SlideShare a Scribd company logo
1
AERODYNAMICS
Part I
SOLO HERMELIN
http://www.solohermelin.com
2
Table of Content
AERODYNAMICS
Earth Atmosphere
Mathematical Notations
SOLO
Basic Laws in Fluid Dynamics
Conservation of Mass (C.M.)
Conservation of Linear Momentum (C.L.M.)
Conservation of Moment-of-Momentum (C.M.M.)
The First Law of Thermodynamics
The Second Law of Thermodynamics and Entropy Production
Constitutive Relations for Gases
Newtonian Fluid Definitions – Navier–Stokes Equations
State Equation
Thermally Perfect Gas and Calorically Perfect Gas
Boundary Conditions
Dimensionless Equations
Boundary Layer and Reynolds Number
3
Table of Content (continue – 1)
AERODYNAMICS
SOLO
Circulation
Biot-Savart Formula
Helmholtz Vortex Theorems
2-D Inviscid Incompressible Flow
Stream Function ψ, Velocity Potential φ in 2-D Incompressible
Irrotational Flow
Aerodynamic Forces and Moments
Blasius Theorem
Kutta Condition
Kutta-Joukovsky Theorem
Joukovsky Airfoils
Theodorsen Airfoil Design Method
Profile Theory by the Method of Singularities
Airfoil Design
Flow Description
Streamlines, Streaklines, and Pathlines
4
Table of Content (continue – 2)
AERODYNAMICS
SOLO
Lifting-Line Theory
Subsonic Incompressible Flow (ρ∞ = const.) about Wings
of Finite Span (AR < ∞)
3D Lifting-Surface Theory through Vortex Lattice Method (VLM)
Incompressible Potential Flow Using Panel Methods
Wing Configurations
Wing Parameters
References
5
Table of Content (continue – 3)
AERODYNAMICS
SOLO
Linearized Flow Equations
Cylindrical Coordinates
Small Perturbation Flow
Applications: Nonsteady One-Dimensional Flow
Applications: Two Dimensional Flow
Shock & Expansion Waves
Shock Wave Definition
Normal Shock Wave
Oblique Shock Wave
Prandtl-Meyer Expansion Waves
Movement of Shocks with Increasing Mach Number
Drag Variation with Mach Number
Swept Wings Drag Variation
Variation of Aerodynamic Efficiency with Mach Number
AERO
6
Table of Content (continue – 4)
AERODYNAMICS
SOLO
Analytic Theory and CFD
Transonic Area Rule
Aircraft Flight Control
AERO
7
Wright Brothers First Flight
AERODYNAMICS
SOLO
SOLO
Atmosphere
Continuum Flow
Low-density and
Free-molecular Flow
Viscous Flow Inviscid Flow
Incompressible Flow
Compressible Flow
Subsonic
Flow
Transonic
Flow
Supersonic
Flow
Hypersonic
Flow
AERODYNAMICS
AERODYNAMICS
9
Percent composition of dry atmosphere, by volume
ppmv: parts per million by volume
Gas Volume
Nitrogen (N2) 78.084%
Oxygen (O2) 20.946%
Argon (Ar) 0.9340%
Carbon dioxide (CO2) 365 ppmv
Neon (Ne) 18.18 ppmv
Helium (He) 5.24 ppmv
Methane (CH4) 1.745 ppmv
Krypton (Kr) 1.14 ppmv
Hydrogen (H2) 0.55 ppmv
Not included in above dry atmosphere:
Water vapor (highly variable) typically 1%
Gas Volume
nitrous oxide 0.5 ppmv
xenon 0.09 ppmv
ozone
0.0 to 0.07 ppmv (0.0 to 0.02
ppmv in winter)
nitrogen dioxide 0.02 ppmv
iodine 0.01 ppmv
carbon monoxide trace
ammonia trace
•The mean molecular mass of air is 28.97 g/mol.
Minor components of air not listed above include:
Composition of Earth's atmosphere. The lower pie
represents the trace gases which together compose
0.039% of the atmosphere. Values normalized for
illustration. The numbers are from a variety of
years (mainly 1987, with CO2 and methane from
2009) and do not represent any single source
Earth AtmosphereSOLO
10
Earth AtmosphereSOLO
Earth AtmosphereSOLO
The Earth Atmosphere might be described as a Thermodynamic
Medium in a Gravitational Field and in Hydrostatic Equilibrium
set by Solar Radiation. Since Solar Radiation and Atmospheric
Reradiation varies diurnally and annually and with latitude and
longitude, the Standard Atmosphere is only an approximation.
SOLO
12
The purpose of the Standard Atmosphere has been defined by
the World Metheorological Organization (WMO).
The accepted standards are the COESA (Committee on
Extension to the Standard Atmosphere) US Standard Atmosphere
1962, updated by US Standard Atmosphere 1976.
Earth Atmosphere
The basic variables representing the thermodynamics state of
the gas are the Density, ρ, Temperature, T and Pressure, p.
SOLO
13
The Density, ρ, is defined as the mass, m, per unit volume, v,
and has units of kg/m3
.
v
m
v ∆
∆
=
→∆ 0
limρ
The Temperature, T, with units in degrees Kelvin ( ͦ K). Is a
measure of the average kinetic energy of gas particles.
The Pressure, p, exerted by a gas on a solid surface is defined as
the rate of change of normal momentum of the gas particles
striking per unit area.
It has units of N/m2
. Other pressure units are millibar (mbar),
Pascal (Pa), millimeter of mercury height (mHg)
S
f
p n
S ∆
∆
=
→∆ 0
lim
kPamNbar 100/101 25
==
( ) mmHginHgkPamkNmbar 00.7609213.29/325.10125.1013 2
===
The Atmospheric Pressure at Sea Level is:
Earth Atmosphere
14
Physical Foundations of Atmospheric Model
The Atmospheric Model contains the values of
Density, Temperature and Pressure as function
of Altitude.
Atmospheric Equilibrium (Barometric) Equation
In figure we see an atmospheric
element under equilibrium under
pressure and gravitational forces
( )[ ] 0=⋅+−+⋅⋅⋅− APdPPHdAg gρ
or
( ) gg HdHgPd ⋅⋅=− ρ
In addition, we assume the atmosphere to be a thermodynamic fluid. At altitude
bellow 100 km we assume the Equation of an Ideal Gas
where
V – is the volume of the gas
N – is the number of moles in the volume V
m – the mass of gas in the volume V
R* - Universal gas constant
TRNVP ⋅⋅=⋅ *
V
m
M
m
N == ρ&
MTRP /*
⋅⋅= ρ
Earth AtmosphereSOLO
( ) mmHginHgkPamkNmbar 00.7609213.29/325.10125.1013 2
===
Earth AtmosphereSOLO
We must make a distinction between:
- Kinetic Temperature (T): measures the molecular kinetic energy
and for all practical purposes is identical to thermometer
measurements at low altitudes.
- Molecular Temperature (TM): assumes (not true) that the
Molecular Weight at any altitude (M) remains constant and is
given by sea-level value (M0)
SOLO
16
T
M
M
TM ⋅= 0
To simplify the computation let introduce:
- Geopotential Altitude H
- Geometric Altitude Hg
Newton Gravitational Law implies: ( )
2
0 







+
⋅=
gE
E
g
HR
R
gHg
The Barometric Equation is ( ) gg HdHgPd ⋅⋅=− ρ
The Geopotential Equation is defined as HdgPd ⋅⋅=− 0ρ
This means that g
gE
E
g Hd
HR
R
Hd
g
g
Hd ⋅








+
=⋅=
2
0
Integrating we obtain g
gE
E
H
HR
R
H ⋅








+
=
Earth Atmosphere
17
Atmospheric Constants
Definition Symbol Value Units
Sea-level pressure P0 1.013250 x 105
N/m2
Sea-level temperature T0 288.15 ͦ K
Sea-level density ρ0 1.225 kg/m3
Avogadro’s Number Na 6.0220978 x 1023
/kg-mole
Universal Gas Constant R* 8.31432 x 103
J/kg-mole -ͦ K
Gas constant (air) Ra=R*/M0 287.0 J/kg--ͦ
K
Adiabatic polytropic constant γ 1.405
Sea-level molecular weight M0 28.96643
Sea-level gravity acceleration g0 9.80665 m/s2
Radius of Earth (Equator) Re 6.3781 x 106
m
Thermal Constant β 1.458 x 10-6
Kg/(m-s-ͦ K1/2)
Sutherland’s Constant S 110.4 ͦ K
Collision diameter σ 3.65 x 10-10
m
Earth AtmosphereSOLO
18
Physical Foundations of Atmospheric Model
Atmospheric Equilibrium Equation
HdgPd ⋅⋅=− 0ρ
At altitude bellow 100 km we assume t6he
Equation of an Ideal Gas
TRMTRP a
MRR
a
aa
⋅⋅=⋅⋅=
=
ρρ
/
*
*
/
Hd
TR
g
P
Pd
a
⋅=− 0
Combining those two equations we obtain
Assume that T = T (H), i.e. function of Geopotential Altitude only.
The Standard Model defines the variation of T with altitude based on
experimental data. The 1976 Standard Model for altitudes between 0.0 to 86.0 km
is divided in 7 layers. In each layer dT/d H = Lapse-rate is constant.
Earth AtmosphereSOLO
19
Layer
Index
Geopotential
Altitude Z,
km
Geometric
Altitude Z;
km
Molecular
Temperature T,
ͦ K
0 0.0 0.0 288.150
1 11.0 11.0102 216.650
2 20.0 20.0631 216.650
3 32.0 32.1619 228.650
4 47.0 47.3501 270.650
5 51.0 51.4125 270.650
6 71.0 71.8020 214.650
7 84.8420 86.0 186.946
1976 Standard Atmosphere : Seven-Layer Atmosphere
Lapse Rate
Lh;
ͦ K/km
-6.3
0.0
+1.0
+2.8
0.0
-2.8
-2.0
Earth AtmosphereSOLO
20
Physical Foundations of Atmospheric Model
• Troposphere (0.0 km to 11.0 km).
We have ρ (6.7 km)/ρ (0) = 1/e=0.3679, meaning that 63% of the atmosphere
lies below an altitude of 6.7 km.
( )
Hd
HLTR
g
Hd
TR
g
P
Pd
aa
⋅
⋅+
=⋅=−
0
00
kmKLHLTT /3.60

−=⋅+=
Integrating this equation we obtain
( )∫∫ ⋅
⋅+
=−
H
a
P
P
Hd
HLTR
g
P
PdS
S 0 0
0 1
0
( )
0
00
lnln
0
T
HLT
RL
g
P
P
aS
S ⋅+
⋅
⋅
−=
Hence
aRL
g
SS H
T
L
PP
⋅
−






⋅+⋅=
0
0
0
1
and










−








⋅=
⋅
1
0
0
0
g
RL
S
S
a
P
P
L
T
H
Earth AtmosphereSOLO
21
Physical Foundations of Atmospheric Model
Hd
TR
g
P
Pd
Ta
⋅=− *
0
Integrating this equation we obtain
( )T
TaS
S
HH
TR
g
P
P
T
−⋅
⋅
−= *
0
ln
Hence
( )T
Ta
T
HH
TR
g
SS ePP
−⋅
⋅
−
⋅=
*
0
and
S
STTa
T
P
P
g
TR
HH ln
0
*
⋅
⋅
+=
∫∫ =−
H
HTa
P
P T
S
TS
Hd
TR
g
P
Pd
*
0
• Stratosphere Region (HT=11.0 km to 20.0 km).
Temperature T = 216.65 ͦ K = TT* is constant (isothermal layer), PST=22632
Pa
Earth AtmosphereSOLO
22
Physical Foundations of Atmospheric Model
( )[ ] Hd
HHLTR
g
Hd
TR
g
P
Pd
SSTaa
⋅
−⋅+⋅
=⋅=− *
00
( ) ( ) PaPHPkmKLHHLTT SSSSSST 5474.9,/0.1
*
===−⋅−= 
Integrating this equation we obtain
( )[ ]∫∫ ⋅
−⋅+
=−
H
H SSTa
P
P S
S
SS
Hd
HHLTR
g
P
Pd
*
0 1
( )[ ]
*
*
0
lnln
T
ST
aSSS
S
T
HHLT
RL
g
P
P −⋅+
⋅
⋅
=
Hence ( )
aRL
g
S
T
S
SSS HH
T
L
PP
⋅
−








−⋅+⋅=
0
*
1
and










−





⋅+=
⋅
1
0
* g
RL
SS
S
S
T
S
aS
P
P
L
T
HH
Stratosphere Region (HS=20.0 km to 32.0 km).
Earth AtmosphereSOLO
23
1962 Standard Atmosphere from 86 km to 700 km
Layer Index Geometric
Altitude
km
Molecular
Yemperature
,
K
Kinetic
Temperature
K
Molecular
Weight
Lapse
Rate
K/km
7 86.0 186.946 186.946 28.9644 +1.6481
8 100.0 210.65 210.02 28.88 +5.0
9 110.0 260.65 257.00 28.56 +10.0
10 120.0 360.65 349.49 28.08 +20.0
11 150.0 960.65 892.79 26.92 +15.0
12 160.0 1110.65 1022.20 26.66 +10.0
13 170.0 1210.65 1103.40 26.49 +7.0
14 190.0 1350.65 1205.40 25.85 +5.0
15 230.0 1550.65 132230 24.70 +4.0
16 300.0 1830.65 1432.10 22.65 +3.3
17 400.0 2160.65 1487.40 19.94 +2.6
18 500.0 2420.65 1506.10 16.84 +1.7
19 600.0 2590.65 1506.10 16.84 +1.1
20 700.0 2700.65 1507.60 16.70
Earth AtmosphereSOLO
24
1976 Standard Atmosphere from 86 km to 1000 km
Geometric Altitude Range: from 86.0 km to 91.0 km (index 7 – 8)
78
/0.0
TT
kmK
Zd
Td
=
= 
Geometric Altitude Range: from 91.0 km to 110.0 km (index 8 – 9)
2/12
8
2
8
2/12
8
1
1
−













 −
−




 −
⋅−=













 −
−⋅+=
a
ZZ
a
ZZ
a
A
Zd
Td
a
ZZ
ATT C
kma
KA
KTC
9429.19
3232.76
1902.263
−=
−=
=


Geometric Altitude Range: from 110.0 km to 120.0 km (index 9 – 10)
( )
kmK
Zd
Td
ZZLTT Z
/0.12
99

+=
−⋅+=
Geometric Altitude Range: from 120.0 km to 1000.0 km (index 10 – 11)
( ) ( )
( )
( ) 





+
+
⋅−=






+
+
⋅−⋅=
⋅−⋅−−=
∞
∞∞
ZR
ZR
ZZ
kmK
ZR
ZR
TT
Zd
Td
TTTT
E
E
E
E
10
10
10
10
10
/
exp
ξ
λ
ξλ

KT
kmR
km
E

1000
10356766.6
/01875.0
3
=
×=
=
∞
λ
Earth AtmosphereSOLO
25
Sea Level Values
Pressure p0 = 101,325 N/m2
Density ρ0 = 1.225 kg/m3
Temperature = 288.15 ͦ K (15 ͦ C)
Acceleration of gravity g0 = 9.807 m/sec2
Speed of Sound a0 = 340.294 m/sec
Earth AtmosphereSOLO
26
Earth AtmosphereSOLO
27
Winds
Winds represents the relative motion of the Atmosphere
Earth Atmosphere
Although in the standard atmosphere the air is
motionless with respect to the Earth, it is known that
the air mass through which an airplane flies is
constantly in a state of motion with respect to the
surface of the Earth. Its motion is variable both in
time and space and is exceedingly complex. The
motion may be divided into two classes: (1) large-
scale motions and (2) small-scale motions. Large-
scale motions of the atmosphere (or winds) affect
the navigation and the performance of an aircraft.
SOLO
Return to Table of Content
28
FLUID DYNAMICS
1. MATHEMATICAL NOTATIONS
VECTOR NOTATION CARTESIAN TENSOR NOTATION
1.1 VECTOR
1.2 SCALAR PRODUCT
1.3 VECTOR PRODUCT
u kk = 1 2 3, ,
   
u u e u e u e= + +1 1 2 2 3 3
 
u v u v u v u v⋅ = + +1 1 2 2 3 3 u v kk k = 1 2 3, ,
 
u v
u u
u u
u u
v
v
v
× =
−
−
−




















0
0
0
3 2
3 1
2 1
1
2
3





=



−
+
±
=−=
ji
permutjiodd
permutjieven
CevittaLevi
vu
ij
jiij
0
.,
.,
1
ε
ε
SOLO
29
FLUID DYNAMICS
1. MATHEMATICAL NOTATIONS (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
1.5 ROTOR OF A VECTOR
1.4 DIVERGENCE OF A VECTOR
1.6 GRADIENT OF A SCALAR
∇⋅ = + +

u
u
x
u
x
u
x
∂
∂
∂
∂
∂
∂
1
1
2
2
3
3 i
i
x
u
∂
∂
∇× = −





 + −






+ −






  

u
u
x
u
x
e
u
x
u
x
e
u
x
u
x
e
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
3
2
2
3
1
1
3
3
1
2
1
2
2
1
3
   
u u
u
u u×∇× =∇





 − ⋅∇
2
2
∂
∂
∂
∂
u
x
u
x
i
k
k
i
−
i
k
j
k
i
i
x
u
u
x
u
u
∂
∂
∂
∂
−
∇ = + +
=













φ
∂ φ
∂
∂ φ
∂
∂ φ
∂
∂ φ
∂
∂ φ
∂
∂ φ
∂
x
e
x
e
x
e
x x x
1
1
2
2
31
3
1 2 3
  
∂ φ
∂ xk
SOLO
30
FLUID DYNAMICS
1.MATHEMATICAL NOTATIONS (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
1.7GRADIENT OF A VECTOR
∇ = ∇ + ∇ + ∇
   
u u e u e u e1 1 2 2 3 3
∇ =



















u
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
1
1
1
2
1
3
2
1
2
2
2
3
3
1
3
2
3
3
∇ =
+ + +
+ + +
+ + +



















 
u
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
D
ik
1
2
1
1
1
1
1
2
2
1
1
3
3
1
2
1
1
2
2
2
2
2
2
3
3
1
3
1
1
3
3
2
2
3
3
3
3
3
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂

+
  
ik
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
Ω




















−−
−−
−−
+
0
0
0
2
1
3
2
2
3
3
1
1
3
1
3
3
2
2
1
1
2
1
3
3
1
1
2
2
1
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
u
x
i
k
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
u
x
u
x
u
x
u
x
u
x
i
k
i
k
k
i
i
k
k
i
= +





 + −






1
2
1
2
D
u
x
u
x
ik
i
k
k
i
= +






∆ 1
2
∂
∂
∂
∂
Ω
∆
ik
i
k
k
i
u
x
u
x
= −






1
2
∂
∂
∂
∂
SOLO
31
FLUID DYNAMICS
1. MATHEMATICAL NOTATIONS (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
1.8 GAUSS’ THEOREMS
ds
A
V
∇⋅

A analytic in V
↓ = =
  
A C C const vectorη .
( ) ∫∫ ∫∫∫∇=
S V
dvsdGAUSS ηη

2
∇η analytic in V ∫∫ ∫∫∫=
S k
k
V
dv
s
ds
∂
η∂
η
SOLO
Johann Carl Friederich Gauss
1777-1855
( ) ∫∫ ∫∫∫ ⋅∇=⋅
S
V
dvAsdAGAUSS

1
∫∫ ∫∫∫=
S k
k
kk
V
dv
x
A
dsA
∂
∂
32
FLUID DYNAMICS
1.MATHEMATICAL NOTATIONS (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
1.8GAUSS’ THEOREMS (CONTINUE)
( ) ( ) ( )∫∫ ∫∫∫ ⋅∇=⋅
S V
dvAsdAGAUSS

ηη3
( )= ⋅∇ + ∇⋅∫∫∫
 
A A dvη η
η∇⋅∇ ,A

analytic inV
( )η
∂ η
∂
A ds
A
x
dv
V
k k
k
kS
= ∫∫∫∫∫
∫∫∫ 





+=
V k
k
k
k
x
A
x
A
∂
∂
η
∂
η∂
↓ = + +
   
B e e eη η η1 1 2 2 3 3
( ) ( ) ( )[ ]∫∫ ∫∫∫ ⋅∇+∇⋅=⋅
S V
dvABBAsdABGAUSS

4 B A ds A
B
x
B
A
x
dv
V
i k k k
i
k
i
k
kS
= +





∫∫∫∫∫
∂
∂
∂
∂
∇ ×

A analytic inV( ) ∫∫ ∫∫∫ ×∇=×
S V
dvAAsdGAUSS

5 ( )ds A ds A
A
x
A
x
dv
V
i j j i
j
i
i
jS
− = −





∫∫∫∫∫
∂
∂
∂
∂
SOLO
33
FLUID DYNAMICS
1.MATHEMATICAL NOTATIONS (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
1.9STOCKES’ THEOREM
   
A d r A d s
C S
⋅ = ∇ × ⋅∫ ∫∫ ∇ ×

A analytic on S
A d r
A
x
A
x
d si i
C
j
i
i
j
k
S
∫ ∫∫= −






∂
∂
∂
∂
Gauss’ and Stokes’ Theorems are generalizations of the
Fundamental Theorem Of CALCULUS
( )A b A a
d A x
d x
d x
a
b
( ) ( )− = ∫
George Stokes
1819-1903
SOLO
SOLO
Variational Principles of Hydrodynamics
Joseph-Louis
Lagrange
1736-1813
Leonhard Euler
1707-1783
FIXED IN SPACE
(CONSTANT VOLUME)
EULER
LAGRANGE
MOVING WITH THE FLUID
(CONSTANT MASS)
1e
3
e
2
e
u
The phenomena considered in Hydrodynamics are macroscopic and the atomic or
molecular nature of the fluid is neglected. The fluid is regarded as a continuous
medium. Any small volume element is always supposed to be so large that it still
contains a large number of molecules.
There are two representations normally employed in the study of Hydrodynamics:
- Euler representation: The fluid passes through a Constant Volume Fixed in
Space
- Lagrange representation: The fluid Mass is kept constant during its motion in
Space.
Hydrodynamic Field
SOLO
Variational Principles of Hydrodynamics
Material Derivatives (M.D.)
Vector Notation Cartesian Tensor Notation
1
e
2e
3
e
r

u

b

rd
( ) Frddt
t
F
trFd



∇⋅+=
∂
∂
,
( )
d
dt
F r t
F
t
dr
dt
F
 
 

