909
 
Nutrition
NutritionNutrition
Nutrition
Muhammadasif909
 
Vector born diseases
Vector born diseases  Vector born diseases
Vector born diseases
Muhammadasif909
 
Personality, its theory and Assesment
 Personality, its theory and Assesment Personality, its theory and Assesment
Personality, its theory and Assesment
Muhammadasif909
 
Memory and Cognition
 Memory and Cognition Memory and Cognition
Memory and Cognition
Muhammadasif909
 

More from Muhammadasif909 (20)

Wound Debridement
Wound DebridementWound Debridement
Wound Debridement
 
Screening For Cardiovascular Disease
Screening For Cardiovascular DiseaseScreening For Cardiovascular Disease
Screening For Cardiovascular Disease
 
Cardio pulmonary pathophysiology
Cardio pulmonary pathophysiologyCardio pulmonary pathophysiology
Cardio pulmonary pathophysiology
 
Skin An Essential Organ
Skin An Essential OrganSkin An Essential Organ
Skin An Essential Organ
 
Case Report
Case ReportCase Report
Case Report
 
Case Control Study
Case Control StudyCase Control Study
Case Control Study
 
Introduction to Research
Introduction to ResearchIntroduction to Research
Introduction to Research
 
Biology of Aging
 Biology of Aging Biology of Aging
Biology of Aging
 
Role of Immunomodulators
Role of ImmunomodulatorsRole of Immunomodulators
Role of Immunomodulators
 
Endocrine Glands of The Body
Endocrine Glands of The BodyEndocrine Glands of The Body
Endocrine Glands of The Body
 
Soft Tissue Tumors
Soft Tissue TumorsSoft Tissue Tumors
Soft Tissue Tumors
 
Genetic & ;Development Disorders Down's syndrome.
Genetic & ;Development Disorders Down's syndrome.Genetic & ;Development Disorders Down's syndrome.
Genetic & ;Development Disorders Down's syndrome.
 
Facial pain
Facial painFacial pain
Facial pain
 
Lymphatic system
Lymphatic systemLymphatic system
Lymphatic system
 
Blood pressure
Blood pressureBlood pressure
Blood pressure
 
Gastric secretion &and its regulation
Gastric secretion &and its regulationGastric secretion &and its regulation
Gastric secretion &and its regulation
 
Nutrition
NutritionNutrition
Nutrition
 
Vector born diseases
Vector born diseases  Vector born diseases
Vector born diseases
 
Personality, its theory and Assesment
 Personality, its theory and Assesment Personality, its theory and Assesment
Personality, its theory and Assesment
 
Memory and Cognition
 Memory and Cognition Memory and Cognition
Memory and Cognition
 

Recently uploaded

Outbreak management including quarantine, isolation, contact.pptx
Outbreak management including quarantine, isolation, contact.pptxOutbreak management including quarantine, isolation, contact.pptx
Outbreak management including quarantine, isolation, contact.pptx
Pratik328635
 
Hiranandani Hospital Powai News [Read Now].pdf
Hiranandani Hospital Powai News [Read Now].pdfHiranandani Hospital Powai News [Read Now].pdf
Hiranandani Hospital Powai News [Read Now].pdf
Dr. Sujit Chatterjee CEO Hiranandani Hospital
 
Integrating Ayurveda into Parkinson’s Management: A Holistic Approach
Integrating Ayurveda into Parkinson’s Management: A Holistic ApproachIntegrating Ayurveda into Parkinson’s Management: A Holistic Approach
Integrating Ayurveda into Parkinson’s Management: A Holistic Approach
Ayurveda ForAll
 
Aortic Association CBL Pilot April 19 – 20 Bern
Aortic Association CBL Pilot April 19 – 20 BernAortic Association CBL Pilot April 19 – 20 Bern
Aortic Association CBL Pilot April 19 – 20 Bern
suvadeepdas911
 
Vestibulocochlear Nerve by Dr. Rabia Inam Gandapore.pptx
Vestibulocochlear Nerve by Dr. Rabia Inam Gandapore.pptxVestibulocochlear Nerve by Dr. Rabia Inam Gandapore.pptx
Vestibulocochlear Nerve by Dr. Rabia Inam Gandapore.pptx
Dr. Rabia Inam Gandapore
 