, = + ⋅∇
∂
∂
( )
d
dt
F r t
F
t
b F
b
 

 
, = + ⋅∇
∂
∂
rdanyfor
 ( )d F r t
F
t
dt d r
F
x
i k
i
k
i
k
, = +
∂
∂
∂
∂
( )
d
dt
F r t
F
t
d r
dt
F
x
i k
i k i
k
, = +
∂
∂
∂
∂
( )
d
dt
F r t
F
t
b
F
xb
i k
i
k
i
k
, = +
∂
∂
∂
∂
vectoranybbtd
rd

=
( ) Fu
t
F
F
tD
D
trF
td
d
u



∇⋅+=≡
∂
∂
,
( )
k
i
k
i
ki
u
x
F
u
t
F
F
tD
D
trF
td
d
∂
∂
∂
∂
+=≡,
velocityfluiduu
td
rd
If


=
uu
u
t
u
uu
t
u
u
tD
D





×∇×−





∇+=
∇⋅+=
2
2
∂
∂
∂
∂






⋅−⋅−






+=
+=
k
i
k
i
j
j
j
i
i
k
i
k
i
i
x
u
u
x
u
u
u
xt
u
x
u
u
t
u
u
tD
D
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
2
2
1
Acceleration Of The Fluid
1
e
2
e
3
e
r

u
 duu +

dr
Material Derivatives = = Derivative Along A Fluid Path (Streamline)tD
D
Hydrodynamic Field
36
FLUID DYNAMICS
1. MATHEMATICAL NOTATIONS (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
1.10 MATERIAL DERIVATIVES (CONTINUE)
d u
u
t
dt dr u


 
= + ⋅∇
∂
∂
du
u
t
dt dx
u
x
i
i
k
i
k
= + ⋅
∂
∂
∂
∂
rdrdDtd
t
u
xd
xd
xd
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
x
u
t
u
t
u
t
u
ud
ud
ud
ikik


Ω++=


















































=










∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
3
2
1
3
3
2
3
1
3
3
2
2
2
1
2
3
1
2
1
1
1
3
2
1
3
2
1

d u
u
t
d t
u
x
u
x
d x
u
x
u
x
d x
i
i
Translation
i
k
k
i
Dilation
k
i
k
k
i
Rotation
k
= +
+ +






+ −






∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
1
2
1
2
  
  ( )
( )
( )
( )[ ] Dilationrduu
rdurdu
urdrdurdu
rdurdurdD
T
u
u
ik
⇒⋅∇+∇=
⋅∇+⋅∇=
∇⋅−⋅∇+⋅∇=
××∇−⋅∇=




2
1
2
1
2
1
2
1
2
1
2
1
( )Ωik dr u dr Rotation
  
= ∇ × × ⇒
1
2
SOLO
37
REYNOLDS’ TRANSPORT THEOREM
-any system of coordinatesOxyz
- any continuous and differentiable
functions in
( ) ( )trtr OO ,,, ,,

ηχ
( )tandrO,

( )trO ,,

ρ - flow density at point
and time t
Or,

SOLO
- mass flow through the element .mdsdVS


=⋅− ,ρ sd

- any control volume, changing shape, bounded by a closed surface S(t)v (t)
- flow velocity, relative to O, at point and time t( )trV OOflow ,,,

Or,

- position and velocity, relative to O, of an element of surface, part of the
control surface S(t).
OSOS Vr ,, ,

- area of the opening i, in the control surface S(t).iopenS
- gradient operator in O frame.O,∇
- flow relative to the opening i, in the control surface S(t).OSiOflowSi VVV ,,,

−=
- differential of any vector , in O frame.
O
td
d ζ

ζ

FLUID DYNAMICS
38
Start with LEIBNIZ THEOREM from CALCULUS:
( ) ( )
  
ChangeBoundariesthetodueChange
tb
ta
tb
ta td
tad
ttaf
td
tbd
ttbfdx
t
txf
dxtxf
td
d
LEIBNITZ 





−+= ∫∫ )),(()),((
),(
),(::
)(
)(
)(
)( ∂
∂
and generalized it for a 3 dimensional vector space on a volume v(t) bounded by the
surface S(t).
Using LEIBNIZ THEOREM followed by GAUSS THEOREM (GAUSS 4):
( ) ( )
( ) ( )
∫∫∫∫∫ 





⋅∇+∇⋅+=⋅+
→
=
tv
OSOOOSGAUSS
Opotolative
dsofMovement
thetodueChage
tS
OS
tv
O
LEIBNITZ
O
tv
vdVV
t
GAUSS
sdVvd
t
vd
td
d
,,,,)4(
intRe
)(
,





χχ
∂
χ∂
χ
∂
χ∂
χ
This is REYNOLDS’ TRANSPORT THEOREM
OSBORNE
REYNOLDS
1842-1912
SOLO
GOTTFRIED WILHELM
von LEIBNIZ
1646-1716
REYNOLDS’ TRANSPORT THEOREM
FLUID DYNAMICS
1. MATHEMATICAL NOTATIONS (CONTINUE)
39
FLUID DYNAMICS
1. MATHEMATICAL NOTATIONS (CONTINUE)
1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
( )
∫∫∫
∫∫∫∫∫∫∫∫








⋅∇+∇⋅+=
⋅+=
)(
,,,,)4(
,
)()()(
tv
OSOOOS
O
GAUSS
OS
tStv
O
LEIBNITZ
O
tv
vdVV
t
GAUSS
sdVvd
t
vd
td
d




χχ
∂
χ∂
χ
∂
χ∂
χ
∫∫∫
∫∫∫∫∫∫∫∫








++=
+=
)(
,
,)4(
,
)()()(
tv k
kOS
i
k
i
kOS
i
GAUSS
kkOS
tS
i
tv
i
LEIBNITZ
tv
i
vd
x
V
x
V
t
GAUSS
sdVvd
t
vd
td
d
∂
∂
χ
∂
χ∂
∂
χ∂
χ
∂
χ∂
χ
SOLO
40
FLUID DYNAMICS
1. MATHEMATICAL NOTATIONS (CONTINUE)
1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
O
OOS
td
Rd
uV


== ,,
CASE 1 (CONTROL VOLUME vF ATTACHED TO THE FLUID)
kkOS
uV =,
( )
∫∫∫
∫∫∫∫∫∫∫∫








⋅∇+∇⋅+=
⋅+=
)(
,,,)4(
,
)()()(
tv
OOO
O
GAUSS
O
tStv
OO
tv
F
FFF
vduu
t
GAUSS
sduvd
t
vd
td
d





χχ
∂
χ∂
χ
∂
χ∂
χ
∫∫∫
∫∫∫∫∫∫∫∫








++=
+=
)(
)4(
)()()(
tv k
k
I
k
I
k
I
GAUSS
kK
tS
I
tv
I
tv
I
F
FFF
vd
x
u
x
u
t
GAUSS
sduvd
t
vd
td
d
∂
∂
χ
∂
χ∂
∂
χ∂
χ
∂
χ∂
χ
SOLO
41
FLUID DYNAMICS
1. MATHEMATICAL NOTATIONS (CONTINUE)
1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
1&,
== χkkOS
uV1&, == χuV OS

CASE 2 (CONTROL VOLUME vF ATTACHED TO THE FLUID AND )1=χ
∫∫∫∫∫∫∫∫ ⋅∇=⋅==
)(
,,
)(
,
)(
)(
tv
OO
tS
O
tv
F
FFF
vdusduvd
td
d
td
tvd 
∫∫∫∫∫∫∫∫ ===
)()()(
)(
tv k
k
k
tS
k
tv
F
FFF
dv
x
u
dsudv
td
d
td
tvd
∂
∂














=⋅∇
→ td
tvd
tv
u F
F
tv
OO
F
)(
)(
1
lim0)(
,,















=
→ td
tvd
tvx
u F
F
tv
k
k
F
)(
)(
1
lim0)(∂
∂
EULER 1755
SOLO
42
FLUID DYNAMICS
1. MATHEMATICAL NOTATIONS (CONTINUE)
1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
CASE 3 (CONTROL VOLUME vF ATTACHED TO THE FLUID AND )
ρχ == &, kkOS uVρχ == &, uV OS

ρχ =
or, since this is true for any attached volume vF(t)
( )∫∫∫
∫∫∫∫∫ ∫∫∫






⋅∇+=
⋅+===
)(
,,
)(
,
)( )(
)(
0
tv
OO
tS
O
tv tv
F
FF F
vdu
t
sduvd
t
vd
td
d
td
tmd


ρ
∂
ρ∂
ρ
∂
ρ∂
ρ
( )∫∫∫
∫∫∫∫∫ ∫∫∫






+=
+===
)(
)()( )(
)(
0
tv
k
k
tS
kk
tv tv
F
FF F
vdu
xt
sduvd
t
dv
td
d
td
tmd
ρ
∂
∂
∂
ρ∂
ρ
∂
ρ∂
ρ
Because the Control Volume vF is attached to the fluid and they are not sources or sinks,
the mass is constant.
( ) OOOOOO uu
t
u
t
,,,,,,0

⋅∇+∇⋅+=⋅∇+= ρρ
∂
ρ∂
ρ
∂
ρ∂
( )
k
k
k
k
k
x
u
x
u
t
u
xt ∂
∂
ρ
∂
ρ∂
∂
ρ∂
ρ
∂
∂
∂
ρ∂
++=+=

0
SOLO
43
FLUID DYNAMICS
1. MATHEMATICAL NOTATIONS (CONTINUE)
1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
CASE 4 (CONTROL VOLUME WITH FIXED SHAPE C.V. )0,

=OS
V
Define
∫∫∫∫∫∫ =
.... VC
OO
VC
vd
t
vd
td
d
∂
χ∂
χ


∫∫∫∫∫∫ =
.... VC
i
VC
i vd
t
vd
td
d
∂
χ∂
χ
( ) ( ) ( )
    
χ ρ ηr t r t r t, , ,≡ ( ) ( ) ( )χ ρ ηi k k i kx t x t x t, , ,≡
( )∫∫
∫∫∫∫∫∫
⋅+








+=
)(
,
)()(
tS
OS
tv
OO
tv
sdV
vd
tt
vd
td
d




ηρ
∂
ρ∂
η
∂
η∂
ρηρ
k
tS
kOSi
tv
i
i
tv
i
sdV
vd
tt
vd
td
d
FF
∫∫
∫∫∫∫∫∫
+






+=
)(
,
)()(
ηρ
∂
ρ∂
η
∂
η∂
ρηρ
We have
but
( ) ( )OOOO
u
t
u
t
,,,,
0

ρη
∂
ρ∂
ηρ
∂
ρ∂
⋅∇−=⇒=⋅∇+
( ) ( )k
k
iik
k
u
xt
u
xt
ρ
∂
∂
η
∂
ρ∂
ηρ
∂
∂
∂
ρ∂
−=⇒=+ 0
CASE 5 ( ) ( ) ( )    
χ ρ ηr t r t r t, , ,≡
SOLO
44
FLUID DYNAMICS
1. MATHEMATICAL NOTATIONS (CONTINUE)
1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
We have
( )
( )
( ) ( )[ ]
( )
( )[ ]∫∫∫∫∫=
∫∫
∫∫∫
∫∫
∫∫∫∫∫∫
⋅−+
⋅+








⋅∇+∇⋅−








∇⋅+=
⋅+








⋅∇−=
+
+
)(
,,
)(
4
.
)(
,
)(
,,,,,,
)(
,
)(
,,
)(
tS
OOS
tv
O
MDG
DerMat
GAUSS
tS
OS
tv
OOOOOO
O
tS
OS
tv
OO
OO
tv
sduVvd
tD
D
sdV
vduuu
t
sdV
vdu
t
vd
td
d









ρηρ
η
ρη
ρηηρη
∂
η∂
ρ
ρη
ρηρ
∂
η∂
ρη ( )
( )
( ) ( )
( )
( )[ ]∫∫∫∫∫=
∫∫
∫∫∫
∫∫
∫∫∫∫∫∫
−+
+














+−





+=
+






−=
+
+
)(
,
)(
4
.
)(
,
)(
)(
,
)()(
tS
kkkOSi
tv
i
MDG
DerMat
GAUSS
tS
kkOSi
tv k
k
i
k
i
k
k
i
k
i
tS
kkOSi
tv k
k
i
i
tv
i
sduVvd
tD
D
sdV
vd
x
u
x
u
x
u
t
sdV
vd
x
u
t
vd
td
d
ρηρ
η
ρη
∂
ρ∂
η
∂
η∂
ρ
∂
η∂
∂
η∂
ρ
ρη
∂
ρ∂
ηρ
∂
η∂
ρη
CASE 5 ( ) ( ) ( )    
χ ρ ηr t r t r t, , ,≡
SOLO
45
FLUID DYNAMICS
1. MATHEMATICAL NOTATIONS (CONTINUE)
1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
REYNOLDS 1
( )[ ]






⋅−+= ∫∫∫∫∫
∫∫∫
)(
,,
)(
)(
tS
OOS
tv
O
O
tv
sduVvd
tD
D
vd
td
d



ρηρ
η
ρη
( )[ ]






−+= ∫∫∫∫∫
∫∫∫
)(
,
)(
)(
tS
kkkOSi
tv
i
tv
i
sduVvd
tD
D
dv
td
d
ρηρ
η
ρη
REYNOLDS 2
( )[ ]







=
⋅−+
∫∫∫
∫∫∫∫∫
)(
)(
,,
)(
tv
O
tS
OSO
O
tv
vd
tD
D
sdVuvd
td
d
ρ
η
ρηρη


( )[ ]







=
−+
∫∫∫
∫∫∫∫∫
)(
)(
,
)(
tv
i
tS
kkOSki
tv
i
vd
tD
D
sdVuvd
td
d
ρ
η
ρηρη
CASE 5 ( ) ( ) ( )
    
χ ρ ηr t r t r t, , ,≡
SOLO
46
FLUID DYNAMICS
1. MATHEMATICAL NOTATIONS (CONTINUE)
1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
REYNOLDS 3
CASE 1 (CONTROL VOLUME ATTACHED TO THE FLUID vF(t) )
kkOS
uV =,
∫∫∫∫∫∫ =
)()( tv
OO
tv FF
vd
tD
D
vd
td
d
ρ
η
ρη


∫∫∫∫∫∫ =
)()( tv
i
tv
i
FF
vd
tD
D
vd
td
d
ρ
η
ρη
SOLO
O
OOS
td
Rd
uV


== ,,
( ) ( ) ( )    
χ ρ ηr t r t r t, , ,≡
CASE 4 (CONTROL VOLUME WITH FIXED SHAPE C.V. )0,

=OS
V
REYNOLDS 4
( )






⋅+= ∫∫∫∫∫
∫∫∫
..
,
..
..
SC
O
O
VC
VC
O
sduvd
td
d
vd
tD
D


ρηρη
ρ
η
( )






+= ∫∫∫∫∫
∫∫∫
....
..
SC
kki
VC
i
VC
i
sduvd
td
d
vd
tD
D
ρηρη
ρ
η
Return to Table of Content
47
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS
THE FLUID DYNAMICS IS DESCRIBED BY THE FOLLOWING FIVE LAWS:
SOLO
(1) CONSERVATION OF MASS (C.M.)
(2) CONSERVATION OF LINEAR MOMENTUM (C.L.M.)
(3) CONSERVATION OF MOMENT OF MOMENTUM (C.M.M.)
(4) THE FIRST LAW OF THERMODYNAMICS
(5) THE SECOND LAW OF THERMODYNAMICS
Return to Table of Content
48
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.1) CONSERVATION OF MASS (C.M.)
Control Volume attached to the fluid
(containing a constant mass m) bounded by
the Control Surface SF (t).
( )tvF
( )tr,

ρ ( )3
/mkgFlow density
SOLO
Because vF(t) is attached to the fluid and there are no sources or sinks in this volume,
the Conservation of Mass requires that:
d m t
d t
( )
= 0
( ) ( )trVtru OfluidO ,, ,,

= Flow Velocity relative to a predefined
Coordinate System O (Inertial or
Not-Inertial) ( )sm/
49
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.1) CONSERVATION OF MASS (CONTINUE - 1)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
d m t
d t
( )
= 0
( )∫∫∫=
∫∫∫∫∫ ∫∫∫






⋅∇+
⋅+===
)(
,,
1
)(
,
)( )(
)(
0
tv
OO
GAUSS
tS
O
tv tv
REYNOLDS
F
FF F
vdu
t
sduvd
t
dv
td
d
td
tmd


ρ
∂
ρ∂
ρ
∂
ρ∂
ρ
( )∫∫∫=
∫∫∫∫∫ ∫∫∫






+
+===
)(
1
)()( )(
)(
0
tv
k
k
GAUSS
tS
kk
tv tv
REYNOLDS
F
FF F
vdu
xt
sduvd
t
dv
td
d
td
tmd
ρ
∂
∂
∂
ρ∂
ρ
∂
ρ∂
ρ
The Control Volume mass rate is zero as long as vF(t) is attached to the fluid and
therefore contains the same amount of mass.
0),,,(
)(
=∫∫∫
tvF
vdtzyx
td
d
ρ is true in any Coordinate System (O) and so is:
( ) ( ) ( ) ( )( ) 0,,,,,,
,,,
,,,
)(
,,
)(
=





⋅∇+= ∫∫∫∫∫∫
tv
OO
tv FF
vdtzyxutzyx
t
tzyx
vdtzyx
td
d 
ρ
∂
ρ∂
ρ
SOLO
50
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.1) CONSERVATION OF MASS (CONTINUE - 2)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
For any Control Volume v (t) (not necessarily attached to the fluid)
The following is true for any Coordinate System (for points that are not sources or
sinks – mathematically equivalent to analytic) ( )OO u
t
,,,

ρ
∂
ρ∂
⋅∇
( ) OOOOOO uu
t
u
t
,,,,,,0

⋅∇+∇⋅+=⋅∇+= ρρ
∂
ρ∂
ρ
∂
ρ∂
( )
k
k
k
kO
k
x
u
x
u
t
u
xt ∂
∂
ρ
∂
ρ∂
∂
ρ∂
ρ
∂
∂
∂
ρ∂
++=+= ,0

( )
( ) 0
)(
,,
4
).(
,
).()(
≠=





⋅∇+
⋅+
∫∫∫=
∫∫∫∫∫=∫∫∫
mvdV
t
sdVvd
t
vd
td
d
tv
OSO
GAUSS
tS
OS
tv
LEIBNITZ
tv



ρ
∂
ρ∂
ρ
∂
ρ∂
ρ
( ) 0
)(
,
4
).(
,
).()(
≠=





+
+
∫∫∫=
∫∫∫∫∫=∫∫∫
mvdV
xt
sdVvd
t
vd
td
d
tv
kOS
k
GAUSS
tS
kkOS
tv
LEIBNITZ
tv
ρ
∂
∂
∂
ρ∂
ρ
∂
ρ∂
ρ
The integral above is not zero because the mass in v (t) is not constant.
SOLO
51
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.1) CONSERVATION OF MASS (CONTINUE - 3)
Material Derivative of vdmd ρ=
Let use EULER’s 1755 expression ( ) ( )
( ) ( )vd
tD
D
vdtd
tvd
tv
u F
F
tv
OO
F
11
lim
0
,, =











=⋅∇
→

and the (C.M.):
to develop the following:
( ) 0,,
=⋅∇+ OO
u
t

ρ
∂
ρ∂
( ) ( )
( ) 0,,,,,,
,,,,
=





⋅∇+
∂
∂
=





⋅∇+∇⋅+
∂
∂
=
⋅∇+





∇⋅+
∂
∂
=+==
vdu
t
vduu
t
uvdvdu
t
vd
tD
D
vd
tD
D
vd
tD
D
tD
mD
OOOOOO
OOOO


ρ
ρ
ρρ
ρ
ρρ
ρ
ρ
ρ
ρ
SOLO
52
FLUID DYNAMICS
∑+=
openings
i
iopenW SCSCSC ....
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.1) CONSERVATION OF MASS (CONTINUE – 4)
SOLO
Control Volume with fixed shape C.V. and boundary C.S. in O Coordinates( ) 0,

=OS
V
There are no sources or sinks in the volume C.V. The change in the mass of the
system is due only to the flow through the surface openings C.Sopen i (i=1,2,…). The
surface C.S. can be divided in:
• C.Sw the impermeable wall through which the fluid can not escape . 







=−= 0
0
,,,

OSOs
VuV
• C.Sopen i the openings (i=1,2,…) through which the fluid enters or exits .( )0>m ( )0<m
 ∑∑ ∫∫∫∫∫∫∫∫∫ =⋅−⋅−=⋅−==
openings
i
i
openings
i
m
SC
O
SC
O
SC
O
VC
msdusdusduvd
td
d
td
md
i
iopenw




.
,
.
0
,
..
,
..
ρρρρ
Therefore
where is the flow rate entering through the opening Sopen i.∫∫ ⋅−=
iopenSC
Oi
sdum
.
,

 ρ
Return to Table of Content
53
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.2) CONSERVATION OF LINEAR MOMENTUM (C.L.M.)
-Fluid density at he point and time t( )tr,

ρ

r ( )3
/ mKg
-Fluid inertial velocity at the point
and time t
( )tru I
,,
 
r
( )sec/m
-Surface Stress ( )2
/ mNT

-Pressure (force per unit surface) of the surrounding
on the control surface ( )2
/ mN
p
-Stress tensor (force per unit surface) of the surrounding
on the control surface ( )2
/ mN
σ~
-Body forces acceleration
-(gravitation, electromagnetic,..)
G

( )2
sec/m
nnpnT ˆ~ˆˆ~ ⋅+−=⋅= τσ

Consider a volume vF(t) attached to the fluid, bounded by the closed surface SF(t).
SOLO
-unit vector normal to the surface S(t) and pointing outside the volume v (t)nˆ
vF (t)
m
SF (t)
O
x
y
z
r u,O
np ˆ−
nˆ~⋅τ
nˆ~⋅σ
dSnˆ
-Shear stress tensor (force per unit surface) of the surrounding on the control
surface ( )2
/ mN
τ~
54
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.2) CONSERVATION OF LINEAR MOMENTUM (CONTINUE - 1)
Derivation From Integral Form
The LINEAR MOMENTUM of the Constant Mass in vF(t) is given by:
∫∫∫=
)(
,
tv
I
F
vduP

ρ
The External Forces acting on the mass are Body and Surface Forces:
( )




ForcesSurface
tS
ForcesBody
tv
external
FF
sdTvdGF ∫∫∫∫∫∑ +=
)(
ρ
According to NEWTON’s Second Law, for a constant mass in vF(t), we have:
I
external
td
Pd
F


=∑
SOLO
55
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.2) CONSERVATION OF LINEAR MOMENTUM (CONTINUE - 2)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
( )
I
IMomentumLinear
tv
I
REYNOLDS
tv
I
I
ForcesSurface
tS
ForcesBody
tv
external
P
td
d
vdu
td
d
vd
tD
uD
sdvdGF
FF
FF








===
⋅+=
∫∫∫∫∫∫
∫∫∫∫∫∑
)(
,
3
)(
,
)()(
~
ρρ
σρ
i
tv
i
REYNOLDS
tv
i
tS
kik
tv
iiex
P
td
d
vdu
dt
d
vd
tD
uD
dsvdGF
FF
FF
===
+=
∫∫∫∫∫∫
∫∫∫∫∫∑
)(
3
)(
)()(
_
ρρ
σρ
C.L.M.-1
  
 
T ds n ds ds
ds n ds
= ⋅ ⋅
=
=~ ~σ σ T ds n ds dsi ik k
ds n ds
ik k
k k
=
=
=σ σ
C.L.M.-2
( )∫∫∫
∫∫∫∫∫∫∫∫
⋅∇+=
⋅+=
)(
,
)()()(
,
~
~
tv
I
tStvtv
I
I
F
FFF
vdG
sdvdGvd
tD
uD
σρ
σρρ


∫∫∫
∫∫∫∫∫∫∫∫






+=
+=
)(
)()()(
tv i
ik
i
tS
kik
tv
i
tv
i
F
FFF
vd
x
G
sdvdGvd
tD
uD
∂
σ∂
ρ
σρρ
SOLO
Derivation From Integral Form (Continue)
56
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.2) CONSERVATION OF LINEAR MOMENTUM (CONTINUE - 3)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
C.L.M.-2
Since this is true for all volumes vF (t) attached to the fluid we can drop the volume integral.
[ ] [ ] [ ]τσ
τρσρ
∂
∂
ρ
∂
∂
ρρ
~~
~~
2
1
,,,
,
2
,
,
.).(
+−=
⋅∇+∇−=⋅∇+=








×∇×−





∇+=








∇⋅+=
Ip
pGG
uuu
t
u
uu
t
u
tD
uD
III
II
I
I
I
DM
I





ikikik
i
ik
i
i
i
ik
i
k
i
k
i
j
jjj
i
i
k
i
k
i
DM
i
p
xx
p
G
x
G
x
u
u
x
u
uuu
xt
u
x
u
u
t
u
tD
uD
τδσ
∂
τ∂
∂
∂
ρ
∂
σ∂
ρ
∂
∂
∂
∂
∂
∂
∂
∂
ρ
∂
∂
∂
∂
ρρ
+−=
+−=+=












⋅−⋅−





+=






⋅+=
2
1
.).(
SOLO
Derivation From Integral Form (Continue)
( )∫∫∫
∫∫∫∫∫∫∫∫
⋅∇+=
⋅+=
)(
,
)()()(
,
~
~
tv
I
tStvtv
I
I
F
FFF
vdG
sdvdGvd
tD
uD
σρ
σρρ


∫∫∫
∫∫∫∫∫∫∫∫






+=
+=
)(
)()()(
tv i
ik
i
tS
kik
tv
i
tv
i
F
FFF
vd
x
G
sdvdGvd
tD
uD
∂
σ∂
ρ
σρρ
57
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.2) CONSERVATION OF LINEAR MOMENTUM (CONTINUE - 4)
Derivation From a Cartesian Differential Volume
VECTOR NOTATION CARTESIAN TENSOR NOTATION
σ
∂ σ
∂
xx
xx
x
dx+
1
2
σ
∂ σ
∂
xx
xx
x
dx−
1
2
τ
∂ τ
∂
yx
yx
y
dy+
1
2
τ
∂ τ
∂
yz
yz
y
dy−
1
2
τ
∂τ
∂
zx
zx
z
dz+
1
2
τ
∂τ
∂
zx
zx
z
dz−
1
2
τ
∂ τ
∂
xy
xy
x
dx+
1
2
τ
∂ τ
∂
xy
xy
x
dx−
1
2
σ
∂ σ
∂
yy
yy
y
dy+
1
2
σ
∂ σ
∂
yy
yy
y
dy−
1
2
τ
∂τ
∂
zy
zy
z
dz+
1
2
τ
∂τ
∂
zy
zy
z
dz−
1
2
τ
∂ τ
∂
xz
xz
x
dx−
1
2
τ
∂ τ
∂
yz
yz
y
dy+
1
2
τ
∂ τ
∂
yx
yx
y
dy−
1
2
σ
∂ σ
∂
zz
zz
z
dz+
1
2
σ
∂ σ
∂
zz
zz
z
dz−
1
2
z
y
x
dy
dx
dz
O
τ
∂ τ
∂
xz
xz
x
dx+
1
2
∂σ
∂
∂τ
∂
∂τ
∂
ρ ρ
∂τ
∂
∂σ
∂
∂τ
∂
ρ ρ
∂τ
∂
∂τ
∂
∂σ
∂
ρ ρ
xx yx zx
xB x
xy yy zy
yB y
xz yz zz
zB z
x y z
G a
x y z
G a
x y z
G a
+ + + =
+ + + =
+ + + =
CAUCHY’s First Law of Motion
I
tD
uD
a
aG



=
=+⋅∇ ρρσ~
tD
uD
a
aG
x
i
i
ii
i
ij
=
=+ ρρ
∂
σ∂
SOLO
AUGUSTIN LOUIS
CAUCHY
)1789-1857(
58
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.2) CONSERVATION OF LINEAR MOMENTUM (CONTINUE-5)
Derivation For Any Control Volume v (t)
(the velocity of an element of surface is )d s

IS
V ,

V(t)
b
ds
V*(t)
I
T d s= ⋅~σ
G
m
u Use REYNOLDS’ Transport Theorem (REYNOLDS 2)
with and O = I, and then the Conservation
of Linear Momentum (C.L.M.)
I
u,

=η
VECTOR NOTATION CARTESIAN TENSOR NOTATION
( )[ ]
( ) ( )
( )
∑∫∫∫∫∫
∫∫∫∫∫∫
∫∫∫∫∫
=⋅+=
⋅∇+==
⋅−+
iexternal
tStv
tv
I
MLC
tv
I
REYNOLDS
tS
ISII
I
tv
I
FsdvdG
vdGvd
tD
uD
sdVuuvdu
td
d
FF
FF
FF



)()(
)(
,
...
)(
2
)(
,,,
)(
,
~
~
σρ
σρρ
ρρ ( )
( ) ( )
∑∫∫∫∫∫
∫∫∫∫∫∫
∫∫∫∫∫
=+=








+==
−+
iexternal
tS
kik
tv
i
tv k
ik
i
MLC
tv
i
REYNOLDS
tS
kkISki
tv
i
FsdvdG
vd
x
Gvd
tD
uD
sdVuuvdu
td
d
)()(
)(
...
)(
2
)(
,
)(
σρ
∂
σ∂
ρρ
ρρ
SOLO
Return to Table of Content
59
( ) ( ) PdRRvdVRRHd OOO

×−=×−= ρ,
2. BASIC LAWS IN FLUID DYNAMICS
(2.3) CONSERVATION OF MOMENT-OF-MOMENTUM (C.M.M.)
SOLO
The Absolute Angular Momentum, of the differential mass
and Inertial Velocity ,relative to a reference point O is defined as
vdmd ρ=
V

The Absolute Angular Momentum of the mass
enclosed by C.V. is defined as
( ) ( )∫∫∫∫∫∫ ×−=×−=
....
,
VC
O
VC
OOCV
PdRRvdVRRH

ρ
Let differentiate the Absolute Angular Momentum
and use Reynolds’ Transport Theorem
( ) ( ) ( ) ( )∫∫∫∫∫∫∫∫ ⋅−×−+
×−
=×−=
..
,
....
,
SC
md
SO
VC
I
O
REYNOLDS
I
VC
O
I
OCV
sdVVRRvd
tD
VRRD
vdVRR
td
d
td
Hd






ρρρ
We have ( ) ( )
( ) ( ) ( ) VV
tD
VD
RRVVV
tD
VD
RR
V
tD
RD
tD
RD
tD
VD
RR
tD
VRRD
O
I
OO
I
O
I
O
II
O
I
O









×−×−=×−+×−=
×








−+×−=
×−
FLUID DYNAMICS
60
( ) ( ) ( ) int,
: fdRRfdRRvd
tD
VD
RRMd OextO
I
OO



×−+×−=×−= ρ
( ) ( ) ( ) ( )∫∫∫∫∫∫∫∫∫∫∫ ⋅−×−+×−×−=×−=
..
,
......
,
SC
md
SO
P
VC
O
VC
I
O
REYNOLDS
I
VC
O
I
OCV
sdVVRRvdVVvd
tD
VD
RRvdVRR
td
d
td
Hd
CV








ρρρρ
2. BASIC LAWS IN FLUID DYNAMICS
(2.3) CONSERVATION OF MOMENT-OF-MOMENTUM (C.M.M.)
SOLO
The Moment, of the differential mass dm = ρdv, relative to a reference
point O is defined as
Therefore
Let integrate this equation over the control volume C.V.
( ) ( ) ( )
  




0
..
int
....
, ∫∫∫∫∫∫∫∫∫∑ ×−+×−=×−=
VC
O
VC
extO
VC
I
OOCV
fdRRfdRRvd
tD
VD
RRM ρ
Using the differential of Angular Momentum equation we obtain
( ) ( ) ( )∫∫∫∫∫∑∫∫∫ ⋅−×−+×−=×−=
..
,
..
,
..
,
SC
md
SO
P
VC
OOCV
I
VC
O
I
OCV
sdVVRRvdVVMvdVRR
td
d
td
Hd
CV






ρρρ
( ) ( ) ( ) ( ) ( ) ∑∑∫∫∫∫∫∫∫∫∑ +×−++−×−+×−=×−=
=⋅
k
k
j
jOj
SC
sdTsd
O
VC
O
VC
extOOtCV MFRRsdtfnpRRvdgRRfdRRM

  

......
, 11
σ
ρ
Also
( )∑ ×−
j
jOj FRR

- Moment, relative to O, of discrete forces exerting by the surrounding at point jR

- Discrete Moments exerting by the surrounding.∑
k
k
M

FLUID DYNAMICS
61
( ) ( ) ( )
∑∑∫∫∫∫∫∫∫∫ +×+×+×=×+⋅−×−×
k
k
j
jO
tv
O
tv
extO
P
VC
O
SC
md
SO
I
VC
O MFrfdrfdrvdVVsdVVrvdVr
td
d
CV








,
0
int,,
....
,,
..
, ρρρ
2. BASIC LAWS IN FLUID DYNAMICS
(2.3) CONSERVATION OF MOMENT-OF-MOMENTUM (C.M.M.)
SOLO
Let find the equation of moment around the
turbomachine axis.
We shall use polar coordinates , where z is
the turbomachine axis.
zr ,,θ
zzrrrO
ˆˆ, +=

zVVrVV zr
ˆˆˆ ++= θθ

zFFrFF zr
ˆˆˆ ++= θθ

( ) zVrVrVzrVz
VVV
zr
zr
Vr zrz
zr
O
ˆˆ0
ˆˆˆ
, θ
θ
θ
+−+−==×

( )  ( )
∑∑∫∫∫∫ ++=×+⋅−−
k
kz
j
j
tv
extCVO
SC
S
VC
MFrdfrPVsdVVrvdVr
td
d
θθθθ ρρ


0
..
,
..
The moment of momentum equation around the turbomachine z axis.
Example
FLUID DYNAMICS
62
2. BASIC LAWS IN FLUID DYNAMICS
(2.3) CONSERVATION OF MOMENT-OF-MOMENTUM (C.M.M.)
SOLO
( )
( ) ( ) ( ) ( )
( )
    

  
systemoutsidefromexertedTorque
M
l
lz
j
j
tv
ext
AVVrAVVr
SC
S
statesteady
VC
zSnSn
MFrdfrsdVVrvdVr
td
d
∑∑∫∫∫∫ ++=⋅−−
+−−→
θθ
ρρ
θθ
θθ
ρρ
22,21111,122
..
,
0
..
We obtain
( ) ( )[ ] zflow
MQVrVr =− 111122
ρθθ
or
( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) zSnSnSn
MAVVrVrAVVrAVVr =−=− 11,1112211,11122,222
ρρρ θθθθ
Euler Turbine Equation
ρ1 - mean fluid density one inlet (1) of area A1.
where
ρ2 - mean fluid density one outlet (2) of area A2.
(Vθ )1, r1 - mean fluid tangential velocity and radius one inlet (1) of area A1.
(Vθ )2, r2 - mean fluid tangential velocity and radius one outlet (2) of area A2.
(V,Sn )1 - mean fluid normal velocity (relative to A1) one inlet (1) of area A1.
(V,Sn )2 - mean fluid normal velocity (relative to A2) one outlet (2) of area A2.
- mean flow rate one outlet (1) of area A1.( ) 11,1 : AVQ Snflow =
FLUID DYNAMICS
Return to Table of Content
63
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.4) CONSERVATION OF ENERGY (C.E.)
– THE FIRST LAW OF THERMODYNAMICS (DIFFERENTIAL FORM)
-Fluid mean velocity [m/sec[( ) 
u r t,
-Body Forces Acceleration
-(gravitation, electromagnetic,..)
G

-Surface Stress [N/m2
[T

nnpnT ˆ~ˆˆ~ ⋅+−=⋅= τσ

m
V(t)
G
q
T n= ⋅~σ
d E
d t
∂
∂
Q
t
uu
d s n ds=
-Internal Energy of Fluid molecules
(vibration, rotation, translation per
mass [W/kg[
e
- Rate of Heat transferred to the Control Volume
(chemical, external sources of heat) [W/m3
[
∂
∂
Q
t
- Rate of Work change done on fluid by the surrounding (rotating shaft, others)
positive for a compressor, negative for a turbine) [W[td
Ed
SOLO
Consider a volume vF(t) attached to the fluid, bounded by the closed surface SF(t).
-Rate of Conduction and Radiation of Heat from the Control Surface
(per unit surface) [W/m3
[
q
64
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.4) CONSERVATION OF ENERGY (C.E.)
– THE FIRST LAW OF THERMODYNAMICS (CONTINUE - 1)
- The Internal Energy of the molecules of the fluid plus the
Kinetic Energy of the mass moving relative to an
Inertial System (I)
The FIRST LAW OF THERMODYNAMICS
CHANGE OF INTERNAL ENERGY + KINETIC ENERGY =
CHANGE DUE TO HEAT + WORK + ENERGY SUPPLIED BY SUROUNDING
SOLO
The energy of the constant mass m in the volume vF(t) attached to the fluid,
bounded by the closed surface SF(t) is
This energy will change due to
- The Work done by the surrounding
- Absorption of Heat
- Other forms of energy supplied to the mass
(electromagnetic, chemical,…)
65
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.4) CONSERVATION OF ENERGY (C.E.)
– THE FIRST LAW OF THERMODYNAMICS (CONTINUE - 2)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
C.E.-1
  

  




  
systementering
td
Qd
tSv
systemontnmenenvirobydone
td
Wd
shaft
tSv
v
REYNOLDS
KineticInternal
tv
FF
FF
FF
sdqvd
t
Q
td
Wd
ForcesSurface
sdTu
ForcesBody
vdGu
vdue
tD
D
vdue
td
d
∫∫∫∫∫
∫∫∫∫∫
∫∫∫∫∫∫
⋅−+
+⋅+⋅=






+=





+
+
)(
)(
2
)3(
)(
2
2
1
2
1
∂
∂
ρ
ρρ
  
  
  
  
systementering
td
Qd
tS
kk
tv
systemontnemnoenvirbydone
td
Wd
shaft
tS
kk
tv
kk
tv
REYNOLDS
KineticInternal
tv
FF
FF
FF
dsqvd
t
Q
td
Wd
ForcesSurface
sdTu
ForcesBody
vdGu
vdue
tD
D
vdue
td
d
∫∫∫∫∫
∫∫∫∫∫
∫∫∫∫∫∫
−+
++=






+=





+
+
)()(
)()(
)(
2
)3(
)(
2
2
1
2
1
∂
∂
ρ
ρρ
SOLO
66
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.4) CONSERVATION OF ENERGY (C.E.)
– THE FIRST LAW OF THERMODYNAMICS (CONTINUE - 3)
VECTOR NOTATION CARTESIAN TENSOR NOTATIONC.E.-2
( ) ( )
∫∫∫∫∫∫
∫∫∫∫∫∫∫∫∫
∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫
⋅∇−+
⋅⋅∇+⋅∇−⋅=
⋅−+
⋅⋅+⋅−⋅=
+






+
)()(
)()()(
)1(
)()(
)()()(
)(
2
~
~
2
1
tvtv
tvtvtv
GAUSS
td
Qd
tStv
td
Wd
tStStv
tv
FF
FFF
FF
FFF
F
vdqvd
t
Q
vduvdupvdGu
sdqvd
t
Q
sdusdupvdGu
KineticInternal
vdue
tD
D


  

  

  
∂
∂
τρ
∂
∂
τρ
ρ
( ) ( )
∫∫∫∫∫∫
∫∫∫∫∫∫∫∫∫=
∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫
−+
+−
−+
+−=






+
+
)()(
)()()(
)1(
)()(
)()()(
)(
2
2
1
tV s
s
tV
tV
k
k
iki
tV
k
k
k
tV
kk
GAUSS
td
Qd
tS
kk
tV
td
Wd
tS
kiki
tS
kk
tV
kk
KineticInternal
tV
vd
x
q
vd
t
Q
ds
x
u
ds
x
up
vdGu
dsqvd
t
Q
dsudsupvdGu
vdue
tD
D
∂
∂
∂
∂
∂
τ∂
∂
∂
ρ
∂
∂
τρ
ρ
  
  
  
     
T n pn n ds n ds= ⋅ = − + ⋅ =~ ~ &σ τ0=
td
Wd shaft
assume and use
SOLO
67
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.4) CONSERVATION OF ENERGY (C.E.)
– THE FIRST LAW OF THERMODYNAMICS (CONTINUE-4)
VECTOR NOTATION CARTESIAN TENSOR NOTATIONC.E.-3
Since the last equation is valid for each vF(t) we can drop the integral and obtain:
( ) ( )
q
t
Q
uGuupue
tD
D


⋅∇−+
⋅+⋅⋅∇+⋅−∇=





+
∂
∂
ρτρ ~
2
1 2 ( ) ( )
k
k
kk
k
iik
k
k
x
q
t
Q
uG
x
u
x
up
ue
tD
D
∂
∂
∂
∂
ρ
∂
τ∂
∂
∂
ρ
−+
++−=





+ 2
2
1
Multiply (C.L.M.-2) by

u
τρρ ~⋅∇⋅+∇⋅−⋅=⋅ upuuG
tD
uD
u


( )
k
ik
i
k
kkk
i
i
x
u
x
p
uuGu
tD
D
tD
uD
u
∂
τ∂
∂
∂
ρρρ +−== 2
Subtract this equation from (C.E.-3)
C.E.-4
( )[ ]ρ τ τ
∂
∂
D e
D t
p u u u
Q
t
q
= − ∇⋅ + ∇⋅ ⋅ − ⋅∇⋅
+ −∇⋅
  
  

~ ~
Φ
ρ
∂
∂
τ
∂
∂
∂
∂
∂
∂
D e
D t
p
u
x
u
u
x
Q
t
q
x
k
k
ik
i
k
k
k
=− +
+ −
Φ
 
( )Φ ≡ ∇⋅ ⋅ − ⋅∇ ⋅ >~ ~τ τ
 
u u 0
Φ ≡ >τ
∂
∂
ik
i
k
u
x
0
(Proof of inequality given later)
SOLO
68
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.4) CONSERVATION OF ENERGY (C.E.)
– THE FIRST LAW OF THERMODYNAMICS (CONTINUE - 5)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
Enthalpy
Use this result and (C.E.-4)
C.E.-5
ρ
p
eh +=:
( )
tD
pD
up
tD
hD
u
p
tD
pD
tD
hD
tD
Dp
tD
pD
tD
hD
tD
pD
tD
hD
tD
eD
−⋅∇−=⋅∇−+−=
+−=






−=

ρρ
ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρρρ 2
tD
pD
x
u
p
tD
hD
x
up
tD
pD
tD
hD
tD
pDp
tD
hD
tD
pD
tD
pD
tD
hD
tD
eD
k
k
k
k
−−=







−+−=
+−=






−=
∂
∂
ρ
∂
∂
ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρρρ 2
Φ++⋅∇−=
t
Q
q
tD
pD
tD
hD
∂
∂
ρ

Φ++−=
t
Q
x
q
tD
pD
tD
hD
k
k
∂
∂
∂
∂
ρ
SOLO
( )Φ ≡ ∇⋅ ⋅ − ⋅∇ ⋅ >~ ~τ τ
 
u u 0
Φ ≡ >τ
∂
∂
ik
i
k
u
x
0
69
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.4) CONSERVATION OF ENERGY (C.E.)
– THE FIRST LAW OF THERMODYNAMICS (CONTINUE - 6)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
Total Enthalpy
Use this result and (C.E.-3)
C.E.-6
22
2
1
2
1
: u
p
euhH ++=+=
ρ
( )
t
p
up
tD
HD
tD
pD
up
tD
HD
p
tD
D
tD
HD
ue
tD
D
∂
∂
ρρ
ρ
ρρρ
−⋅∇−=−⋅∇−=






−=





+

2
2
1
( )
t
p
up
xtD
HD
tD
pD
x
u
p
tD
HD
p
tD
D
tD
HD
ue
tD
D
kk
k
∂
∂
∂
∂
ρ
∂
∂
ρ
ρ
ρρρ
−−=−−=