Abortion PG Seminar Power point presentation
Abortion PG Seminar Power point presentationAbortion PG Seminar Power point presentation
Abortion PG Seminar Power point presentation
AksshayaRajanbabu
 
Muscles of Mastication by Dr. Rabia Inam Gandapore.pptx
Muscles of Mastication by Dr. Rabia Inam Gandapore.pptxMuscles of Mastication by Dr. Rabia Inam Gandapore.pptx
Muscles of Mastication by Dr. Rabia Inam Gandapore.pptx
Dr. Rabia Inam Gandapore
 
CHEMOTHERAPY_RDP_CHAPTER 2 _LEPROSY.pdf1
CHEMOTHERAPY_RDP_CHAPTER 2 _LEPROSY.pdf1CHEMOTHERAPY_RDP_CHAPTER 2 _LEPROSY.pdf1
CHEMOTHERAPY_RDP_CHAPTER 2 _LEPROSY.pdf1
rishi2789
 
Ear and its clinical correlations By Dr. Rabia Inam Gandapore.pptx
Ear and its clinical correlations By Dr. Rabia Inam Gandapore.pptxEar and its clinical correlations By Dr. Rabia Inam Gandapore.pptx
Ear and its clinical correlations By Dr. Rabia Inam Gandapore.pptx
Dr. Rabia Inam Gandapore
 
CHEMOTHERAPY_RDP_CHAPTER 3_ANTIFUNGAL AGENT.pdf
CHEMOTHERAPY_RDP_CHAPTER 3_ANTIFUNGAL AGENT.pdfCHEMOTHERAPY_RDP_CHAPTER 3_ANTIFUNGAL AGENT.pdf
CHEMOTHERAPY_RDP_CHAPTER 3_ANTIFUNGAL AGENT.pdf
rishi2789
 
Ketone bodies and metabolism-biochemistry
Ketone bodies and metabolism-biochemistryKetone bodies and metabolism-biochemistry
Ketone bodies and metabolism-biochemistry
Dhayanithi C
 
8 Surprising Reasons To Meditate 40 Minutes A Day That Can Change Your Life.pptx
8 Surprising Reasons To Meditate 40 Minutes A Day That Can Change Your Life.pptx8 Surprising Reasons To Meditate 40 Minutes A Day That Can Change Your Life.pptx
8 Surprising Reasons To Meditate 40 Minutes A Day That Can Change Your Life.pptx
Holistified Wellness
 
REGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptx
REGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptxREGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptx
REGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptx
LaniyaNasrink
 
Complementary feeding in infant IAP PROTOCOLS
Complementary feeding in infant IAP PROTOCOLSComplementary feeding in infant IAP PROTOCOLS
Complementary feeding in infant IAP PROTOCOLS
chiranthgowda16
 
CHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdf
CHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdfCHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdf
CHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdf
rishi2789
 
Cardiac Assessment for B.sc Nursing Student.pdf
Cardiac Assessment for B.sc Nursing Student.pdfCardiac Assessment for B.sc Nursing Student.pdf
Cardiac Assessment for B.sc Nursing Student.pdf
shivalingatalekar1
 
CHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdf
CHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdfCHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdf
CHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdf
rishi2789
 
Cell Therapy Expansion and Challenges in Autoimmune Disease
Cell Therapy Expansion and Challenges in Autoimmune DiseaseCell Therapy Expansion and Challenges in Autoimmune Disease
Cell Therapy Expansion and Challenges in Autoimmune Disease
Health Advances
 
Journal Article Review on Rasamanikya
Journal Article Review on RasamanikyaJournal Article Review on Rasamanikya
Journal Article Review on Rasamanikya
Dr. Jyothirmai Paindla
 
pathology MCQS introduction to pathology general pathology
pathology MCQS introduction to pathology general pathologypathology MCQS introduction to pathology general pathology
pathology MCQS introduction to pathology general pathology
ZayedKhan38
 

Recently uploaded (20)

Outbreak management including quarantine, isolation, contact.pptx
Outbreak management including quarantine, isolation, contact.pptxOutbreak management including quarantine, isolation, contact.pptx
Outbreak management including quarantine, isolation, contact.pptx
 
Hiranandani Hospital Powai News [Read Now].pdf
Hiranandani Hospital Powai News [Read Now].pdfHiranandani Hospital Powai News [Read Now].pdf
Hiranandani Hospital Powai News [Read Now].pdf
 
Integrating Ayurveda into Parkinson’s Management: A Holistic Approach
Integrating Ayurveda into Parkinson’s Management: A Holistic ApproachIntegrating Ayurveda into Parkinson’s Management: A Holistic Approach
Integrating Ayurveda into Parkinson’s Management: A Holistic Approach
 
Aortic Association CBL Pilot April 19 – 20 Bern
Aortic Association CBL Pilot April 19 – 20 BernAortic Association CBL Pilot April 19 – 20 Bern
Aortic Association CBL Pilot April 19 – 20 Bern
 
Vestibulocochlear Nerve by Dr. Rabia Inam Gandapore.pptx
Vestibulocochlear Nerve by Dr. Rabia Inam Gandapore.pptxVestibulocochlear Nerve by Dr. Rabia Inam Gandapore.pptx
Vestibulocochlear Nerve by Dr. Rabia Inam Gandapore.pptx
 
Abortion PG Seminar Power point presentation
Abortion PG Seminar Power point presentationAbortion PG Seminar Power point presentation
Abortion PG Seminar Power point presentation
 
Muscles of Mastication by Dr. Rabia Inam Gandapore.pptx
Muscles of Mastication by Dr. Rabia Inam Gandapore.pptxMuscles of Mastication by Dr. Rabia Inam Gandapore.pptx
Muscles of Mastication by Dr. Rabia Inam Gandapore.pptx
 
CHEMOTHERAPY_RDP_CHAPTER 2 _LEPROSY.pdf1
CHEMOTHERAPY_RDP_CHAPTER 2 _LEPROSY.pdf1CHEMOTHERAPY_RDP_CHAPTER 2 _LEPROSY.pdf1
CHEMOTHERAPY_RDP_CHAPTER 2 _LEPROSY.pdf1
 
Ear and its clinical correlations By Dr. Rabia Inam Gandapore.pptx
Ear and its clinical correlations By Dr. Rabia Inam Gandapore.pptxEar and its clinical correlations By Dr. Rabia Inam Gandapore.pptx
Ear and its clinical correlations By Dr. Rabia Inam Gandapore.pptx
 
CHEMOTHERAPY_RDP_CHAPTER 3_ANTIFUNGAL AGENT.pdf
CHEMOTHERAPY_RDP_CHAPTER 3_ANTIFUNGAL AGENT.pdfCHEMOTHERAPY_RDP_CHAPTER 3_ANTIFUNGAL AGENT.pdf
CHEMOTHERAPY_RDP_CHAPTER 3_ANTIFUNGAL AGENT.pdf
 
Ketone bodies and metabolism-biochemistry
Ketone bodies and metabolism-biochemistryKetone bodies and metabolism-biochemistry
Ketone bodies and metabolism-biochemistry
 
8 Surprising Reasons To Meditate 40 Minutes A Day That Can Change Your Life.pptx
8 Surprising Reasons To Meditate 40 Minutes A Day That Can Change Your Life.pptx8 Surprising Reasons To Meditate 40 Minutes A Day That Can Change Your Life.pptx
8 Surprising Reasons To Meditate 40 Minutes A Day That Can Change Your Life.pptx
 
REGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptx
REGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptxREGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptx
REGULATION FOR COMBINATION PRODUCTS AND MEDICAL DEVICES.pptx
 
Complementary feeding in infant IAP PROTOCOLS
Complementary feeding in infant IAP PROTOCOLSComplementary feeding in infant IAP PROTOCOLS
Complementary feeding in infant IAP PROTOCOLS
 
CHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdf
CHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdfCHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdf
CHEMOTHERAPY_RDP_CHAPTER 4_ANTI VIRAL DRUGS.pdf
 
Cardiac Assessment for B.sc Nursing Student.pdf
Cardiac Assessment for B.sc Nursing Student.pdfCardiac Assessment for B.sc Nursing Student.pdf
Cardiac Assessment for B.sc Nursing Student.pdf
 
CHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdf
CHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdfCHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdf
CHEMOTHERAPY_RDP_CHAPTER 6_Anti Malarial Drugs.pdf
 
Cell Therapy Expansion and Challenges in Autoimmune Disease
Cell Therapy Expansion and Challenges in Autoimmune DiseaseCell Therapy Expansion and Challenges in Autoimmune Disease
Cell Therapy Expansion and Challenges in Autoimmune Disease
 
Journal Article Review on Rasamanikya
Journal Article Review on RasamanikyaJournal Article Review on Rasamanikya
Journal Article Review on Rasamanikya
 
pathology MCQS introduction to pathology general pathology
pathology MCQS introduction to pathology general pathologypathology MCQS introduction to pathology general pathology
pathology MCQS introduction to pathology general pathology
 

Carbohydrate metabolism

  • 2. I. Introduction: A. More than 60% of our foods are carbohydrates. Starch, glycogen, sucrose, lactose and cellulose are the chief carbohydrates in our food. Before intestinal absorption, they are hydrolysed to hexose sugars (glucose, galactose and fructose). B. A family of a glycosidases that degrade carbohydrate into their monohexose components catalyzes hydrolysis of glycocidic bonds. These enzymes are usually specific to the type of bond to be broken.
  • 3. Digestion of carbohydrate by salivary α -amylase (ptylin) in the mouth: A. This enzyme is produced by salivary glands. Its optimum pH is 6.7. B. It is activated by chloride ions (cl-). C. It acts on cooked starch and glycogen breaking α 1-4 bonds, converting them into maltose [a disaccharide containing two glucose molecules attached by α 1-4 linkage]. This bond is not attacked by alpha-amylase. Because both starch and glycogen also contain 1-6 bonds, the resulting digest contains isomaltose [a disaccharide in which two glucose molecules are attached by 1-6 linkage]. E. Because food remains for a short time in the mouth, digestion of starch and glycogen may be incomplete and gives a partial digestion products called: starch dextrins (amylodextrin, erythrodextrin and achrodextrin). F. Therefore, digestion of starch and glycogen in the mouth gives maltose, isomaltose and starch dextrins.
  • 4. ln the stomach: carbohydrate digestion stops temporarily due to the high acidity which inactivates the salivary - amylase. IV. Digestion of carbohydrate by the pancreatic - amylase small intestine in the small intestine. A. α-amylase enzyme is produced by pancreas and acts in small intestine. Its optimum pH is 7.1. B. It is also activated by chloride ions. C. It acts on cooked and uncooked starch, hydrolysing them into maltose and isomaltose. Final carbohydrate digestion by intestinal enzymes: A. The final digestive processes occur at the small intestine and include the action of several disaccharidases. These enzymes are secreted through and remain associated with the brush border of the intestinal mucosal cells.
  • 5. B. The disaccharidases include: 1. Lactase (β-galactosidase) which hydrolyses lactose into two molecules of glucose and galactose: Lactase Lactose Glucose + Galactose 2. Maltase ( α-glucosidase), which hydrolyses maltose into two molecules of glucose: Maltase Maltose Glucose + Glucose 3. Sucrose (α-fructofuranosidase), which hydrolyses sucrose into two molecules of glucose and fructose: Sucrose Sucrose Glucose + Fructose 4. α - dextrinase (oligo-1,6 glucosidase) which hydrolyze (1 ,6) linkage of isomaltose. Dextrinase Isomaltose Glucose + Glucose
  • 6. Digestion of cellulose: A. Cellulose contains β(1-4) bonds between glucose molecules. B. In humans, there is no β (1-4) glucosidase that can digest such bonds. So cellulose passes as such in stool. C. Cellulose helps water retention during the passage of food along the intestine  producing larger and softer feces  preventing constipation.