−=





+

2
2
1
( ) q
t
Q
uGu
t
p
tD
HD 
⋅∇−+⋅+⋅⋅∇+=
∂
∂
ρτ
∂
∂
ρ ~ ( )
k
k
kk
k
iik
x
q
t
Q
uG
x
u
t
p
tD
HD
∂
∂
∂
∂
ρ
∂
τ∂
∂
∂
ρ −+++=
SOLO
Return to Table of Content
70
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
SOLO
THERMODYNAMIC PROCESSES
1. ADIABATIC PROCESSES
2. REVERSIBLE PROCESSES
3. ISENTROPIC PROCESSES
No Heat is added or taken away from the System
No dissipative phenomena (viscosity, thermal, conductivity, mass diffusion,
friction, etc)
Both adiabatic and reversible
(2.5) THE SECOND LAW OF THERMODYNAMICS AND ENTROPY PRODUCTION
71
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.5) THE SECOND LAW OF THERMODYNAMICS AND ENTROPY PRODUCTION
2nd
LAW OF THERMODYNAMICS
Using GAUSS’ THEOREM
0
)()(
≥+ ∫∫∫∫∫
tStv FF
Ad
T
q
vds
td
d

ρ
00
)(
)1(
)()(
≥











⋅∇+⇒≥+ ∫∫∫∫∫∫∫∫
tv
GAUSS
tStv FFF
vd
T
q
tD
sD
Ad
T
q
vd
tD
sD

ρρ
- Change in Entropy per unit volumed s
- Local TemperatureT [ ]K
- Fluid Densityρ [ ]3
/ mKg
d e q w T ds pdv= + = −δ δ d s
d e
T
p
T
dv= +
SOLO
For a Reversible Process
- Rate of Conduction and Radiation of Heat from the System
per unit surface
q

[ ]2
/ mW
72
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.5) THE SECOND LAW OF THERMODYNAMICS (CONTINUE - 1)
d e q w T ds pdv= + = −δ δ d s
d e
T
p
T
dv= +
u
T
p
tD
eD
T
u
T
p
tD
eD
T
tD
D
T
p
tD
eD
TtD
D
T
p
tD
eD
TtD
vD
T
p
tD
eD
TtD
sD
u
tD
D
MC
v


⋅∇+=





⋅∇+=






−+=





+=+=
⋅∇−=
=
ρ
ρ
ρ
ρρ
ρ
ρ
ρρ
ρ
ρρρρ
ρ
ρ
ρ
ρ
2
.).(
2
1
1
11
The Energy Equation (C.E.-4) is
( )
k
i
ik
x
u
oruu
t
Q
qup
tD
eD
∂
∂
τττ
∂
∂
ρ =Φ⋅∇⋅−⋅⋅∇=ΦΦ++⋅∇−⋅∇−= ~~ 
Tt
Q
TT
q
up
tD
eD
TtD
sD Φ
++
⋅∇
−=





⋅∇+=
∂
∂
ρ
11


or
Φ++⋅−∇=
t
Q
q
tD
sD
T
∂
∂
ρ

SOLO
73
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.5) THE SECOND LAW OF THERMODYNAMICS (CONTINUE - 2)
Define
ρ
∂
∂
T
D s
Dt
q
Q
t
= −∇ ⋅ + +

Φ
Θ ≡ + ∇ ⋅





 ≥ρ
Ds
Dt
q
T

0 Entropy Production Rate per unit volume
Therefore
( )
Θ
Φ
Θ= −
∇ ⋅
+ + + ∇ ⋅





 ≥∫∫∫
 
q
T T
Q
t T
q
T
dv
V t
1
0
∂
∂
&
SOLO
or


 0
1
≥Φ++⋅∇⋅−=Θ
nDissipatio
System
toadded
Heat
System
from
Radiation
Heat
t
Q
Tq
T
T
∂
∂
74
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.5) THE SECOND LAW OF THERMODYNAMICS (CONTINUE - 3)
  

q q q
q conduction rate per unit surface
q radiation rate per unit surfacec r
c
r
= +




q K T K FOURIER s Conduction Lawc = − ∇ > 0 '
( )−
∇ ⋅
+ ∇ ⋅





 = −
∇ ⋅
+ ∇ ⋅ + ⋅∇





 = ⋅∇





 = − ∇ + ⋅∇






= − ∇ ⋅ − ∇





 + ⋅∇





 =
∇




 + ⋅∇






  
   
 
q
T
q
T
q
T T
q q
T
q
T
K T q
T
K T
T
T q
T
K
T
T
q
T
r
r r
1 1 1 1
1 1 1
2
2
Θ
Φ
Φ=
∇




 + + + ⋅∇






>
>
>





K
T
T T T
Q
t
q
T
K
T
r
2
1 1
0
0
0
∂
∂

Θ
Φ
≡ + ∇⋅





 =
∇




 + + + ⋅∇





 ≥ρ
∂
∂
D s
D t
q
T
K
T
T T T
Q
t
q
Tr


2
1 1
0
SOLO
JEAN FOURIER
1768-1830
75
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.5) THE SECOND LAW OF THERMODYNAMICS (CONTINUE - 4)
SOLO
Gibbs Function
Helmholtz Function
sThG ⋅−=:
sTeH ⋅−=:
Josiah Willard Gibbs
(1839-1903)
Hermann Ludwig Ferdinand
von Helmholtz
(1821 – 1894)
Using the Relations
vdpsdTed ⋅−⋅=
( ) pdvsdTvpdedhd ⋅+⋅=⋅+=vpe
p
eh ⋅+=+=
ρ
:
pdvTdssdTTdshdGd ⋅+⋅−=⋅−⋅−=
vdpTdsTdssdTedHd ⋅−⋅−=⋅−⋅−=
dv
T
p
T
ed
sd +=
76
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.5) THE SECOND LAW OF THERMODYNAMICS (CONTINUE - 5)
SOLO
Maxwell’s Relations
vdpsdTed ⋅−⋅=
pdvsdThd ⋅+⋅=
pdvTdsGd ⋅+⋅−=
vdpTdsHd ⋅−⋅−=
Ts
pv
v
F
p
v
e
s
h
T
s
e






∂
∂
=−=





∂
∂






∂
∂
==





∂
∂
vp
Ts
T
F
s
T
G
p
G
v
p
h






∂
∂
=−=





∂
∂






∂
∂
==





∂
∂
ps
vs
s
v
p
T
s
p
v
T






∂
∂
=





∂
∂






∂
∂
−=





∂
∂
vT
pT
T
p
v
s
T
v
p
s






∂
∂
=





∂
∂






∂
∂
−=





∂
∂
James Clerk Maxwell
(1831-1879)
Return to Table of Content
77
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6) CONSTITUTIVE RELATIONS FOR GASES
(2.6.1) NEWTONIAN FLUID DEFINITION – NAVIER–STOKES EQUATIONS
[ ] τσ ~~ +−= Ip
Stress
NEWTONIAN FLUID:
The Shear Stress on
A Surface Parallel
To the Flow =
Distance Rate of
Change of Velocity
SOLO
CARTESIAN TENSOR NOTATION
ikikik p τδσ +−=
VECTOR NOTATION
- Stress tensor (force per unit surface) of the surrounding
on the control surface ( )2
/ mN
σ~
-Shear stress tensor (force per unit surface) of the surrounding on the control
surface ( )2
/ mN
τ~
78
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6) CONSTITUTIVE RELATIONS
(2.6.1) NEWTONIAN FLUID DEFINITION – NAVIER–STOKES EQUATIONS
M. NAVIER 1822
INCOMPRESSIBLE FLUIDS
(MOLECULAR MODEL)
G.G. STOKES 1845
COMPRESSIBLE FLUIDS
(MACROSCOPIC MODEL)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
[ ] [ ] ( )[ ] [ ]IuuuIpIp
T 
∇+∇+∇+−=+−= λµτσ ~~
ik
k
k
i
k
k
i
ikikikik
x
u
x
u
x
u
pp δ
∂
∂
λ
∂
∂
∂
∂
µδτδσ +





++−=+−=
( )[ ] [ ]( ) ( ) ( ) µλλµλµτ
3
2
32~0 −=⇒∇+∇=∇+∇+∇== utrutrIutruutrtr
T 
( ) µλ
∂
∂
λµδ
∂
∂
λ
∂
∂
µτ
3
2
0322 −=⇒=+=+=
i
i
ik
k
k
i
i
ii
x
u
x
u
x
u
SOLO
STOKES ASSUMPTION µλ
3
2
−=0~ =τtrace
μ, λ - Lamé parameters from Elasticity
79
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6) CONSTITUTIVE RELATIONS
(2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE)
(2.6.1.2) VECTORIAL DERIVATION
I
x
y
z
T n= ⋅~σ
d s n ds=
r
dru
u +du( )unrdtd
t
u
urdtd
t
u
ud





∇⋅+=∇⋅+= 1
∂
∂
∂
∂
( ) ( ) ( ) rdnurdnuuntd
t
u
ud
RotationnTranslatio


  



1
2
1
1
2
1
1 ××∇+





××∇−∇⋅+=
∂
∂
OR
DEFINITION OF NEWTONIAN FLUID, NAVIER-STOKES EQUATION
( ) ( ) nnunuunnpT
nTranslatio

  

1~11
2
1
121 ⋅=⋅∇+





××∇−∇⋅+−≡ σλµ
CONSERVATION OF LINEAR MOMENTUM EQUATIONS
SOLO
80
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6) CONSTITUTIVE RELATIONS
(2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE)
(2.6.1.2)VECTORIAL DERIVATION (CONTINUE) I
x
y
z
T n= ⋅~σ
d s n ds=
r
dru
u + du
CONSERVATION OF LINEAR MOMENTUM
EQUATIONS
( ) ( )
( ) ( ) ( )
( )
 ( )
( )
( )
( )
( )
( )
∫∫∫
∫∫∫∫∫∫∫∫∫∫∫
∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫










⋅∇∇+×∇×∇+∇⋅∇+∇−=
=⋅∇+×∇×+∇⋅+−=






⋅∇+





××∇−∇⋅+⋅−=+=
)(
)()()()()(
)()()()()()(
251
2
2
2
11
2
1
121
tV
GAUSS
tStStStStV
tStStVtStVtV
vd
GAUSS
u
GAUSS
u
GAUSS
u
GAUSS
pG
usdusdusdsdpvdG
sdnunuunsdnpvdGdsTvdGvd
tD
uD








λµµρ
λµµρ
λµρρρ
BUT
( ) ( ) ( )∇× ∇× ≡ ∇ ∇⋅ − ∇⋅ ∇2 2 2µ µ µ
  
u u u
( ) ( ) ( ) ( )∇⋅ ∇ + ∇× ∇× = ∇ ∇⋅ − ∇× ∇×2 2µ µ µ µ
   
u u u u
THEN
SOLO
81
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
I
x
y
z
T n= ⋅~σ
d s n ds=
r
dru
u + du
THEREFORE
( ) ( ) ( ){ }∫∫∫∫∫∫ ⋅∇∇+×∇×∇−⋅∇∇+∇−=
)()(
2
tVtV
vduuupGvd
tD
uD 
λµµρρ
OR
( ) ( )[ ]uupG
tD
uD 
⋅∇+∇+×∇×∇−∇−= µλµρρ 2
SOLO
(2.6) CONSTITUTIVE RELATIONS
(2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE)
(2.6.1.2)VECTORIAL DERIVATION (CONTINUE)
82
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
CONSERVATION OF LINEAR MOMENTUM
( ) ( )[ ]∇ ⋅ = − ∇ − ∇ × ∇ × + ∇ + ∇ ⋅~σ µ µ λp u u
 
2 ( ) 





++











++−=
k
k
ii
k
k
i
iii
ik
x
u
xx
u
x
u
xx
p
x ∂
∂
λµ
∂
∂
∂
∂
∂
∂
µ
∂
∂
∂
∂
∂
σ∂
2
( ) ( )[ ]
ρ ρ σ
ρ µ µ λ
Du
Dt
G
G p u u
 
  
= + ∇ ⋅
= − ∇ − ∇ × ∇ × + ∇ + ∇ ⋅
~
2 ( ) 





++











++−=
+=
k
k
ii
k
k
i
ii
i
i
ik
i
i
x
u
xx
u
x
u
xx
p
G
x
G
tD
uD
∂
∂
λµ
∂
∂
∂
∂
∂
∂
µ
∂
∂
∂
∂
ρ
∂
σ∂
ρρ
2
USING STOKES ASSUMPTION tr ~τ λ µ= ⇒ = −0
2
3
( ) 



⋅∇∇+×∇×∇−∇−=
⋅∇+=
uupG
G
tD
uD


µµρ
σρρ
3
4
~






+











++−=
+=
k
k
ki
k
k
i
ii
i
i
ik
i
i
x
u
i
xx
u
x
u
xx
p
G
x
G
tD
uD
∂
∂
µ
∂
∂
∂
∂
∂
∂
µ
∂
∂
∂
∂
ρ
∂
σ∂
ρρ
3
4
SOLO
(2.6) CONSTITUTIVE RELATIONS
(2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE)
83
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
VECTOR NOTATION CARTESIAN TENSOR NOTATION
Euler Equations are obtained by assuming Inviscid Flow
0
3
2
0~ =−=⇒= µλτ
pG
tD
uD
∇−=

ρρ
i
i
i
x
p
G
tD
uD
∂
∂
ρρ −=
SOLO
(2.6) CONSTITUTIVE RELATIONS
(2.6.2) EULER EQUATIONS
Leonhard Euler
(1707-1783)
pGuu
t
u
∇−=





∇⋅+
∂
∂ 

ρρ
i
i
k
i
k
i
x
p
G
x
u
u
t
u
∂
∂
ρρ −=





∂
∂
+
∂
∂
or or
84
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6.1.3) COMPUTATION
BUT
Φ
Φ = = +





 = +











 =
=
τ
∂
∂
τ
∂
∂
τ
∂
∂
τ
∂
∂
∂
∂
τ
τ τ
ik
i
k
ik
i
k
ki
k
i
ik
i
k
k
i
ik ik
u
x
u
x
u
x
u
x
u
x
D
ik ki1
2
1
2
τ µ λ δik ik kk ikD D= +2
HENCE ( )Φ = = +τ µ λ δik ik ik kk ik ikD D D D2
OR
( )[ ] ( )[ ]
( )[ ] ( )
Φ = + + + + + + +
+ + + + + + + + + + ⇒
=
2 2
2 2
11 11 22 33 11 22 11 22 33 22
33 11 22 33 33 12
2
21
2
13
2
31
2
23
2
32
2
µ λ µ λ
µ λ µ
D D D D D D D D D D
D D D D D D D D D D D
D Dij ji
( ) ( )Φ = + + + + + + + +2 2 2 211
2
22
2
33
2
12
2
13
2
23
2
11 22 33
2
µ λD D D D D D D D DOR
SOLO
(2.6) CONSTITUTIVE RELATIONS
(2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE)
85
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6.1.3) COMPUTATION (CONTINUE)
USING STOKES ASSUMPTION: tr ~τ λ µ= ⇒ = −0
2
3
Φ
( ) ( )Φ = + + + + + + + +2 2 2 211
2
22
2
33
2
12
2
13
2
23
2
11 22 33
2
µ λD D D D D D D D D
( ) ( ) ( )
( )
( )

( )
Φ = + + − + + + + +
+ + + − + +
+ +
2
3
4
3
4
3
4
2
3
11 22 33
2
11 22 11 33 22 33 11
2
22
2
33
2
2
12
2
13
2
23
2
11 22 33
2
11
2
22
2
33
2
µ µ µ
µ
µ
λ
µ
D D D D D D D D D D D D
D D D D D D
D D D
  
OR
( ) ( ) ( )[ ] ( )Φ = − + − + − + + + >
2
3
4 011 22
2
11 33
2
22 33
2
12
2
13
2
23
2µ
µD D D D D D D D D
SOLO
(2.6) CONSTITUTIVE RELATIONS
(2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE)
86
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6.1.4) ENTROPY AND VORTICITY
From (C.L.M.)
or
( ) ( )[ ]Du
Dt
u
t
u
u u G p u u
 
    
= + ∇





 − × ∇ × = − ∇ − ∇ × ∇ × + ∇ + ∇ ⋅
∂
∂ ρ ρ
µ
ρ
λ µ
2
2
1 1 1
2
GIBBS EQUATION: T d s d h
d p
= −
ρ






∀





+⋅∇−





+⋅∇=





+⋅∇
→→→→
tld
pd
td
t
p
ldp
hd
td
t
h
ldh
sd
td
t
s
ldsT &
1
      
∂
∂
ρ∂
∂
∂
∂
Since this is true for all d l t
→
&
T s h
p
T
s
t
h
t
p
t
∇ = ∇ −
∇
= −
ρ
∂
∂
∂
∂ ρ
∂
∂
&
1
SOLO
(2.6) CONSTITUTIVE RELATIONS
(2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE)
Josiah Willard Gibbs
(1903 – 1839)
87
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6.1.4) ENTROPY AND VORTICITY
from (C.L.M.)
or
GIBBS EQUATION: T d s d h
d p
= −
ρ






∀





+⋅∇−





+⋅∇=





+⋅∇
→→→→
tld
pd
td
t
p
ldp
hd
td
t
h
ldh
sd
td
t
s
ldsT &
1
      
∂
∂
ρ∂
∂
∂
∂
Since this is true for all d l t
→
&
T s h
p
T
s
t
h
t
p
t
∇ = ∇ −
∇
= −
ρ
∂
∂
∂
∂ ρ
∂
∂
&
1
SOLO
hsTG
p
Guuu
t
u
II
III
II
I
,,
,,,
,
2
,
~~
2
1
∇−∇+
⋅∇
+=
⋅∇
+
∇
−=








×∇×−





∇+
ρ
τ
ρ
τ
ρ∂
∂ 

ρ
p
hsT
dlpdp
dlhdh
dlsds
∇
−∇=∇→














⋅∇=
⋅∇=
⋅∇=
88
Luigi Crocco
1909-1986
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6.1.4) ENTROPY AND VORTICITY (CONTINUE)
Define
Let take the CURL of this equation
Vorticityu

×∇≡Ω
If , then from (C.L.M.) we get:

G = −∇Ψ
CRROCO’s EQUATION (1937)
 ( ) ( )






⋅∇×∇+





Ψ++∇×∇−∇×∇=×Ω×∇+×∇
Ω
τ
ρ∂
∂ ~1
0
2
2
  


u
hsTuu
t
SOLO
ρ
τ
∂
∂ ~
2
1 ,2
,,
⋅∇
+





Ψ++∇−∇=×Ω+
I
II
I
uhsTu
t
u 
hsTGuuu
t
u
II
I
II
I
,,
,
,
2
,
~
2
1
∇−∇+
⋅∇
+=








×∇×−





∇+
ρ
τ
∂
∂ 

From
89
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6.1.4) ENTROPY AND VORTICITY (CONTINUE)
( ) ( ) ( ) ( ) ( )∇ × × = ⋅∇ − ∇ ⋅ + ∇ ⋅ − ⋅∇ ← ∇ ⋅ = ∇ ⋅∇ × =
    

       
Ω Ω Ω Ω Ω Ωu u u u u u
0
0
( )∇ × ∇ = ∇ × ∇T s T s
τ
ρ
τ
ρ
τ
ρ
~
0
1~1~1
⋅∇×∇+⋅∇×





∇=






⋅∇×∇ 
Therefore ( ) ( ) ( ) τ
ρ∂
∂ ~1
⋅∇×





∇−∇×∇=∇⋅Ω−Ω⋅∇+Ω∇⋅+
Ω
sTuuu
t


SOLO
( ) ( ) τ
ρ
~1
⋅∇×





∇−∇×∇+⋅∇Ω−∇⋅Ω=
Ω
sTuu
tD
D 

or
90
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6) CONSTITUTIVE RELATIONS
(2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE)
(2.6.1.4) ENTROPY AND VORTICITY (CONTINUE)
( ) ( ) τ
ρ
~1
⋅∇×





∇−∇×∇+⋅∇Ω−∇⋅Ω=
Ω
sTuu
tD
D 

FLUID WITHOUT VORTICITY WILL REMAIN FOREVER WITHOUT
VORTICITY IN ABSENSE OF ENTROPY GRADIENTS OR VISCOUS
FORCES
- FOR AN INVISCID FLUID ( )λ µ τ= = → =0 0~ ~
( ) ( ) sTuu
tD
D
INVISCID
∇×∇+⋅∇Ω−∇⋅Ω=
Ω = 

0
~~τ
- FOR AN HOMENTROPIC FLUID
INITIALLY AT REST
s const everywhere i e s
s
t
. ; . . &∇ = =





0 0
∂
∂( )( )
 
Ω 0 0=
( )
D
Dt
s

   Ω
Ω= = = ∇ =0 0 0 0 0~ ~
, ,τ
SOLO
Return to Table of Content
91
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6) CONSTITUTIVE RELATIONS
(2.6.2) STATE EQUATION
p - PRESSURE (FORCE / SURFACE)
V - VOLUME OF GAS
M - MASS OF GAS
R - 8314
- 286.9
T - GAS TEMPERATURE
- GAS DENSITY
[ ]m3
[ ]kg
[ ]J kg mol Ko
/ ( )⋅
[ ]J kg Ko
/ ( )⋅R
[ ]kgmol /−η
[ ]o
K
[ ]kg m/ 3
ρ
[ ]2
/ mN
IDEAL GAS
TRMVp η=
TMVp R=
DEFINE: ρ
ρ
= = =
∆ ∆M
V
v
V
M
&
1
pv T= R
p T= ρ R
OR
SOLO
92
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
IDEAL GAS TMVp R=
SOLO
(2.6) CONSTITUTIVE RELATIONS
(2.6.2) STATE EQUATION
Return to Table of Content
93
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6) CONSTITUTIVE RELATIONS
(2.6.3) THERMALLY PERFECT GAS AND CALORICALLLY PERFECT GAS
A THERMALLY PERFECT GAS IS DEFINED AS A GAS FOR WHICH THE
INTERNAL ENERGY e IS A FUNCTION ONLY OF THE TEMPERATURE T.
( ) ( )h e T p e T RT h T= + = + =/ ( )ρ THERMALLY PERFECT GAS
DEFINE
C
C
v
V V
p
p p p p
e
T
q
T
h
T
de pdv v d p
d T
de pdv
d T
dq
d T
= =
= = = =


