  • 7. Absorptions A.The end products of carbohydrate digestion are monosaccharides: glucose, galactose and fructose. They are absorbed from the jejunum to portal veins to the liver, where fructose and galactose are transformed into glucose. B.Two mechanisms are responsible for absorption of monosaccharides: active transport (against concentration gradient i.e. from low to high concentration) and passive transport (by facilitated diffusion). C. For active transport to take place, the structure of sugar should have: 1. Hexose ring. 2. OH group at position 2 at the right side. Both of which are present in glucose and galactose. Fructose, which does not contain -OH group to the right at position 2 is absorbed more slowly than glucose and galactose by passive diffusion (slow process). 3. A methyl or a substituted methyl group should be present at carbon 5. I. Introduction
  • 8. II. Mechanisms of absorption: A. Active transport: 1. Mechanism of active transport: a) In the cell membrane of the intestinal cells, there is a mobile carrier protein called sodium dependant glucose transporter (SGL T-1) It transports glucose to inside the cell using energy. The energy is derived from sodium-potassium pump. The transporter has 2 separate sites, one for sodium and the other for glucose. It transports them from the intestinal lumen across cell membrane to the cytoplasm. Then both glucose and sodium are released into the cytoplasm allowing the carrier to return for more transport of glucose and sodium.
  • 9. b) The sodium is transported from high to low concentration (with concentration gradient) and at the same time causes the carrier to transport glucose against its concentration gradient. The Na+ is expelled outside the cell by sodium pump. Which needs ATP as a source of energy. The reaction is catalyzed by an enzyme called "Adenosine triphosphatase (ATPase)". Active transport is much more faster than passive transport. c) Insulin increases the number of glucose transporters in tissues containing insulin receptors e.g. muscles and adipose tissue.
  • 10. B. Transport Proteins Transport proteins = Integral membrane proteins that transport specific molecules or ions across biological membranes. Protein (Figure 8.9)
  • 11. B. Passive transport (facilitated diffusion): Sugars pass with concentration gradient i.e. from high to low concentration. It needs no energy. It occurs by means of a sodium independent facilitative transporter (GLUT -5). Fructose and pentoses are absorbed by this mechanism. Glucose and galactose can also use the same transporter if the concentration gradient is favorable. C. There is also sodium – independent transporter (GLUT-2), that facilitates transport of sugars out of the cell i.e. to circulation. 2. Inhibitors of active transport: a) Ouabin (cardiac glycoside): Inhibits adenosine triphosphatase (ATPase) necessary for hydrolysis of ATP that produces energy of sodium pump. b) Phlorhizin; Inhibits the binding of sodium in the carrier protein.
  • 12. Summary of types of functions of most important glucose transporters: SiteFunction Intestine and renal tubules. Absorption of glucose by active transport (energy is derived from Na+- K+ pump) SGLT- 1 Intestine and spermFructose transport and to a lesser extent glucose and galactose. GLUT - 5 -Intestine and renal tubule -β cells of islets-liver Transport glucose out of intestinal and renal cells  circulation GLUT - 2
  • 13. III. Defects of carbohydrate digestion and absorption: A. Lactase deficiency = lactose intolerance: 1. Definition: a) This is a deficiency of lactase enzyme which digest lactose into glucose and galactose b) It may be: (i) Congenital: which occurs very soon after birth (rare). (ii) Acquired: which occurs later on in life (common). 2. Effect: The presence of lactose in intestine causes: a) Increased osmotic pressure: So water will be drawn from the tissue (causing dehydration) into the large intestine (causing diarrhoea). b) Increased fermentation of lactose by bacteria: Intestinal bacteria ferment lactose with subsequent production of CO2 gas. This causes distention and abdominal cramps. c) Treatment: Treatment of this disorder is simply by removing lactose (milk) from diet.