+ +





+











∆
∆
∂
∂
∂
∂
∂
∂
A CALORICALLY PERFECT GAS IS DEFINED AS A GAS FOR WHICH Cv
IS CONSTANT CALORICALLY PERFECT GASe C Tv=
SOLO
94
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6) CONSTITUTIVE RELATIONS
(2.6.3) CALORICALLLY PERFECT GAS (CONTINUE)
A CALORICALLY PERFECT GAS IS DEFINED AS A GAS FOR WHICH Cv
IS CONSTANT CALORICALLY PERFECT GASe C Tv=
FOR A CALORICALLY PERFECT GAS
( )h C T RT C R T C T C C Rv v p p v= + = + = → = +
γ
γ
γ γ
= ⇒ =
−
⇒ =
−
= + = −∆ C
C
C R C
Rp
v
C C R
p
R C C
v
p v p v
1 1
γ air = 14.
SOLO
95
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6) CONSTITUTIVE RELATIONS
(2.6.3) CALORICALLLY PERFECT GAS (CONTINUE)
(2.6.3.1) ENTROPY CALCULATIONS FOR A CALORICALLLY PERFECT GAS
pv T= R p T= ρ R IDEAL GAS
( )
ds
de pdv
T
de pdv vdp vdp
T
dh vdp
T
=
+
=
+ + −
=
−∆
ds C
dT
T
R
dv
v
s s C
T
T
R
v
v
C
T
T
Rv v v= + → − = + = −2 1
2
1
2
1
2
1
2
1
ln ln ln ln
ρ
ρ
1
2
1
2
12 lnln
p
p
R
T
T
Css
p
dp
R
T
dT
Cds pp −=−→−=
s s C
p
p
R C
p
p
Cv v p2 1
2
1
1
2
2
1
2
1
2
1
− = ⋅





 − = −ln ln ln ln
ρ
ρ
ρ
ρ
ρ
ρ
ENTROPY
SOLO
96
FLUID DYNAMICS
2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
(2.6) CONSTITUTIVE RELATIONS
(2.6.3) CALORICALLLY PERFECT GAS (CONTINUE)
(2.6.3.1) ENTROPY CALCULATIONS FOR A CALORICALLLY PERFECT GAS
p
p
T
T
e
T
T
e
p
p
T
T
C
R s s
R
s s
R
isentropic
s s
p
2
1
2
1
2
1
1
2
1
2
1
12 1 2 1 2 1
=





 =





 =






−
− − −
− = −
⇒
γ
γ
γ
γ
ρ
ρ
ρ
ρ
γ
γ γ
2
1
2
1
2
1
1
1
2
1
2
1
1
12 1 2 1 2 1
=





 =





 =






−
− − −
− = −
⇒
T
T
e
T
T
e
T
T
C
R s s
R
s s
R
isentropic
s s
v
p
p
e e
p
p
C
C s s
R
s s
R
isentropic
s s
p
v
2
1
2
1
2
1
2
1
2
1
2 1 2 1 2 1
=





 =





 =






−
−
−
− =
⇒
ρ
ρ
ρ
ρ
ρ
ρ
γ γ
T
T
h
h
p
p
e
p
p
e
T
T
h
h
p
p
s s
C
s s
C
isentropic
s s
v p2
1
2
1
2
1
2
1
2
1
1
2
1
1
2
1
2
1
2
1
1
2
1
12 1 2 1
2 1
= = ⋅ =





 =





 = =





 =






−
−
−
− −
−
=
−
−
⇒
ρ
ρ
ρ
ρ
ρ
ρ
γ
γ
γ
γ
γ
γ
ISENTROPIC CHAIN
SOLO
Return to Table of Content
97
FLUID DYNAMICS
BASIC LAWS IN FLUID DYNAMICS (CONTINUE)
BOUNDARY CONDITIONS
SOLO
Return to Table of Content
98
SOLO
Dimensionless Equations
Dimensionless Variables are:
0/~ ρρρ = 0/
~
Uuu = gGG /
~
= ( )2
00/~ Upp ρ=
0/~ lUtt =
2
0/
~
UCTT p=( )2
00/~ Uρττ =
2
0/
~
UHH =
2
0/
~
Uhh =
2
0/~ Uee = ( )2
00/~ Uqq ρ= ( )2
/
~
UQQ =
∇=∇ 0
~
l
Field Equations
(C.M.): ( )
00
0
0
U
l
u
t ρ
ρ
∂
ρ∂
=⋅∇+

( ) 2
00
0
~
3
4
U
l
uupGuu
t
u
ρ
µµρ
∂
∂
ρ
τ
  


⋅∇






⋅∇∇+×∇×∇−∇−=





∇⋅+(C.L.M.):
( ) ( ) 3
00
0~
U
l
Tk
t
Q
uGu
t
p
Hu
t
H
q
ρ∂
∂
ρτ
∂
∂
ρ



∇⋅∇−+⋅+⋅⋅∇+=





∇⋅+
∂
∂
(C.E.):
( )
( )
( ) 0
/
/
00
0
00
0
=





⋅∇+
U
u
l
lUt

ρ
ρ
∂
ρρ∂
( )
( ) ( )
( ) ( ) 





⋅∇∇





+





×∇×∇





−
∇−=






∇⋅+
0
00
000
0
0
0
0
0
000
0
2
00
02
0
0
00
0
000
0
0
3
4
/
/
U
u
ll
UlU
u
ll
Ul
U
p
l
g
G
U
lg
U
u
l
U
u
lUt
Uu


ρ
µ
µ
µ
ρ
µ
ρρ
ρ
∂
∂
ρ
ρ
( ) ( )
( )
( )
( ) ( ) 







∇⋅∇














−+⋅+







⋅⋅∇+







∂
∂
=







2
0
0
0
0
0
0
000
0
2
00000
2
0
0
0
2
00
02
0000
2
00000 /
~
// U
CT
l
k
k
l
C
k
UlU
Q
lUtU
u
g
G
U
gl
U
u
U
l
U
p
lUtU
H
lUtD
D p
pµρ
µ
∂
∂
ρ
ρ
ρ
τ
ρρρ
ρ

0/~ ρρρ = 0/
~
Uuu = gGG /
~
= ( )2
00/~ Upp ρ=
0/~ lUtt =
2
0/
~
UCTT p=( )2
00/~ Uρττ =
2
0/
~
UHH =
2
0/
~
Uhh =
2
0/~ Uee = ( )2
00/~ Uqq ρ= ( )2
/
~
UQQ =
∇=∇ 0
~
l
0/~ µµµ =
0/
~
kkk =
Reference Quantities: ρ0(density), U0(velocity), l0 (length), g (gravity), μ0 (viscosity),
k0 (Fourier Constant), λ0 (mean free path)
0/
~
λλλ =
99
SOLO
Dimensionless Equations
Dimentionless Field Equations
(C.M.): ( ) 0
~~~~
=⋅∇+ u
t

ρ
∂
ρ∂
( ) ( )u
R
u
R
pG
F
uu
t
u
eer
~~~~1
3
4~~~~1~~~~1~~~
~
~
~
2


⋅∇∇+×∇×∇−∇−=







∇⋅+ µµρ
∂
∂
ρ(C.L.M.):
( ) ( )Tk
PRt
Q
uG
F
u
t
p
Hu
t
H
rer
∇⋅∇−+⋅+⋅⋅∇+=







∇⋅+
∂
∂ 11
~
~
~~~1~~~
~
~~~~
~
~
~
2
∂
∂
ρτ
∂
∂
ρ

(C.E.):
Reynolds:
0
000
µ
ρ lU
Re = Prandtl:
0
0
k
C
P p
r
µ
= Froude:
0
0
gl
U
Fr =
0/~ ρρρ = 0/
~
Uuu = gGG /
~
= ( )2
00/~ Upp ρ=
0/~ lUtt =
2
0/
~
UCTT p=( )2
00/~ Uρττ =
2
0/
~
UHH =
2
0/
~
Uhh =
2
0/~ Uee = ( )2
00/~ Uqq ρ= ( )2
/
~
UQQ =
∇=∇ 0
~
l
0/~ ρρρ = 0/
~
Uuu = gGG /
~
= ( )2
00/~ Upp ρ=
0/~ lUtt =
2
0/
~
UCTT p=( )2
00/~ Uρττ =
2
0/
~
UHH =
2
0/
~
Uhh =
2
0/~ Uee = ( )2
00/~ Uqq ρ= ( )2
/
~
UQQ =
∇=∇ 0
~
l
0/~ µµµ =
0/
~
kkk =
Dimensionless Variables are:
Reference Quantities: ρ0(density), U0(velocity), l0 (length), g (gravity), μ0 (viscosity),
k0 (Fourier Constant), λ0 (mean free path)
0/
~
λλλ =
Knudsen
l
Kn
0
0
:
λ
=
100
SOLO
Dimensionless Equations
Constitutive Relations
TRp ρ=
2
2
1
uTCH p +=
Tkq ∇−=

TCh p=





−
== 2
00
2
00
2
00
1
U
TC
U
TC
C
R
U
p pp
p ρ
ρ
γ
γ
ρ
ρ
ρ






=





2
0
2
0 U
TC
U
h p
2
0
2
0
2
0 2
1






+





=





U
u
U
TC
U
H p
( ) 





∇














−= 2
0
0
00
0
000
0
3
00 U
TC
l
k
k
C
k
UlU
q p
p µρ
µ
ρ

( ) [ ]3
3
2~ Iuuu T 
⋅∇−∇+∇= µµτ [ ]3
0
0
0000
0
0
0
0
0
0000
0
00 3
2~
I
U
u
l
UlU
u
l
U
u
l
UlU
T 
⋅∇





−





∇+∇





=
µ
µ
ρ
µ
µ
µ
ρ
µ
ρ
τ
0/~ ρρρ = 0/
~
Uuu = gGG /
~
= ( )2
00/~ Upp ρ=
0/~ lUtt =
2
0/
~
UCTT p=( )2
00/~ Uρττ =
2
0/
~
UHH =
2
0/
~
Uhh =
2
0/~ Uee = ( )2
00/~ Uqq ρ= ( )2
/
~
UQQ =
∇=∇ 0
~
l
0/~ ρρρ = 0/
~
Uuu = gGG /
~
= ( )2
00/~ Upp ρ=
0/~ lUtt =
2
0/
~
UCTT p=( )2
00/~ Uρττ =
2
0/
~
UHH =
2
0/
~
Uhh =
2
0/~ Uee = ( )2
00/~ Uqq ρ= ( )2
/
~
UQQ =
∇=∇ 0
~
l
0/~ µµµ =
0/
~
kkk =
Dimensionless Variables are:
Reference Quantities: ρ0(density), U0(velocity), l0 (length), g (gravity), μ0 (viscosity),
k0 (Fourier Constant), λ0 (mean free path)
0/
~
λλλ =
101
SOLO
Dimensionless Equations
Dimensionless Constitutive Relations
2~
2
1~~
uTH +=
Tp
~~1~ ρ
γ
γ −
= Ideal Gas
( ) [ ]3
~~~
3
2~~~~~~~ Iu
R
uu
R e
T
e

⋅∇−∇+∇=
µµ
τ Navier-Stokes
Th
~~
= Calorically Perfect Gas
Tk
PR
q
re
~~~11~
∇−=
 Fourier Law
Reynolds:
0
000
µ
ρ lU
Re =
Prandtl:
0
0
k
C
P
p
r
µ
=
0/~ ρρρ = 0/
~
Uuu = gGG /
~
= ( )2
00/~ Upp ρ=
0/~ lUtt =
2
0/
~
UCTT p=( )2
00/~ Uρττ =
2
0/
~
UHH =
2
0/
~
Uhh =
2
0/~ Uee = ( )2
00/~ Uqq ρ= ( )2
/
~
UQQ =
∇=∇ 0
~
l
0/~ ρρρ = 0/
~
Uuu = gGG /
~
= ( )2
00/~ Upp ρ=
0/~ lUtt =
2
0/
~
UCTT p=( )2
00/~ Uρττ =
2
0/
~
UHH =
2
0/
~
Uhh =
2
0/~ Uee = ( )2
00/~ Uqq ρ= ( )2
/
~
UQQ =
∇=∇ 0
~
l
0/~ µµµ =
0/
~
kkk =
Dimensionless Variables are:
Reference Quantities: ρ0(density), U0(velocity), l0 (length), g (gravity), μ0 (viscosity),
k0 (Fourier Constant), λ0 (mean free path)
0/
~
λλλ =
Return to Table of Content
102
SOLO
Mach Number
Mach number (M or Ma) / is a dimensionless quantity representing
the ratio of speed of an object moving through a fluid and the local
speed of sound.
• M is the Mach number,
• U0 is the velocity of the source relative to the medium, and
• a0 is the speed of sound
Mach:
0
0
a
U
M =
The Mach number is named after Austrian physicist and philosopher
Ernst Mach, a designation proposed by aeronautical engineer Jakob
Ackeret.
Ernst Mach
(1838–1916)
Jakob Ackeret
(1898–1981)
m
Tk
Mo
TR
a Bγγ
==0
• R is the Universal gas constant, (in SI, 8.314 47215 J K−1
mol−1
), [M1
L2
T−2
θ−1
'mol'−1
]
• γ is the rate of specific heat constants Cp/Cv and is dimensionless
γair = 1.4.
• T is the thermodynamic temperature [θ1
]
• Mo is the molar mass, [M1
'mol'−1
]
• m is the molecular mass, [M1
]
AERODYNAMICS
103
SOLO
Mach Number – Flow Regimes
Regime Mach mph km/h m/s General plane characteristics
Subsonic <0.8 <610 <980 <270
Most often propeller-driven and commercial turbofan aircraft with
high aspect-ratio (slender) wings, and rounded features like the
nose and leading edges.
Transonic 0.8-1.2
610-
915
980-1,470 270-410
Transonic aircraft nearly always have swept wings, delaying drag-
divergence, and often feature design adhering to the principles of
the Whitcomb Area rule.
Supersonic 1.2–5.0
915-
3,840
1,470–
6,150
410–1,710
Aircraft designed to fly at supersonic speeds show large differences
in their aerodynamic design because of the radical differences in the
behaviour of flows above Mach 1. Sharp edges, thin aerofoil-
sections, and all-moving tailplane/canards are common. Modern
combat aircraft must compromise in order to maintain low-speed
handling; "true" supersonic designs include the F-104 Starfighter,
SR-71 Blackbird and BAC/Aérospatiale Concorde.
Hypersonic 5.0–10.0
3,840–
7,680
6,150–
12,300
1,710–
3,415
Cooled nickel-titanium skin; highly integrated (due to domination
of interference effects: non-linear behaviour means that
superposition of results for separate components is invalid), small
wings, such as those on the X-51A Waverider
High-
hypersonic
10.0–25.0
7,680–
16,250
12,300–
30,740
3,415–
8,465
Thermal control becomes a dominant design consideration.
Structure must either be designed to operate hot, or be protected by
special silicate tiles or similar. Chemically reacting flow can also
cause corrosion of the vehicle's skin, with free-atomic oxygen
featuring in very high-speed flows. Hypersonic designs are often
forced into blunt configurations because of the aerodynamic heating
rising with a reduced radius of curvature.
Re-entry
speeds
>25.0
>16,25
0
>30,740 >8,465 Ablative heat shield; small or no wings; blunt shape
104
SOLO
Different Regimes of Flow
Mach Number – Flow Regimes
AERODYNAMICS
105
where
ρ = air density
V = true speed
l = characteristic length
μ = absolute (dynamic) viscosity
υ = kinematic viscosity
Reynolds:
υµ
ρ ρ
µ
υ
lVlV
Re
=
==
Osborne Reynolds
(1842 –1912)
It was observed by Reynolds in 1884 that a Fluid Flow changes from Laminar to
Turbulent at approximately the same value of the dimensionless ratio (ρ V l/ μ) where l is
the Characteristic Length for the object in the Flow. This ratio is called the Reynolds
number, and is the governing parameter for Viscous Flow.
Reynolds Number and Boundary Layer
SOLO
1884AERODYNAMICS
106
Boundary Layer
SOLO
1904AERODYNAMICS
Ludwig Prandtl
(1875 – 1953)
In 1904 at the Third Mathematical Congress, held at
Heidelberg, Germany, Ludwig Prandtl (29 years old) introduced
the concept of Boundary Layer.
He theorized that the fluid friction was the cause of the fluid
adjacent to surface to stick to surface – no slip condition, zero
local velocity, at the surface – and the frictional effects were
experienced only in the boundary layer a thin region near the
surface. Outside the boundary layer the flow may be considered
as inviscid (frictionless) flow.
In the Boundary Layer on can calculate the
•Boundary Layer width
•Dynamic friction coefficient μ
•Friction Drag Coefficient CDf
107
The flow within the Boundary Layer can be of two types:
•The first one is Laminar Flow, consists of layers of flow sliding one over other in a
regular fashion without mixing.
•The second one is called Turbulent Flow and consists of particles of flow that
moves in a random and irregular fashion with no clear individual path, In
specifying the velocity profile within a Boundary Layer, one must look at the
mean velocity distribution measured over a long period of time.
There is usually a transition region between these two types of Boundary-Layer Flow
SOLO AERODYNAMICS
108
Normalized Velocity profiles within a Boundary-Layer, comparison between
Laminar and Turbulent Flow.
SOLO
Boundary-Layer
AERODYNAMICS
109
Flow Characteristics around a Cylindrical Body
as a Function of Reynolds Number (Viscosity)
AERODYNAMICS
SOLO
110
Relative Drag Force as a Function of Reynolds Number (Viscosity)
AERODYNAMICS
Drag CD0 due to
Flow Separation
SOLO
111
Relative Drag Force as a Function of Reynolds Number (Viscosity)
AERODYNAMICS
Drag due to Viscosity:
1.Skin Friction
2.Flow Separation
(Drop in pressure
behind body)
∫∫
∫∫








⋅+⋅
−
−=








⋅+⋅−=
∧∧
∞
∧∧
W
W
S
S
fpD
ds
w
t
V
f
w
n
V
pp
S
ds
w
tC
w
nC
S
C
xx
xx
11
11
ˆ
2/
ˆ
2/
1
ˆˆ
1
22
ρρ
SOLO
112
Parasite Drag
Pressure Differential,
Viscous Shear Stress,
and Separation
AERODYNAMICS
Relative Drag Force as a Function of Reynolds Number (Viscosity)
  
  
DragFrictionSkin
ET
EL
ll
ET
EL
uu
DragPressure
ET
EL
ll
ET
EL
uu
sdfsdf
sdpsdpD
∫∫
∫∫
++
+−=
..
..
..
..
..
..
..
..
coscos
sinsin
θθ
θθ
SOLO
113
AERODYNAMICS
Relative Drag Force as a Function of Reynolds Number (Viscosity)
• Blunt Body: Most of Drag
is Pressure Drag.
• Streamlined Body:
Most of Drag is Skin
Friction Drag.
SOLO
114
AERODYNAMICS
Relative Drag Force as a Function of Reynolds Number (Viscosity)
SOLO
115
AERODYNAMICS
Relative Drag Force as a Function of Reynolds Number (Viscosity)
SOLO
116
AERODYNAMICS
Relative Drag Force as a Function of Reynolds Number (Viscosity)
SOLO
Variation of total skin-friction coefficient with Reynolds number for a
smooth, flat plate.[From Dommasch, et al. (1967).]
117
Typical Effect of Reynolds Number on Parasitic Drag
Flow may stay attached
farther at high Re,
reducing the drag
AERODYNAMICSSOLO
Return to Table of Content
118
FluidsSOLO
Knudsen number (Kn) is a dimensionless number defined as the
ratio of the molecular mean free path length to a representative
physical length scale. This length scale could be, for example, the
radius of the body in a fluid. The number is named after Danish
physicist Martin Knudsen.
Knudsen
l
Kn
0
0
:
λ
= Martin Knudsen
(1871–1949).
For a Boltzmann gas, the mean free path may be readily calculated as:
• kB is the Boltzmann constant (1.3806504(24) × 10−23
J/K in SI units), [M1
L2
T−2
θ−1
]
p
TkB
20
2 σπ
λ =
• T is the thermodynamic temperature [θ1
]
λ0 = mean free path [L1
]
Knudsen Number
l0 = representative physical length scale [L1
].
• σ is the particle hard shell diameter, [L1
]
• p is the total pressure, [M1
L−1
T−2
].
See “Kinetic Theory of Gases” Presentation
For particle dynamics in the atmosphere and assuming standard atmosphere pressure i.e.
25 °C and 1 atm, we have λ0 ≈ 8x10-8
m.
119
FluidsSOLO
Martin Knudsen
(1871–1949).
Knudsen Number (continue – 1)
Relationship to Mach and Reynolds numbers
Dynamic viscosity,
Average molecule speed (from Maxwell–Boltzmann distribution),
thus the mean free path,
where
• kB is the Boltzmann constant (1.3806504(24) × 10−23
J/K in SI units), [M1
L2
T−2
θ−1
]
• T is the thermodynamic temperature [θ1
]
• ĉ is the average molecular speed from the Maxwell–Boltzmann distribution, [L1
T−1
]
• μ is the dynamic viscosity, [M1
L−1
T−1
]
• m is the molecular mass, [M1
]
• ρ is the density, [M1
L−3
].
0
2
1
λρµ c=
m
Tk
c B
π
8
=
Tk
m
B2
0
π
ρ
µ
λ =
120
FluidsSOLO
Martin Knudsen
(1871–1949).
Knudsen Number (continue – 2)
Relationship to Mach and Reynolds numbers (continue – 1)
The dimensionless Reynolds number can be written:
Dividing the Mach number by the Reynolds number,
and by multiplying by
yields the Knudsen number.
The Mach, Reynolds and Knudsen numbers are therefore related by:
Reynolds:Re
0
000
µ
ρ lU
=
Tk
m
lmTklallU
aUM
BB
γρ
µ
γρ
µ
ρ
µ
µρ 00
0
00
0
000
0
0000
00
//
/
Re
====
Kn
Tk
m
lTk
m
l BB
==
22 00
0
00
0 π
ρ
µπγ
γρ
µ
2Re
πγM
Kn =
121
FluidsSOLO
Knudsen Number (continue – 3)
Relationship to Mach and Reynolds numbers (continue –2)
According to the Knudsen Number the Gas Flow can be divided in three regions:
1.Free Molecular Flow (Kn >> 1): M/Re > 3
molecule-interface interaction negligible between incident and reflected particles
2.Transition (from molecular to continuum flow) regime: 3 > M/Re and
M/(Re)1/2
> 0.01 (Re >> 1). Both intermolecular and molecule-surface collision are
important.
3.Continuum Flow (Kn << 1): 0.01 > M/(Re)1/2
. Dominated by intermolecular
collisions.
2Re
πγM
Kn =
FluidsSOLO
Knudsen Number (continue – 4)
Inviscid
Limit Free
Molecular
LimitKnudsen Number
Boltzman Equation
Collisionless
Boltzman
Equation
Discrete
Particle
model
Euler
Equation
Navier-Stokes
Equation
Continuum
model
Conservation Equation
do not form a closed set
Validity of conventional mathematical models as a function of local
Knudsen Number
Return to Table of Content
123
AERODYNAMICS
Fluid flow is characterized by a velocity vector field in
three-dimensional space, within the framework of
continuum mechanics. Streamlines, Streaklines and
Pathlines are field lines resulting from this vector field
description of the flow. They differ only when the flow
changes with time: that is, when the flow is not steady.
• Streamlines are a family of curves that are
instantaneously tangent to the velocity vector of the
flow. These show the direction a fluid element will
travel in at any point in time.
• Streaklines are the locus of points of all the fluid
particles that have passed continuously through a
particular spatial point in the past. Dye steadily injected
into the fluid at a fixed point extends along a streakline
• Pathlines are the trajectories that individual fluid particles follow. These can be thought of as
a "recording" of the path a fluid element in the flow takes over a certain period. The direction
the path takes will be determined by the streamlines of the fluid at each moment in time.
• Timelines are the lines formed by a set of fluid particles that were marked at a previous
instant in time, creating a line or a curve that is displaced in time as the particles move.
The red particle moves in a flowing fluid; its pathline is
traced in red; the tip of the trail of blue ink released from
the origin follows the particle, but unlike the static pathline
(which records the earlier motion of the dot), ink released
after the red dot departs continues to move up with the flow.
(This is a streakline.) The dashed lines represent contours of
the velocity field (streamlines), showing the motion of the
whole field at the same time. (See high resolution version.
Flow Description
SOLO
124
3-D Flow
Flow Description
SOLO
Steady Motion: If at various points of the flow field quantities (velocity, density, pressure)
associated with the fluid flow remain unchanged with time, the motion is said to be steady.
( ) ( ) ( )zyxppzyxzyxuu ,,,,,,,, === ρρ