  • 14. B. Sucrose deficiency: A rare condition, showing the signs and symptoms of lactase deficiency. It occurs early in childhood. C. Monosaccharide malabsorption: This is a congenital condition in which glucose and galactose are absorbed only slowly due to defect in the carrier mechanism. Because fructose is not absorbed by the carrier system, its absorption is normal. IV. Fate of absorbed sugars: Monosaccharides (glucose, galactose and fructose) resulting from carbohydrate digestion are absorbed and undergo the following: A. Uptake by tissues (liver): After absorption the liver takes up sugars, where galactose and fructose are converted into glucose. B. Glucose utilization by tissues: Glucose may undergo as one of the following fate:
  • 15. 1. Oxidation: through a) Major pathways (glycolysis and Krebs' cycle) for production of energy. b) Hexose monophosphate pathway: for production of ribose, deoxyribose and NADPH + H+ c) Uronic acid pathway, for production of glucuronic acid, which is used in detoxication and enters in the formation of mucopolysaccharide. 2. Storage: in the form of: a) Glycogen: glycogenesis. b) Fat: lipogenesis. 3. Conversion: to substances of biological importance: a) Ribose, deoxyribose  RNA and DNA. b) Lactose  milk. c) Glucosamine, galactosamine  mucopolysaccharides. d) Glucoronic acid  mucopolysaccharides. e) Fructose  in semen.
  • 17. I. Glycolysis (Embden Meyerhof Pathway): A. Definition: 1. Glycolysis means oxidation of glucose to give pyruvate (in the presence of oxygen) or lactate (in the absence of oxygen). B. Site: cytoplasm of all tissue cells, but it is of physiological importance in: 1. Tissues with no mitochondria: mature RBCs, cornea and lens. 2. Tissues with few mitochondria: Testis, leucocytes, medulla of the kidney, retina, skin and gastrointestinal tract. 3. Tissues undergo frequent oxygen lack: skeletal muscles especially during exercise.
  • 18. C. Steps: Stages of glycolysis 1. Stage one (the energy requiring stage): a) One molecule of glucose is converted into two molecules of glycerosldhyde-3-phosphate. b) These steps requires 2 molecules of ATP (energy loss) 2. Stage two (the energy producing stage(: a) The 2 molecules of glyceroaldehyde-3-phosphate are converted into pyruvate (aerobic glycolysis) or lactate (anaerobic glycolysis(. b) These steps produce ATP molecules (energy production). D. Energy (ATP) production of glycolysis: ATP production = ATP produced - ATP utilized
  • 19. •In the energy investment phase, ATP provides activation energy by phosphorylating glucose. –This requires 2 ATP per glucose. •In the energy payoff phase, ATP is produced by substrate-level phosphorylation and NAD+ is reduced to NADH. •2 ATP (net) and 2 NADH are produced per glucose. Fig. 9.8
  • 20. Fig. 9.9a Energy Investment Phase (steps 1-5)
  • 21. Fig. 9.9b Energy-Payoff Phase (Steps 6-10)
  • 22. Energy production of glycolysis: Net energyATP utilizedATP produced 2 ATP2ATP From glucose to glucose -6-p. From fructose -6-p to fructose 1,6 p. 4 ATP (Substrate level phosphorylation) 2ATP from 1,3 DPG. 2ATP from phosphoenol pyruvate In absence of oxygen (anaerobic glycolysis) 6 ATP Or 8 ATP 2ATP -From glucose to glucose -6-p. From fructose -6-p to fructose 1,6 p. 4 ATP (substrate level phosphorylation) 2ATP from 1,3 BPG. 2ATP from phosphoenol pyruvate. In presence of oxygen (aerobic glycolysis) + 4ATP or 6ATP (from oxidation of 2 NADH + H in mitochondria).
  • 23. E. Oxidation of extramitochondrial NADH+H+: 1. cytoplasmic NADH+H+ cannot penetrate mitochondrial membrane, however, it can be used to produce energy (4 or 6 ATP) by respiratory chain phosphorylation in the mitochondria. 2. This can be done by using special carriers for hydrogen of NADH+H+ These carriers are either dihydroxyacetone phosphate (Glycerophosphate shuttle) or oxaloacetate (aspartate malate shuttle). a) Glycerophosphate shuttle: 1) It is important in certain muscle and nerve cells. 2) The final energy produced is 4 ATP. 3) Mechanism: - The coenzyme of cytoplasmic glycerol-3- phosphate dehydrogenase is NAD+. - The coenzyme of mitochodrial glycerol-3-phosphate dehydogenase is FAD. -Oxidation of FADH, in respiratory chain gives 2 ATP. As glycolysis gives 2 cytoplasmic NADH + H+  2 mitochondrial FADH, 2 x 2 ATP  = 4 ATP. b) Malate – aspartate shuttle: 1) It is important in other tissues patriculary liver and heart. 2) The final energy produced is 6 ATP.