Unsteady Motion: If at various points of the flow field quantities (velocity, density, pressure)
associated with the fluid flow change with time, the motion is said to be unsteady.
( ) ( ) ( )tzyxpptzyxtzyxuu ,,,,,,,,,,, === ρρ

Path Line: The curve described in space by a moving fluid element is known as its trajectory
or path line.
tt
tt ∆+
t
tt ∆+
tt ∆+ 2
t
tt ∆+
tt ∆+ 2
Path Line (steady flow)
t
tt ∆+
t
tt ∆+ 2
tt ∆+
t
Path Line (unsteady flow)
tt ∆+ 2
tt ∆+
t
125
3-D Flow
Flow Description
SOLO
Path Line: The curve described in space by a moving fluid element is known as its trajectory
or path line.
t
tt ∆+ tt ∆+ 2
Streamlines: The family of curves such that each curve is tangent at each point to the
velocity direction at that point are called streamlines.
Consider the coordinate of a point P and the direction of the streamline passing
through this point. If is the velocity vector of the flow passing through P at a time t,
then and parallel, or:
r
 rd
u

u

rd
0=×urd

( )
( )
( )
0
1
1
1111
=












−
−
−
=
zdyudxv
ydxwdzu
xdzvdyw
wvu
dzdydx
zyx
w
zd
v
yd
u
xd
==
Cartesian
t
u

r

rd
126
3-D Flow
Flow Description
SOLO
Path Line: The curve described in space by a moving fluid element is known as its trajectory
or path line.
Streamlines: The family of curves such that each curve is tangent at each point to the
velocity direction at that point are called streamlines.
( ) ( ) ( )tzyxw
zd
tzyxv
yd
tzyxu
xd
,,,,,,,,,
==
t
u

r

rd
Those are two independent differential equations for a streamline. Given a point
the streamline is defined from those equations.( )0000 ,,, tzyxr

( )
( ) ( )
( )
( ) ( )tzyxw
zd
tzyxv
yd
tzyxv
yd
tzyxu
xd
,,,,,,
2
,,,,,,
1
=
=
( ) ( ) ( )
( ) ( ) ( ) 0,,,,,,,,,
0,,,,,,,,,
222
111
=++
=++
zdtzyxcydtzyxbxdtzyxa
zdtzyxcydtzyxbxdtzyxa
( ) ( )
( ) ( )21
21
22
11
•+•
•+•
βα
βα
0
22
11
≠
βα
βα
Pfaffian Differential Equations
For a given a point the solution of those equations is of the form:( )0000 ,,, tzyxr

( )
( ) 2,,,
1,,,
02
01
consttzyx
consttzyx
=
=
ψ
ψ
u

( )0
tr

rd
0t
( ) 11 cr =

ψ
( ) 22 cr =

ψ
Streamline
Those are two surfaces, the
intersection of which is the
streamline.
127
3-D Flow
Flow Description
SOLO
Path Line: The curve described in space by a moving fluid element is known as its trajectory
or path line.
Streamlines: The family of curves such that each curve is tangent at each point to the
velocity direction at that point are called streamlines.
( ) ( ) ( )tzyxw
zd
tzyxv
yd
tzyxu
xd
,,,,,,,,,
==
t
u

r

rd
For a given a point the solution of those equations is of the form:( )0000 ,,, tzyxr

( )
( ) 2,,,
1,,,
02
01
consttzyx
consttzyx
=
=
ψ
ψ
u

( )0
tr

rd
0
t
( ) 11 cr =

ψ
( ) 22 cr =

ψ
Streamline
Those are two surfaces, the
intersection of which is the
streamline.
The streamline is perpendicular to the gradients (normals) of those two surfaces.
( ) ( ) ( )0201 ,, trtrVr

ψψµ ∇×∇=
where μ is a factor that must satisfy the following constraint.
( )( ) ( ) ( ) 0,, 0201 =∇×∇⋅∇=⋅∇ trtrVr

ψψµ
Return to Table of Content
128
AERODYNAMICS
Streamlines, Streaklines, and Pathlines
Mathematical description
Streamlines
If the components of the velocity are written and those of the streamline as
we deduce
which shows that the curves are parallel to the velocity vector
Pathlines
Streaklines
where, is the velocity of a particle P at location and time t . The parameter , parametrizes the
streakline and 0 ≤ τP ≤ t0 , where t0 is a time of interest .
The suffix P indicates that we are following the motion of a fluid particle. Note that at point
the curve is parallel to the flow velocity vector where the velocity vector is evaluated at
the position of the particle at that time t .
SOLO
129
∞V
Airfoil Pressure Field variation with α
AERODYNAMICS
Airfoil Velocity Field variation with αAirfoil Streamline variation with αAirfoil Streakline with α
Streamlines, Streaklines, and Pathlines
SOLO
130
AERODYNAMICS
Streamlines, Streaklines, and Pathlines
SOLO
131
AERODYNAMICSSOLO
132
AERODYNAMICS
SOLO
133
AERODYNAMICS
Streamlines, Streaklines, and Pathlines
SOLO
Return to Table of Content
134
3-D Inviscid Incompressible Flow
Circulation
SOLO
Circulation Definition:
tV ∆

( ) tVV ∆∆+

S∆
Sn ∆1
V

×∇
t
r

∆
ttr ∆+∆

t
C
tt
C ∆+
∫ ⋅=Γ
C
rdV

:
Material Derivative of the Circulation
( )∫∫∫ ⋅+⋅=








⋅=
Γ
CCC
rd
tD
D
Vrd
tD
VD
rdV
tD
D
tD
D 


From the Figure we can see that:
( ) tVrtVVr ttt
∆+∆=∆∆++∆ ∆+

( ) Vdrd
tD
D
V
t
rr t
ttt

=→∆=
∆
∆−∆ →∆
∆+
0
( ) 0
2
2
=





=⋅=⋅ ∫∫∫ CCC
V
dVdVrd
tD
D
V

Therefore:
∫ ⋅=
Γ
C
rd
tD
VD
tD
D

integral of an exact differential on a closed curve.
C – a closed curve
135
3-D Inviscid Incompressible FlowSOLO
tV ∆

( ) tVV ∆∆+

S∆
Sn ∆1
V

×∇
t
r

∆
ttr ∆+∆

t
C
tt
C ∆+
S
∫ ⋅=Γ
tC
rdV

:
Material Derivative of the Circulation (second derivation)
Subtract those equations:
tVrdSn t
∆×=∆

1
( )∫∆+
⋅∆+=Γ∆+Γ
ttC
rdVV

:
( ) ( )∫∫∫∫ ∆⋅×∇=⋅∆+−⋅=Γ∆−
∆+ S
TheoremsStoke
CC
SnVrdVVrdV
ttt
1
' 
S is the surface bounded by the curves Ct and C t+Δ t
( ) ( ) ( ) tVVrdtVrdVSnV
S
t
S
t
S
∆








×∇×⋅=∆×⋅×∇=∆⋅×∇=Γ∆− ∫∫∫∫∫∫

1
td
d
ttd
rd
t
V
ttD
D rdd
Γ
+
∂
Γ∂
=Γ∇⋅+
∂
Γ∂
=Γ∇⋅+
∂
Γ∂
=
Γ Γ∇⋅=Γ
Computation of:
∫ ⋅
∂
∂
=
∂
Γ∂
tC
rd
t
V
t

Computation of:
td
d Γ
136
3-D Inviscid Incompressible FlowSOLO
tV ∆

( ) tVV ∆∆+

S∆
Sn ∆1
V

×∇
t
r

∆
tt
r ∆+
∆

t
C
tt
C ∆+
Material Derivative of the Circulation (second derivation)
( ) tVVrd
S
t
∆








×∇×⋅=Γ∆− ∫∫

When Δ t → 0 the surface S shrinks to the curve C=Ct and
the surface integral transforms to a curvilinear integral:
( ) ( ) ( )∫∫∫∫∫ ∇⋅⋅+





−=∇⋅⋅+





∇⋅−=×∇×⋅−=
Γ
C
t
CC
t
C
t
C
t
VVrd
V
dVVrd
V
rdVVrd
td
d 


0
22
22
Computation of: (continue)
td
d Γ
Finally we obtain:
( ) ∫∫∫ ⋅=∇⋅⋅+⋅
∂
∂
=
Γ
+
∂
Γ∂
=
Γ
tt CC
t
C
rd
tD
VD
VVrdrd
t
V
td
d
ttD
D



137
3-D Inviscid Incompressible FlowSOLO
tV ∆

( ) tVV ∆∆+

S∆
Sn ∆1
V

×∇
t
r

∆
tt
r ∆+
∆

t
C
tt
C ∆+
Material Derivative of the Circulation
We obtained:
∫ ⋅=
Γ
tC
rd
tD
VD
tD
D

Use C.L.M.: hsT
p
VV
t
V
tD
VD
II
I
G
II
II
,,
,
,,
~
∇−∇+
⋅∇
+Ψ∇=








∇⋅+=
τ
∂
∂




( ) ( )

0
,
,,
,
,
~~
∫∫∫∫ −Ψ+⋅




 ⋅∇
+∇=⋅∇−Ψ∇+⋅




 ⋅∇
+∇=
Γ
tttt CC
I
I
C
I
C
I
I
I
hddrd
p
sTrdhrd
p
sT
tD
D ττ
to obtain:
∫ ⋅




 ⋅∇
+∇=
Γ
tC
I
I
I
rd
p
sT
tD
D τ~
,
,
or:
Kelvin’s Theorem
William Thomson
Lord Kelvin
(1824-1907)
In an inviscid , isentropic flow d s = 0 with conservative
body forces the circulation Γ around a closed fluid line
remains constant with respect to time.
0
~~ =τ
Ψ∇=G
Return to Table of Content
1869
138
3-D Inviscid Incompressible FlowSOLO
Circulation Definition: ∫ ⋅=Γ
C
rdV

:
C – a closed curve
Biot-Savart Formula
1820
Jean-Baptiste Biot
1774 - 1862
VorticityV

×∇≡Ω
∫ −
Ω
=
Space
dV
sr
A 


π4
1
( )lddSn
sr
Ad




⋅
−
Ω
=
π4
1
The contribution of a length dl of the Vortex Filament
to isA

∫∫∫∫∫ ⋅Ω=⋅×∇=⋅=Γ
SS
Stokes
C
SdnSdnVrdV

:
If the Flow is Incompressible 0=⋅∇ u

so we can write , where is the Vector Potential. We are free to
choose so we choose it to satisfy .
AV

×∇=
A
 A

0=⋅∇ A

We obtain the Poisson Equation that defines the Vector Potential A

Ω−=∇

A2
Poisson Equation Solution( ) ∫ −
Ω
=
Space
dv
sr
rA 


π4
1
Félix Savart
1791 - 1841
Biot-Savart Formula
139
3-D Inviscid Incompressible FlowSOLO
Circulation Definition: ∫ ⋅=Γ
C
rdV

:
C – a closed curve
Biot-Savart Formula (continue - 1)
1820
Jean-Baptiste Biot
1774 - 1862
VorticityV

×∇≡Ω
( )lddSn
sr
Ad




⋅
−
Ω
=
π4
1
We found
∫∫∫∫∫ ⋅Ω=⋅×∇=⋅=Γ
SS
Stokes
C
SdnSdnVrdV

:
also we have dlld
Ω
Ω
=


( ) ( ) ∫∫∫∫∫ ×
−
∇⋅Ω=⋅
−
Ω
×∇=×∇=
Γ
Ω
Ω
=
ld
sr
dSnlddSn
sr
AdrV r
S
dlld
v
rr









1
4
1
4
1
ππ
( ) ( )
∫ −
−×Γ
= 3
4 sr
srld
rV 


π Biot-Savart Formula
Félix Savart
1791 - 1841
Biot-Savart Formula
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i
Aerodynamics   part i

More Related Content

What's hot

FLOW ANALYSIS OVER NACA AIRFOILS USING FLUENT
FLOW ANALYSIS OVER NACA AIRFOILS USING FLUENTFLOW ANALYSIS OVER NACA AIRFOILS USING FLUENT
FLOW ANALYSIS OVER NACA AIRFOILS USING FLUENT
Amiya Kumar Samal
 
High Speed Aerodynamics
High Speed AerodynamicsHigh Speed Aerodynamics
High Speed Aerodynamicslccmechanics
 
Spacecraft Propulsion
Spacecraft PropulsionSpacecraft Propulsion
Spacecraft Propulsion
Nilesh Nawale
 
Flow past and airfoil
Flow past and airfoilFlow past and airfoil
Flow past and airfoil
PriyankaKg4
 
Airplane (fixed wing aircraft) configuration and various parts | Flight Mecha...
Airplane (fixed wing aircraft) configuration and various parts | Flight Mecha...Airplane (fixed wing aircraft) configuration and various parts | Flight Mecha...
Airplane (fixed wing aircraft) configuration and various parts | Flight Mecha...
Age of Aerospace
 
finite volume method
finite volume methodfinite volume method
finite volume method
Thắng Hoàng
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
Solo Hermelin
 
buoyantBousinessqSimpleFoam
buoyantBousinessqSimpleFoambuoyantBousinessqSimpleFoam
buoyantBousinessqSimpleFoamMilad Sm
 
Aerodynamics Chapter 4
Aerodynamics Chapter 4Aerodynamics Chapter 4
Aerodynamics Chapter 4junio_oliveira
 
Atmosphere: Properties and Standard Atmosphere | Flight Mechanics | GATE Aero...
Atmosphere: Properties and Standard Atmosphere | Flight Mechanics | GATE Aero...Atmosphere: Properties and Standard Atmosphere | Flight Mechanics | GATE Aero...
Atmosphere: Properties and Standard Atmosphere | Flight Mechanics | GATE Aero...
Age of Aerospace
 
00 reactive flows - species transport
00 reactive flows - species transport00 reactive flows - species transport
00 reactive flows - species transport
Mohammad Jadidi
 
Fvm fdm-fvm
Fvm fdm-fvmFvm fdm-fvm
Fvm fdm-fvm
Parhamsagharchi
 
CFD Modeling of Multiphase Flow. Focus on Liquid-Solid Flow
CFD Modeling of Multiphase Flow. Focus on Liquid-Solid FlowCFD Modeling of Multiphase Flow. Focus on Liquid-Solid Flow
CFD Modeling of Multiphase Flow. Focus on Liquid-Solid Flow
Luis Ram Rojas-Sol
 
Characteristics of single pump and pumps in series and parallel use of indust...
Characteristics of single pump and pumps in series and parallel use of indust...Characteristics of single pump and pumps in series and parallel use of indust...
Characteristics of single pump and pumps in series and parallel use of indust...
TOPENGINEERINGSOLUTIONS
 
Compressible flow
Compressible flowCompressible flow
Compressible flow
Panneer Selvam
 
Airfoil Analysis(NACA 0012 ) Ansys Fluent
Airfoil Analysis(NACA 0012 ) Ansys FluentAirfoil Analysis(NACA 0012 ) Ansys Fluent
Airfoil Analysis(NACA 0012 ) Ansys Fluent
shivam choubey
 
CFD for Rotating Machinery using OpenFOAM
CFD for Rotating Machinery using OpenFOAMCFD for Rotating Machinery using OpenFOAM
CFD for Rotating Machinery using OpenFOAMFumiya Nozaki
 
ME438 Aerodynamics (week 11)
ME438 Aerodynamics (week 11)ME438 Aerodynamics (week 11)
ME438 Aerodynamics (week 11)
Dr. Bilal Siddiqui, C.Eng., MIMechE, FRAeS
 

What's hot (20)

FLOW ANALYSIS OVER NACA AIRFOILS USING FLUENT
FLOW ANALYSIS OVER NACA AIRFOILS USING FLUENTFLOW ANALYSIS OVER NACA AIRFOILS USING FLUENT
FLOW ANALYSIS OVER NACA AIRFOILS USING FLUENT
 
Ppt3
Ppt3Ppt3
Ppt3
 
High Speed Aerodynamics
High Speed AerodynamicsHigh Speed Aerodynamics
High Speed Aerodynamics
 
Spacecraft Propulsion
Spacecraft PropulsionSpacecraft Propulsion
Spacecraft Propulsion
 
Flow past and airfoil
Flow past and airfoilFlow past and airfoil
Flow past and airfoil
 
Airplane (fixed wing aircraft) configuration and various parts | Flight Mecha...
Airplane (fixed wing aircraft) configuration and various parts | Flight Mecha...Airplane (fixed wing aircraft) configuration and various parts | Flight Mecha...
Airplane (fixed wing aircraft) configuration and various parts | Flight Mecha...
 
finite volume method
finite volume methodfinite volume method
finite volume method
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
 
buoyantBousinessqSimpleFoam
buoyantBousinessqSimpleFoambuoyantBousinessqSimpleFoam
buoyantBousinessqSimpleFoam
 
Aerodynamics Chapter 4
Aerodynamics Chapter 4Aerodynamics Chapter 4
Aerodynamics Chapter 4
 
Atmosphere: Properties and Standard Atmosphere | Flight Mechanics | GATE Aero...
Atmosphere: Properties and Standard Atmosphere | Flight Mechanics | GATE Aero...Atmosphere: Properties and Standard Atmosphere | Flight Mechanics | GATE Aero...
Atmosphere: Properties and Standard Atmosphere | Flight Mechanics | GATE Aero...
 
00 reactive flows - species transport
00 reactive flows - species transport00 reactive flows - species transport
00 reactive flows - species transport
 
Fvm fdm-fvm
Fvm fdm-fvmFvm fdm-fvm
Fvm fdm-fvm
 
CFD Modeling of Multiphase Flow. Focus on Liquid-Solid Flow
CFD Modeling of Multiphase Flow. Focus on Liquid-Solid FlowCFD Modeling of Multiphase Flow. Focus on Liquid-Solid Flow
CFD Modeling of Multiphase Flow. Focus on Liquid-Solid Flow
 
Characteristics of single pump and pumps in series and parallel use of indust...
Characteristics of single pump and pumps in series and parallel use of indust...Characteristics of single pump and pumps in series and parallel use of indust...
Characteristics of single pump and pumps in series and parallel use of indust...
 
Compressible flow
Compressible flowCompressible flow
Compressible flow
 
Airfoil Analysis(NACA 0012 ) Ansys Fluent
Airfoil Analysis(NACA 0012 ) Ansys FluentAirfoil Analysis(NACA 0012 ) Ansys Fluent
Airfoil Analysis(NACA 0012 ) Ansys Fluent
 
CFD for Rotating Machinery using OpenFOAM
CFD for Rotating Machinery using OpenFOAMCFD for Rotating Machinery using OpenFOAM
CFD for Rotating Machinery using OpenFOAM
 
CFD
CFDCFD
CFD
 
ME438 Aerodynamics (week 11)
ME438 Aerodynamics (week 11)ME438 Aerodynamics (week 11)
ME438 Aerodynamics (week 11)
 

Viewers also liked

Diffraction
Diffraction Diffraction
Diffraction
Solo Hermelin
 
1 tracking systems1
1 tracking systems11 tracking systems1
1 tracking systems1
Solo Hermelin
 
Electromagnetics
ElectromagneticsElectromagnetics
Electromagnetics
Solo Hermelin
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
Solo Hermelin
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
Solo Hermelin
 
Color theory
Color theoryColor theory
Color theory
Solo Hermelin
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
Solo Hermelin
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
Solo Hermelin
 
Aerodynamics part ii
Aerodynamics   part iiAerodynamics   part ii
Aerodynamics part ii
Solo Hermelin
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
Solo Hermelin
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
Solo Hermelin
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
Solo Hermelin
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
Solo Hermelin
 

Viewers also liked (13)

Diffraction
Diffraction Diffraction
Diffraction
 
1 tracking systems1
1 tracking systems11 tracking systems1
1 tracking systems1
 
Electromagnetics
ElectromagneticsElectromagnetics
Electromagnetics
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Color theory
Color theoryColor theory
Color theory
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
Aerodynamics part ii
Aerodynamics   part iiAerodynamics   part ii
Aerodynamics part ii
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 

Similar to Aerodynamics part i

3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
Solo Hermelin
 
Basic meteorological processes
Basic meteorological processesBasic meteorological processes
Basic meteorological processes
Safdar Ali
 
lecture_eps133_chapter_2 (1).pptx
lecture_eps133_chapter_2 (1).pptxlecture_eps133_chapter_2 (1).pptx
lecture_eps133_chapter_2 (1).pptx
SWASTIK68
 
The International Standard Atmosphere (ISA)
The International Standard Atmosphere (ISA)The International Standard Atmosphere (ISA)
The International Standard Atmosphere (ISA)
Sayogyo Rahman Doko
 
Gases.pptx
Gases.pptxGases.pptx
Gases.pptx
FatmaMoustafa6
 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237
Samandar Yuldoshev
 
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Stephane Meteodyn
 
Ch17 ssm
Ch17 ssmCh17 ssm
Ch17 ssm
Marta Díaz
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 SolutionsCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 Solutions
semihypocrite
 
Gaskell
GaskellGaskell
The standard atmosphere
The standard atmosphereThe standard atmosphere
The standard atmosphereMohamed Yasser
 
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
Abrar Hussain
 
Thermo 5th chap01_p001
Thermo 5th chap01_p001Thermo 5th chap01_p001
Thermo 5th chap01_p001
João Pires
 
Thermo 5th chap01p001
Thermo 5th chap01p001Thermo 5th chap01p001
Thermo 5th chap01p001
Luma Marques
 
Thermodynamics An Engineering Approach 5th Ed. (Solution).pdf
Thermodynamics An Engineering Approach 5th Ed. (Solution).pdfThermodynamics An Engineering Approach 5th Ed. (Solution).pdf
Thermodynamics An Engineering Approach 5th Ed. (Solution).pdf
Mahamad Jawhar
 
vdocuments.mx_thermodynamics-an-engineering-approach-5th-ed-solution.pdf
vdocuments.mx_thermodynamics-an-engineering-approach-5th-ed-solution.pdfvdocuments.mx_thermodynamics-an-engineering-approach-5th-ed-solution.pdf
vdocuments.mx_thermodynamics-an-engineering-approach-5th-ed-solution.pdf
izzy428028
 
5,gases
5,gases5,gases
5,gases
علي علي
 
Gases theory and basics .. general chemistry
Gases theory and basics .. general chemistryGases theory and basics .. general chemistry
Gases theory and basics .. general chemistry
fuat8
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)
Yuri Melliza
 

Similar to Aerodynamics part i (20)

3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
Agroklimatologi 7
Agroklimatologi 7Agroklimatologi 7
Agroklimatologi 7
 
Basic meteorological processes
Basic meteorological processesBasic meteorological processes
Basic meteorological processes
 
lecture_eps133_chapter_2 (1).pptx
lecture_eps133_chapter_2 (1).pptxlecture_eps133_chapter_2 (1).pptx
lecture_eps133_chapter_2 (1).pptx
 
The International Standard Atmosphere (ISA)
The International Standard Atmosphere (ISA)The International Standard Atmosphere (ISA)
The International Standard Atmosphere (ISA)
 
Gases.pptx
Gases.pptxGases.pptx
Gases.pptx
 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237
 
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
 
Ch17 ssm
Ch17 ssmCh17 ssm
Ch17 ssm
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 SolutionsCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 Solutions
 
Gaskell
GaskellGaskell
Gaskell
 
The standard atmosphere
The standard atmosphereThe standard atmosphere
The standard atmosphere
 
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
 
Thermo 5th chap01_p001
Thermo 5th chap01_p001Thermo 5th chap01_p001
Thermo 5th chap01_p001
 
Thermo 5th chap01p001
Thermo 5th chap01p001Thermo 5th chap01p001
Thermo 5th chap01p001
 
Thermodynamics An Engineering Approach 5th Ed. (Solution).pdf
Thermodynamics An Engineering Approach 5th Ed. (Solution).pdfThermodynamics An Engineering Approach 5th Ed. (Solution).pdf
Thermodynamics An Engineering Approach 5th Ed. (Solution).pdf
 
vdocuments.mx_thermodynamics-an-engineering-approach-5th-ed-solution.pdf
vdocuments.mx_thermodynamics-an-engineering-approach-5th-ed-solution.pdfvdocuments.mx_thermodynamics-an-engineering-approach-5th-ed-solution.pdf
vdocuments.mx_thermodynamics-an-engineering-approach-5th-ed-solution.pdf
 
5,gases
5,gases5,gases
5,gases
 
Gases theory and basics .. general chemistry
Gases theory and basics .. general chemistryGases theory and basics .. general chemistry
Gases theory and basics .. general chemistry
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)
 

More from Solo Hermelin

Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
Solo Hermelin
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
Solo Hermelin
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
Solo Hermelin
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
Solo Hermelin
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
Solo Hermelin
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
Solo Hermelin
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
Solo Hermelin
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
Solo Hermelin
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
Solo Hermelin
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
Solo Hermelin
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
Solo Hermelin
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
Solo Hermelin
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
Solo Hermelin
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
Solo Hermelin
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
Solo Hermelin
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
Solo Hermelin
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
Solo Hermelin
 

More from Solo Hermelin (17)

Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
 

Recently uploaded

Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
yqqaatn0
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
University of Maribor
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
yusufzako14
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
fafyfskhan251kmf
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
ronaldlakony0
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
Nistarini College, Purulia (W.B) India
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
Lokesh Patil
 
nodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptxnodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptx
alishadewangan1
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
NoelManyise1
 

Recently uploaded (20)

Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
 
nodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptxnodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptx
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
 