  • 24. Differences between aerobic and anaerobic glycolysis: AnaerobicAerobic LactatePyruvate1. End product 2 ATP6 or 8 ATP2 Energy Through Lactate formation Through respiration chain in mitochondria 3. Regeneration of NAD+ Not available as lactate is cytoplasmic substrate Available and 2 Pyruvate can oxidize to give 30 ATP 4. Availability to TCA in mitochondria
  • 25. Substrate level phosphorylation: This means phosphorylation of ADP to ATP at the reaction itself .in glycolysis there are 2 examples: - 1-3 Bisphosphoglycerate + ADP 3 Phosphoglycerate + ATP - Phospho-enol pyruvate + ADP Enolpyruvate + ATP I. Special features of glycolysis in RBCs: 1. Mature RBCs contain no mitochondria, thus: a) They depend only upon glycolysis for energy production (=2 ATP). b) Lactate is always the end product. 2. Glucose uptake by RBCs is independent on insulin hormone. 3. Reduction of met-hemoglobin: Glycolysis produces NADH+H+, which is used for reduction of met-hemoglobin in red cells.
  • 26. Biological importance (functions) of glycolysis: 1. Energy production: a) anaerobic glycolysis gives 2 ATP. b) aerobic glycolysis gives 8 ATP. 2. Oxygenation of tissues: Through formation of 2,3 bisphosphoglycerate, which decreases the affinity of Hemoglobin to O2. 3. Provides important intermediates: a) Dihydroxyacetone phosphate: can give glycerol-3phosphate, which is used for synthesis of triacylglycerols and phospholipids (lipogenesis). b) 3 Phosphoglycerate: which can be used for synthesis of amino acid serine. c) Pyruvate: which can be used in synthesis of amino acid alanine. 4. Aerobic glycolysis provides the mitochondria with pyruvate, which gives acetyl CoA Krebs' cycle.
  • 27. Reversibility of glycolysis (Gluconeogenesis): 1. Reversible reaction means that the same enzyme can catalyzes the reaction in both directions. 2. all reactions of glycolysis -except 3- are reversible. 3. The 3 irreversible reactions (those catalyzed by kinase enzymes) can be reversed by using other enzymes. Glucose-6-p  Glucose F1, 6 Bisphosphate  Fructose-6-p Pyruvate  Phosphoenol pyruvate 4. During fasting, glycolysis is reversed for synthesis of glucose from non- carbohydrate sources e.g. lactate. This mechanism is called: Gluconeogenesis.
  • 28. Comparison between glucokinase and hexokinase enzymes: HexokinaseGlucokinaase All tissue cellsLiver only1. Site High affinity (low km) i.e. it acts even in the presence of low blood glucose concentration. Low affinity (high km) i.e. it acts only in the presence of high blood glucose concentration. 2. Affinity to glucose Glucose, galactose and fructoseGlucose only3. Substrate No effectInduces synthesis of glucokinase. 4. Effect of insulin Allosterically inhibits hexokinaseNo effect5. Effect of glucose-6-p It phosphorylates glucose inside the body cells. This makes glucose concentration more in blood than inside the cells. This leads to continuous supply of glucose for the tissues even in the presence of low blood glucose concentration. Acts in liver after meals. It removes glucose coming in portal circulation, converting it into glucose -6-phosphate. 6. Function
  • 29. Importance of lactate production in anerobic glycolysis: 1. In absence of oxygen, lactate is the end product of glycolysis: 2. In absence of oxygen, NADH + H+ is not oxidized by the respiratory chain. 3. The conversion of pyruvate to lactate is the mechanism for regeneration of NAD+. 4. This helps continuity of glycolysis, as the generated NAD+ will be used once more for oxidation of another glucose molecule. Glucose  Pyruvate  Lactate
  • 30. •As pyruvate enters the mitochondrion, a multienzyme complex modifies pyruvate to acetyl CoA which enters the Krebs cycle in the matrix. –A carboxyl group is removed as CO2 –A pair of electrons is transferred from the remaining two-carbon fragment to NAD+ to form NADH. –The oxidized fragment, acetate, combines with coenzyme A to form acetyl CoA.