Aerodynamics part i

  • 2. 2 Table of Content AERODYNAMICS Earth Atmosphere Mathematical Notations SOLO Basic Laws in Fluid Dynamics Conservation of Mass (C.M.) Conservation of Linear Momentum (C.L.M.) Conservation of Moment-of-Momentum (C.M.M.) The First Law of Thermodynamics The Second Law of Thermodynamics and Entropy Production Constitutive Relations for Gases Newtonian Fluid Definitions – Navier–Stokes Equations State Equation Thermally Perfect Gas and Calorically Perfect Gas Boundary Conditions Dimensionless Equations Boundary Layer and Reynolds Number
  • 3. 3 Table of Content (continue – 1) AERODYNAMICS SOLO Circulation Biot-Savart Formula Helmholtz Vortex Theorems 2-D Inviscid Incompressible Flow Stream Function ψ, Velocity Potential φ in 2-D Incompressible Irrotational Flow Aerodynamic Forces and Moments Blasius Theorem Kutta Condition Kutta-Joukovsky Theorem Joukovsky Airfoils Theodorsen Airfoil Design Method Profile Theory by the Method of Singularities Airfoil Design Flow Description Streamlines, Streaklines, and Pathlines
  • 4. 4 Table of Content (continue – 2) AERODYNAMICS SOLO Lifting-Line Theory Subsonic Incompressible Flow (ρ∞ = const.) about Wings of Finite Span (AR < ∞) 3D Lifting-Surface Theory through Vortex Lattice Method (VLM) Incompressible Potential Flow Using Panel Methods Wing Configurations Wing Parameters References
  • 5. 5 Table of Content (continue – 3) AERODYNAMICS SOLO Linearized Flow Equations Cylindrical Coordinates Small Perturbation Flow Applications: Nonsteady One-Dimensional Flow Applications: Two Dimensional Flow Shock & Expansion Waves Shock Wave Definition Normal Shock Wave Oblique Shock Wave Prandtl-Meyer Expansion Waves Movement of Shocks with Increasing Mach Number Drag Variation with Mach Number Swept Wings Drag Variation Variation of Aerodynamic Efficiency with Mach Number AERO
  • 6. 6 Table of Content (continue – 4) AERODYNAMICS SOLO Analytic Theory and CFD Transonic Area Rule Aircraft Flight Control AERO
  • 7. 7 Wright Brothers First Flight AERODYNAMICS SOLO
  • 8. SOLO Atmosphere Continuum Flow Low-density and Free-molecular Flow Viscous Flow Inviscid Flow Incompressible Flow Compressible Flow Subsonic Flow Transonic Flow Supersonic Flow Hypersonic Flow AERODYNAMICS AERODYNAMICS
  • 9. 9 Percent composition of dry atmosphere, by volume ppmv: parts per million by volume Gas Volume Nitrogen (N2) 78.084% Oxygen (O2) 20.946% Argon (Ar) 0.9340% Carbon dioxide (CO2) 365 ppmv Neon (Ne) 18.18 ppmv Helium (He) 5.24 ppmv Methane (CH4) 1.745 ppmv Krypton (Kr) 1.14 ppmv Hydrogen (H2) 0.55 ppmv Not included in above dry atmosphere: Water vapor (highly variable) typically 1% Gas Volume nitrous oxide 0.5 ppmv xenon 0.09 ppmv ozone 0.0 to 0.07 ppmv (0.0 to 0.02 ppmv in winter) nitrogen dioxide 0.02 ppmv iodine 0.01 ppmv carbon monoxide trace ammonia trace •The mean molecular mass of air is 28.97 g/mol. Minor components of air not listed above include: Composition of Earth's atmosphere. The lower pie represents the trace gases which together compose 0.039% of the atmosphere. Values normalized for illustration. The numbers are from a variety of years (mainly 1987, with CO2 and methane from 2009) and do not represent any single source Earth AtmosphereSOLO
  • 12. The Earth Atmosphere might be described as a Thermodynamic Medium in a Gravitational Field and in Hydrostatic Equilibrium set by Solar Radiation. Since Solar Radiation and Atmospheric Reradiation varies diurnally and annually and with latitude and longitude, the Standard Atmosphere is only an approximation. SOLO 12 The purpose of the Standard Atmosphere has been defined by the World Metheorological Organization (WMO). The accepted standards are the COESA (Committee on Extension to the Standard Atmosphere) US Standard Atmosphere 1962, updated by US Standard Atmosphere 1976. Earth Atmosphere
  • 13. The basic variables representing the thermodynamics state of the gas are the Density, ρ, Temperature, T and Pressure, p. SOLO 13 The Density, ρ, is defined as the mass, m, per unit volume, v, and has units of kg/m3 . v m v ∆ ∆ = →∆ 0 limρ The Temperature, T, with units in degrees Kelvin ( ͦ K). Is a measure of the average kinetic energy of gas particles. The Pressure, p, exerted by a gas on a solid surface is defined as the rate of change of normal momentum of the gas particles striking per unit area. It has units of N/m2 . Other pressure units are millibar (mbar), Pascal (Pa), millimeter of mercury height (mHg) S f p n S ∆ ∆ = →∆ 0 lim kPamNbar 100/101 25 == ( ) mmHginHgkPamkNmbar 00.7609213.29/325.10125.1013 2 === The Atmospheric Pressure at Sea Level is: Earth Atmosphere
  • 14. 14 Physical Foundations of Atmospheric Model The Atmospheric Model contains the values of Density, Temperature and Pressure as function of Altitude. Atmospheric Equilibrium (Barometric) Equation In figure we see an atmospheric element under equilibrium under pressure and gravitational forces ( )[ ] 0=⋅+−+⋅⋅⋅− APdPPHdAg gρ or ( ) gg HdHgPd ⋅⋅=− ρ In addition, we assume the atmosphere to be a thermodynamic fluid. At altitude bellow 100 km we assume the Equation of an Ideal Gas where V – is the volume of the gas N – is the number of moles in the volume V m – the mass of gas in the volume V R* - Universal gas constant TRNVP ⋅⋅=⋅ * V m M m N == ρ& MTRP /* ⋅⋅= ρ Earth AtmosphereSOLO
  • 15. ( ) mmHginHgkPamkNmbar 00.7609213.29/325.10125.1013 2 === Earth AtmosphereSOLO
  • 16. We must make a distinction between: - Kinetic Temperature (T): measures the molecular kinetic energy and for all practical purposes is identical to thermometer measurements at low altitudes. - Molecular Temperature (TM): assumes (not true) that the Molecular Weight at any altitude (M) remains constant and is given by sea-level value (M0) SOLO 16 T M M TM ⋅= 0 To simplify the computation let introduce: - Geopotential Altitude H - Geometric Altitude Hg Newton Gravitational Law implies: ( ) 2 0         + ⋅= gE E g HR R gHg The Barometric Equation is ( ) gg HdHgPd ⋅⋅=− ρ The Geopotential Equation is defined as HdgPd ⋅⋅=− 0ρ This means that g gE E g Hd HR R Hd g g Hd ⋅         + =⋅= 2 0 Integrating we obtain g gE E H HR R H ⋅         + = Earth Atmosphere
  • 17. 17 Atmospheric Constants Definition Symbol Value Units Sea-level pressure P0 1.013250 x 105 N/m2 Sea-level temperature T0 288.15 ͦ K Sea-level density ρ0 1.225 kg/m3 Avogadro’s Number Na 6.0220978 x 1023 /kg-mole Universal Gas Constant R* 8.31432 x 103 J/kg-mole -ͦ K Gas constant (air) Ra=R*/M0 287.0 J/kg--ͦ K Adiabatic polytropic constant γ 1.405 Sea-level molecular weight M0 28.96643 Sea-level gravity acceleration g0 9.80665 m/s2 Radius of Earth (Equator) Re 6.3781 x 106 m Thermal Constant β 1.458 x 10-6 Kg/(m-s-ͦ K1/2) Sutherland’s Constant S 110.4 ͦ K Collision diameter σ 3.65 x 10-10 m Earth AtmosphereSOLO
  • 18. 18 Physical Foundations of Atmospheric Model Atmospheric Equilibrium Equation HdgPd ⋅⋅=− 0ρ At altitude bellow 100 km we assume t6he Equation of an Ideal Gas TRMTRP a MRR a aa ⋅⋅=⋅⋅= = ρρ / * * / Hd TR g P Pd a ⋅=− 0 Combining those two equations we obtain Assume that T = T (H), i.e. function of Geopotential Altitude only. The Standard Model defines the variation of T with altitude based on experimental data. The 1976 Standard Model for altitudes between 0.0 to 86.0 km is divided in 7 layers. In each layer dT/d H = Lapse-rate is constant. Earth AtmosphereSOLO
  • 19. 19 Layer Index Geopotential Altitude Z, km Geometric Altitude Z; km Molecular Temperature T, ͦ K 0 0.0 0.0 288.150 1 11.0 11.0102 216.650 2 20.0 20.0631 216.650 3 32.0 32.1619 228.650 4 47.0 47.3501 270.650 5 51.0 51.4125 270.650 6 71.0 71.8020 214.650 7 84.8420 86.0 186.946 1976 Standard Atmosphere : Seven-Layer Atmosphere Lapse Rate Lh; ͦ K/km -6.3 0.0 +1.0 +2.8 0.0 -2.8 -2.0 Earth AtmosphereSOLO
  • 20. 20 Physical Foundations of Atmospheric Model • Troposphere (0.0 km to 11.0 km). We have ρ (6.7 km)/ρ (0) = 1/e=0.3679, meaning that 63% of the atmosphere lies below an altitude of 6.7 km. ( ) Hd HLTR g Hd TR g P Pd aa ⋅ ⋅+ =⋅=− 0 00 kmKLHLTT /3.60  −=⋅+= Integrating this equation we obtain ( )∫∫ ⋅ ⋅+ =− H a P P Hd HLTR g P PdS S 0 0 0 1 0 ( ) 0 00 lnln 0 T HLT RL g P P aS S ⋅+ ⋅ ⋅ −= Hence aRL g SS H T L PP ⋅ −       ⋅+⋅= 0 0 0 1 and           −         ⋅= ⋅ 1 0 0 0 g RL S S a P P L T H Earth AtmosphereSOLO
  • 21. 21 Physical Foundations of Atmospheric Model Hd TR g P Pd Ta ⋅=− * 0 Integrating this equation we obtain ( )T TaS S HH TR g P P T −⋅ ⋅ −= * 0 ln Hence ( )T Ta T HH TR g SS ePP −⋅ ⋅ − ⋅= * 0 and S STTa T P P g TR HH ln 0 * ⋅ ⋅ += ∫∫ =− H HTa P P T S TS Hd TR g P Pd * 0 • Stratosphere Region (HT=11.0 km to 20.0 km). Temperature T = 216.65 ͦ K = TT* is constant (isothermal layer), PST=22632 Pa Earth AtmosphereSOLO
  • 22. 22 Physical Foundations of Atmospheric Model ( )[ ] Hd HHLTR g Hd TR g P Pd SSTaa ⋅ −⋅+⋅ =⋅=− * 00 ( ) ( ) PaPHPkmKLHHLTT SSSSSST 5474.9,/0.1 * ===−⋅−=  Integrating this equation we obtain ( )[ ]∫∫ ⋅ −⋅+ =− H H SSTa P P S S SS Hd HHLTR g P Pd * 0 1 ( )[ ] * * 0 lnln T ST aSSS S T HHLT RL g P P −⋅+ ⋅ ⋅ = Hence ( ) aRL g S T S SSS HH T L PP ⋅ −         −⋅+⋅= 0 * 1 and           −      ⋅+= ⋅ 1 0 * g RL SS S S T S aS P P L T HH Stratosphere Region (HS=20.0 km to 32.0 km). Earth AtmosphereSOLO
  • 23. 23 1962 Standard Atmosphere from 86 km to 700 km Layer Index Geometric Altitude km Molecular Yemperature , K Kinetic Temperature K Molecular Weight Lapse Rate K/km 7 86.0 186.946 186.946 28.9644 +1.6481 8 100.0 210.65 210.02 28.88 +5.0 9 110.0 260.65 257.00 28.56 +10.0 10 120.0 360.65 349.49 28.08 +20.0 11 150.0 960.65 892.79 26.92 +15.0 12 160.0 1110.65 1022.20 26.66 +10.0 13 170.0 1210.65 1103.40 26.49 +7.0 14 190.0 1350.65 1205.40 25.85 +5.0 15 230.0 1550.65 132230 24.70 +4.0 16 300.0 1830.65 1432.10 22.65 +3.3 17 400.0 2160.65 1487.40 19.94 +2.6 18 500.0 2420.65 1506.10 16.84 +1.7 19 600.0 2590.65 1506.10 16.84 +1.1 20 700.0 2700.65 1507.60 16.70 Earth AtmosphereSOLO
  • 24. 24 1976 Standard Atmosphere from 86 km to 1000 km Geometric Altitude Range: from 86.0 km to 91.0 km (index 7 – 8) 78 /0.0 TT kmK Zd Td = =  Geometric Altitude Range: from 91.0 km to 110.0 km (index 8 – 9) 2/12 8 2 8 2/12 8 1 1 −               − −      − ⋅−=               − −⋅+= a ZZ a ZZ a A Zd Td a ZZ ATT C kma KA KTC 9429.19 3232.76 1902.263 −= −= =   Geometric Altitude Range: from 110.0 km to 120.0 km (index 9 – 10) ( ) kmK Zd Td ZZLTT Z /0.12 99  += −⋅+= Geometric Altitude Range: from 120.0 km to 1000.0 km (index 10 – 11) ( ) ( ) ( ) ( )       + + ⋅−=       + + ⋅−⋅= ⋅−⋅−−= ∞ ∞∞ ZR ZR ZZ kmK ZR ZR TT Zd Td TTTT E E E E 10 10 10 10 10 / exp ξ λ ξλ  KT kmR km E  1000 10356766.6 /01875.0 3 = ×= = ∞ λ Earth AtmosphereSOLO
  • 25. 25 Sea Level Values Pressure p0 = 101,325 N/m2 Density ρ0 = 1.225 kg/m3 Temperature = 288.15 ͦ K (15 ͦ C) Acceleration of gravity g0 = 9.807 m/sec2 Speed of Sound a0 = 340.294 m/sec Earth AtmosphereSOLO
  • 27. 27 Winds Winds represents the relative motion of the Atmosphere Earth Atmosphere Although in the standard atmosphere the air is motionless with respect to the Earth, it is known that the air mass through which an airplane flies is constantly in a state of motion with respect to the surface of the Earth. Its motion is variable both in time and space and is exceedingly complex. The motion may be divided into two classes: (1) large- scale motions and (2) small-scale motions. Large- scale motions of the atmosphere (or winds) affect the navigation and the performance of an aircraft. SOLO Return to Table of Content
  • 28. 28 FLUID DYNAMICS 1. MATHEMATICAL NOTATIONS VECTOR NOTATION CARTESIAN TENSOR NOTATION 1.1 VECTOR 1.2 SCALAR PRODUCT 1.3 VECTOR PRODUCT u kk = 1 2 3, ,     u u e u e u e= + +1 1 2 2 3 3   u v u v u v u v⋅ = + +1 1 2 2 3 3 u v kk k = 1 2 3, ,   u v u u u u u u v v v × = − − −                     0 0 0 3 2 3 1 2 1 1 2 3      =    − + ± =−= ji permutjiodd permutjieven CevittaLevi vu ij jiij 0 ., ., 1 ε ε SOLO
  • 29. 29 FLUID DYNAMICS 1. MATHEMATICAL NOTATIONS (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION 1.5 ROTOR OF A VECTOR 1.4 DIVERGENCE OF A VECTOR 1.6 GRADIENT OF A SCALAR ∇⋅ = + +  u u x u x u x ∂ ∂ ∂ ∂ ∂ ∂ 1 1 2 2 3 3 i i x u ∂ ∂ ∇× = −       + −       + −           u u x u x e u x u x e u x u x e ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 3 2 2 3 1 1 3 3 1 2 1 2 2 1 3     u u u u u×∇× =∇       − ⋅∇ 2 2 ∂ ∂ ∂ ∂ u x u x i k k i − i k j k i i x u u x u u ∂ ∂ ∂ ∂ − ∇ = + + =              φ ∂ φ ∂ ∂ φ ∂ ∂ φ ∂ ∂ φ ∂ ∂ φ ∂ ∂ φ ∂ x e x e x e x x x 1 1 2 2 31 3 1 2 3    ∂ φ ∂ xk SOLO
  • 30. 30 FLUID DYNAMICS 1.MATHEMATICAL NOTATIONS (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION 1.7GRADIENT OF A VECTOR ∇ = ∇ + ∇ + ∇     u u e u e u e1 1 2 2 3 3 ∇ =                    u u x u x u x u x u x u x u x u x u x ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 ∇ = + + + + + + + + +                      u u x u x u x u x u x u x u x u x u x u x u x u x u x u x u x u x u x u x D ik 1 2 1 1 1 1 1 2 2 1 1 3 3 1 2 1 1 2 2 2 2 2 2 3 3 1 3 1 1 3 3 2 2 3 3 3 3 3 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  +    ik x u x u x u x u x u x u x u x u x u x u x u x u Ω                     −− −− −− + 0 0 0 2 1 3 2 2 3 3 1 1 3 1 3 3 2 2 1 1 2 1 3 3 1 1 2 2 1 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ u x i k ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ u x u x u x u x u x i k i k k i i k k i = +       + −       1 2 1 2 D u x u x ik i k k i = +       ∆ 1 2 ∂ ∂ ∂ ∂ Ω ∆ ik i k k i u x u x = −       1 2 ∂ ∂ ∂ ∂ SOLO
  • 31. 31 FLUID DYNAMICS 1. MATHEMATICAL NOTATIONS (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION 1.8 GAUSS’ THEOREMS ds A V ∇⋅  A analytic in V ↓ = =    A C C const vectorη . ( ) ∫∫ ∫∫∫∇= S V dvsdGAUSS ηη  2 ∇η analytic in V ∫∫ ∫∫∫= S k k V dv s ds ∂ η∂ η SOLO Johann Carl Friederich Gauss 1777-1855 ( ) ∫∫ ∫∫∫ ⋅∇=⋅ S V dvAsdAGAUSS  1 ∫∫ ∫∫∫= S k k kk V dv x A dsA ∂ ∂
  • 32. 32 FLUID DYNAMICS 1.MATHEMATICAL NOTATIONS (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION 1.8GAUSS’ THEOREMS (CONTINUE) ( ) ( ) ( )∫∫ ∫∫∫ ⋅∇=⋅ S V dvAsdAGAUSS  ηη3 ( )= ⋅∇ + ∇⋅∫∫∫   A A dvη η η∇⋅∇ ,A  analytic inV ( )η ∂ η ∂ A ds A x dv V k k k kS = ∫∫∫∫∫ ∫∫∫       += V k k k k x A x A ∂ ∂ η ∂ η∂ ↓ = + +     B e e eη η η1 1 2 2 3 3 ( ) ( ) ( )[ ]∫∫ ∫∫∫ ⋅∇+∇⋅=⋅ S V dvABBAsdABGAUSS  4 B A ds A B x B A x dv V i k k k i k i k kS = +      ∫∫∫∫∫ ∂ ∂ ∂ ∂ ∇ ×  A analytic inV( ) ∫∫ ∫∫∫ ×∇=× S V dvAAsdGAUSS  5 ( )ds A ds A A x A x dv V i j j i j i i jS − = −      ∫∫∫∫∫ ∂ ∂ ∂ ∂ SOLO
  • 33. 33 FLUID DYNAMICS 1.MATHEMATICAL NOTATIONS (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION 1.9STOCKES’ THEOREM     A d r A d s C S ⋅ = ∇ × ⋅∫ ∫∫ ∇ ×  A analytic on S A d r A x A x d si i C j i i j k S ∫ ∫∫= −       ∂ ∂ ∂ ∂ Gauss’ and Stokes’ Theorems are generalizations of the Fundamental Theorem Of CALCULUS ( )A b A a d A x d x d x a b ( ) ( )− = ∫ George Stokes 1819-1903 SOLO
  • 34. SOLO Variational Principles of Hydrodynamics Joseph-Louis Lagrange 1736-1813 Leonhard Euler 1707-1783 FIXED IN SPACE (CONSTANT VOLUME) EULER LAGRANGE MOVING WITH THE FLUID (CONSTANT MASS) 1e 3 e 2 e u The phenomena considered in Hydrodynamics are macroscopic and the atomic or molecular nature of the fluid is neglected. The fluid is regarded as a continuous medium. Any small volume element is always supposed to be so large that it still contains a large number of molecules. There are two representations normally employed in the study of Hydrodynamics: - Euler representation: The fluid passes through a Constant Volume Fixed in Space - Lagrange representation: The fluid Mass is kept constant during its motion in Space. Hydrodynamic Field
  • 35. SOLO Variational Principles of Hydrodynamics Material Derivatives (M.D.) Vector Notation Cartesian Tensor Notation 1 e 2e 3 e r  u  b  rd ( ) Frddt t F trFd    ∇⋅+= ∂ ∂ , ( ) d dt F r t F t dr dt F      , = + ⋅∇ ∂ ∂ ( ) d dt F r t F t b F b      , = + ⋅∇ ∂ ∂ rdanyfor  ( )d F r t F t dt d r F x i k i k i k , = + ∂ ∂ ∂ ∂ ( ) d dt F r t F t d r dt F x i k i k i k , = + ∂ ∂ ∂ ∂ ( ) d dt F r t F t b F xb i k i k i k , = + ∂ ∂ ∂ ∂ vectoranybbtd rd  = ( ) Fu t F F tD D trF td d u    ∇⋅+=≡ ∂ ∂ , ( ) k i k i ki u x F u t F F tD D trF td d ∂ ∂ ∂ ∂ +=≡, velocityfluiduu td rd If   = uu u t u uu t u u tD D      ×∇×−      ∇+= ∇⋅+= 2 2 ∂ ∂ ∂ ∂       ⋅−⋅−       += += k i k i j j j i i k i k i i x u u x u u u xt u x u u t u u tD D ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 2 2 1 Acceleration Of The Fluid 1 e 2 e 3 e r  u  duu +  dr Material Derivatives = = Derivative Along A Fluid Path (Streamline)tD D Hydrodynamic Field
  • 36. 36 FLUID DYNAMICS 1. MATHEMATICAL NOTATIONS (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION 1.10 MATERIAL DERIVATIVES (CONTINUE) d u u t dt dr u     = + ⋅∇ ∂ ∂ du u t dt dx u x i i k i k = + ⋅ ∂ ∂ ∂ ∂ rdrdDtd t u xd xd xd x u x u x u x u x u x u x u x u x u t u t u t u ud ud ud ikik   Ω++=                                                   =           ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 3 2 1 3 3 2 3 1 3 3 2 2 2 1 2 3 1 2 1 1 1 3 2 1 3 2 1  d u u t d t u x u x d x u x u x d x i i Translation i k k i Dilation k i k k i Rotation k = + + +       + −       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 1 2 1 2      ( ) ( ) ( ) ( )[ ] Dilationrduu rdurdu urdrdurdu rdurdurdD T u u ik ⇒⋅∇+∇= ⋅∇+⋅∇= ∇⋅−⋅∇+⋅∇= ××∇−⋅∇=     2 1 2 1 2 1 2 1 2 1 2 1 ( )Ωik dr u dr Rotation    = ∇ × × ⇒ 1 2 SOLO
  • 37. 37 REYNOLDS’ TRANSPORT THEOREM -any system of coordinatesOxyz - any continuous and differentiable functions in ( ) ( )trtr OO ,,, ,,  ηχ ( )tandrO,  ( )trO ,,  ρ - flow density at point and time t Or,  SOLO - mass flow through the element .mdsdVS   =⋅− ,ρ sd  - any control volume, changing shape, bounded by a closed surface S(t)v (t) - flow velocity, relative to O, at point and time t( )trV OOflow ,,,  Or,  - position and velocity, relative to O, of an element of surface, part of the control surface S(t). OSOS Vr ,, ,  - area of the opening i, in the control surface S(t).iopenS - gradient operator in O frame.O,∇ - flow relative to the opening i, in the control surface S(t).OSiOflowSi VVV ,,,  −= - differential of any vector , in O frame. O td d ζ  ζ  FLUID DYNAMICS
  • 38. 38 Start with LEIBNIZ THEOREM from CALCULUS: ( ) ( )    ChangeBoundariesthetodueChange tb ta tb ta td tad ttaf td tbd ttbfdx t txf dxtxf td d LEIBNITZ       −+= ∫∫ )),(()),(( ),( ),(:: )( )( )( )( ∂ ∂ and generalized it for a 3 dimensional vector space on a volume v(t) bounded by the surface S(t). Using LEIBNIZ THEOREM followed by GAUSS THEOREM (GAUSS 4): ( ) ( ) ( ) ( ) ∫∫∫∫∫       ⋅∇+∇⋅+=⋅+ → = tv OSOOOSGAUSS Opotolative dsofMovement thetodueChage tS OS tv O LEIBNITZ O tv vdVV t GAUSS sdVvd t vd td d ,,,,)4( intRe )( ,      χχ ∂ χ∂ χ ∂ χ∂ χ This is REYNOLDS’ TRANSPORT THEOREM OSBORNE REYNOLDS 1842-1912 SOLO GOTTFRIED WILHELM von LEIBNIZ 1646-1716 REYNOLDS’ TRANSPORT THEOREM FLUID DYNAMICS 1. MATHEMATICAL NOTATIONS (CONTINUE)
  • 39. 39 FLUID DYNAMICS 1. MATHEMATICAL NOTATIONS (CONTINUE) 1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION ( ) ∫∫∫ ∫∫∫∫∫∫∫∫         ⋅∇+∇⋅+= ⋅+= )( ,,,,)4( , )()()( tv OSOOOS O GAUSS OS tStv O LEIBNITZ O tv vdVV t GAUSS sdVvd t vd td d     χχ ∂ χ∂ χ ∂ χ∂ χ ∫∫∫ ∫∫∫∫∫∫∫∫         ++= += )( , ,)4( , )()()( tv k kOS i k i kOS i GAUSS kkOS tS i tv i LEIBNITZ tv i vd x V x V t GAUSS sdVvd t vd td d ∂ ∂ χ ∂ χ∂ ∂ χ∂ χ ∂ χ∂ χ SOLO
  • 40. 40 FLUID DYNAMICS 1. MATHEMATICAL NOTATIONS (CONTINUE) 1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION O OOS td Rd uV   == ,, CASE 1 (CONTROL VOLUME vF ATTACHED TO THE FLUID) kkOS uV =, ( ) ∫∫∫ ∫∫∫∫∫∫∫∫         ⋅∇+∇⋅+= ⋅+= )( ,,,)4( , )()()( tv OOO O GAUSS O tStv OO tv F FFF vduu t GAUSS sduvd t vd td d      χχ ∂ χ∂ χ ∂ χ∂ χ ∫∫∫ ∫∫∫∫∫∫∫∫         ++= += )( )4( )()()( tv k k I k I k I GAUSS kK tS I tv I tv I F FFF vd x u x u t GAUSS sduvd t vd td d ∂ ∂ χ ∂ χ∂ ∂ χ∂ χ ∂ χ∂ χ SOLO
  • 41. 41 FLUID DYNAMICS 1. MATHEMATICAL NOTATIONS (CONTINUE) 1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION 1&, == χkkOS uV1&, == χuV OS  CASE 2 (CONTROL VOLUME vF ATTACHED TO THE FLUID AND )1=χ ∫∫∫∫∫∫∫∫ ⋅∇=⋅== )( ,, )( , )( )( tv OO tS O tv F FFF vdusduvd td d td tvd  ∫∫∫∫∫∫∫∫ === )()()( )( tv k k k tS k tv F FFF dv x u dsudv td d td tvd ∂ ∂               =⋅∇ → td tvd tv u F F tv OO F )( )( 1 lim0)( ,,                = → td tvd tvx u F F tv k k F )( )( 1 lim0)(∂ ∂ EULER 1755 SOLO
  • 42. 42 FLUID DYNAMICS 1. MATHEMATICAL NOTATIONS (CONTINUE) 1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION CASE 3 (CONTROL VOLUME vF ATTACHED TO THE FLUID AND ) ρχ == &, kkOS uVρχ == &, uV OS  ρχ = or, since this is true for any attached volume vF(t) ( )∫∫∫ ∫∫∫∫∫ ∫∫∫       ⋅∇+= ⋅+=== )( ,, )( , )( )( )( 0 tv OO tS O tv tv F FF F vdu t sduvd t vd td d td tmd   ρ ∂ ρ∂ ρ ∂ ρ∂ ρ ( )∫∫∫ ∫∫∫∫∫ ∫∫∫       += +=== )( )()( )( )( 0 tv k k tS kk tv tv F FF F vdu xt sduvd t dv td d td tmd ρ ∂ ∂ ∂ ρ∂ ρ ∂ ρ∂ ρ Because the Control Volume vF is attached to the fluid and they are not sources or sinks, the mass is constant. ( ) OOOOOO uu t u t ,,,,,,0  ⋅∇+∇⋅+=⋅∇+= ρρ ∂ ρ∂ ρ ∂ ρ∂ ( ) k k k k k x u x u t u xt ∂ ∂ ρ ∂ ρ∂ ∂ ρ∂ ρ ∂ ∂ ∂ ρ∂ ++=+=  0 SOLO
  • 43. 43 FLUID DYNAMICS 1. MATHEMATICAL NOTATIONS (CONTINUE) 1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION CASE 4 (CONTROL VOLUME WITH FIXED SHAPE C.V. )0,  =OS V Define ∫∫∫∫∫∫ = .... VC OO VC vd t vd td d ∂ χ∂ χ   ∫∫∫∫∫∫ = .... VC i VC i vd t vd td d ∂ χ∂ χ ( ) ( ) ( )      χ ρ ηr t r t r t, , ,≡ ( ) ( ) ( )χ ρ ηi k k i kx t x t x t, , ,≡ ( )∫∫ ∫∫∫∫∫∫ ⋅+         += )( , )()( tS OS tv OO tv sdV vd tt vd td d     ηρ ∂ ρ∂ η ∂ η∂ ρηρ k tS kOSi tv i i tv i sdV vd tt vd td d FF ∫∫ ∫∫∫∫∫∫ +       += )( , )()( ηρ ∂ ρ∂ η ∂ η∂ ρηρ We have but ( ) ( )OOOO u t u t ,,,, 0  ρη ∂ ρ∂ ηρ ∂ ρ∂ ⋅∇−=⇒=⋅∇+ ( ) ( )k k iik k u xt u xt ρ ∂ ∂ η ∂ ρ∂ ηρ ∂ ∂ ∂ ρ∂ −=⇒=+ 0 CASE 5 ( ) ( ) ( )     χ ρ ηr t r t r t, , ,≡ SOLO
  • 44. 44 FLUID DYNAMICS 1. MATHEMATICAL NOTATIONS (CONTINUE) 1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION We have ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]∫∫∫∫∫= ∫∫ ∫∫∫ ∫∫ ∫∫∫∫∫∫ ⋅−+ ⋅+         ⋅∇+∇⋅−         ∇⋅+= ⋅+         ⋅∇−= + + )( ,, )( 4 . )( , )( ,,,,,, )( , )( ,, )( tS OOS tv O MDG DerMat GAUSS tS OS tv OOOOOO O tS OS tv OO OO tv sduVvd tD D sdV vduuu t sdV vdu t vd td d          ρηρ η ρη ρηηρη ∂ η∂ ρ ρη ρηρ ∂ η∂ ρη ( ) ( ) ( ) ( ) ( ) ( )[ ]∫∫∫∫∫= ∫∫ ∫∫∫ ∫∫ ∫∫∫∫∫∫ −+ +               +−      += +       −= + + )( , )( 4 . )( , )( )( , )()( tS kkkOSi tv i MDG DerMat GAUSS tS kkOSi tv k k i k i k k i k i tS kkOSi tv k k i i tv i sduVvd tD D sdV vd x u x u x u t sdV vd x u t vd td d ρηρ η ρη ∂ ρ∂ η ∂ η∂ ρ ∂ η∂ ∂ η∂ ρ ρη ∂ ρ∂ ηρ ∂ η∂ ρη CASE 5 ( ) ( ) ( )     χ ρ ηr t r t r t, , ,≡ SOLO
  • 45. 45 FLUID DYNAMICS 1. MATHEMATICAL NOTATIONS (CONTINUE) 1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION REYNOLDS 1 ( )[ ]       ⋅−+= ∫∫∫∫∫ ∫∫∫ )( ,, )( )( tS OOS tv O O tv sduVvd tD D vd td d    ρηρ η ρη ( )[ ]       −+= ∫∫∫∫∫ ∫∫∫ )( , )( )( tS kkkOSi tv i tv i sduVvd tD D dv td d ρηρ η ρη REYNOLDS 2 ( )[ ]        = ⋅−+ ∫∫∫ ∫∫∫∫∫ )( )( ,, )( tv O tS OSO O tv vd tD D sdVuvd td d ρ η ρηρη   ( )[ ]        = −+ ∫∫∫ ∫∫∫∫∫ )( )( , )( tv i tS kkOSki tv i vd tD D sdVuvd td d ρ η ρηρη CASE 5 ( ) ( ) ( )      χ ρ ηr t r t r t, , ,≡ SOLO
  • 46. 46 FLUID DYNAMICS 1. MATHEMATICAL NOTATIONS (CONTINUE) 1.11 REYNOLDS’ TRANSPORT THEOREM (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION REYNOLDS 3 CASE 1 (CONTROL VOLUME ATTACHED TO THE FLUID vF(t) ) kkOS uV =, ∫∫∫∫∫∫ = )()( tv OO tv FF vd tD D vd td d ρ η ρη   ∫∫∫∫∫∫ = )()( tv i tv i FF vd tD D vd td d ρ η ρη SOLO O OOS td Rd uV   == ,, ( ) ( ) ( )     χ ρ ηr t r t r t, , ,≡ CASE 4 (CONTROL VOLUME WITH FIXED SHAPE C.V. )0,  =OS V REYNOLDS 4 ( )       ⋅+= ∫∫∫∫∫ ∫∫∫ .. , .. .. SC O O VC VC O sduvd td d vd tD D   ρηρη ρ η ( )       += ∫∫∫∫∫ ∫∫∫ .... .. SC kki VC i VC i sduvd td d vd tD D ρηρη ρ η Return to Table of Content
  • 47. 47 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS THE FLUID DYNAMICS IS DESCRIBED BY THE FOLLOWING FIVE LAWS: SOLO (1) CONSERVATION OF MASS (C.M.) (2) CONSERVATION OF LINEAR MOMENTUM (C.L.M.) (3) CONSERVATION OF MOMENT OF MOMENTUM (C.M.M.) (4) THE FIRST LAW OF THERMODYNAMICS (5) THE SECOND LAW OF THERMODYNAMICS Return to Table of Content
  • 48. 48 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.1) CONSERVATION OF MASS (C.M.) Control Volume attached to the fluid (containing a constant mass m) bounded by the Control Surface SF (t). ( )tvF ( )tr,  ρ ( )3 /mkgFlow density SOLO Because vF(t) is attached to the fluid and there are no sources or sinks in this volume, the Conservation of Mass requires that: d m t d t ( ) = 0 ( ) ( )trVtru OfluidO ,, ,,  = Flow Velocity relative to a predefined Coordinate System O (Inertial or Not-Inertial) ( )sm/
  • 49. 49 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.1) CONSERVATION OF MASS (CONTINUE - 1) VECTOR NOTATION CARTESIAN TENSOR NOTATION d m t d t ( ) = 0 ( )∫∫∫= ∫∫∫∫∫ ∫∫∫       ⋅∇+ ⋅+=== )( ,, 1 )( , )( )( )( 0 tv OO GAUSS tS O tv tv REYNOLDS F FF F vdu t sduvd t dv td d td tmd   ρ ∂ ρ∂ ρ ∂ ρ∂ ρ ( )∫∫∫= ∫∫∫∫∫ ∫∫∫       + +=== )( 1 )()( )( )( 0 tv k k GAUSS tS kk tv tv REYNOLDS F FF F vdu xt sduvd t dv td d td tmd ρ ∂ ∂ ∂ ρ∂ ρ ∂ ρ∂ ρ The Control Volume mass rate is zero as long as vF(t) is attached to the fluid and therefore contains the same amount of mass. 0),,,( )( =∫∫∫ tvF vdtzyx td d ρ is true in any Coordinate System (O) and so is: ( ) ( ) ( ) ( )( ) 0,,,,,, ,,, ,,, )( ,, )( =      ⋅∇+= ∫∫∫∫∫∫ tv OO tv FF vdtzyxutzyx t tzyx vdtzyx td d  ρ ∂ ρ∂ ρ SOLO
  • 50. 50 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.1) CONSERVATION OF MASS (CONTINUE - 2) VECTOR NOTATION CARTESIAN TENSOR NOTATION For any Control Volume v (t) (not necessarily attached to the fluid) The following is true for any Coordinate System (for points that are not sources or sinks – mathematically equivalent to analytic) ( )OO u t ,,,  ρ ∂ ρ∂ ⋅∇ ( ) OOOOOO uu t u t ,,,,,,0  ⋅∇+∇⋅+=⋅∇+= ρρ ∂ ρ∂ ρ ∂ ρ∂ ( ) k k k kO k x u x u t u xt ∂ ∂ ρ ∂ ρ∂ ∂ ρ∂ ρ ∂ ∂ ∂ ρ∂ ++=+= ,0  ( ) ( ) 0 )( ,, 4 ).( , ).()( ≠=      ⋅∇+ ⋅+ ∫∫∫= ∫∫∫∫∫=∫∫∫ mvdV t sdVvd t vd td d tv OSO GAUSS tS OS tv LEIBNITZ tv    ρ ∂ ρ∂ ρ ∂ ρ∂ ρ ( ) 0 )( , 4 ).( , ).()( ≠=      + + ∫∫∫= ∫∫∫∫∫=∫∫∫ mvdV xt sdVvd t vd td d tv kOS k GAUSS tS kkOS tv LEIBNITZ tv ρ ∂ ∂ ∂ ρ∂ ρ ∂ ρ∂ ρ The integral above is not zero because the mass in v (t) is not constant. SOLO
  • 51. 51 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.1) CONSERVATION OF MASS (CONTINUE - 3) Material Derivative of vdmd ρ= Let use EULER’s 1755 expression ( ) ( ) ( ) ( )vd tD D vdtd tvd tv u F F tv OO F 11 lim 0 ,, =            =⋅∇ →  and the (C.M.): to develop the following: ( ) 0,, =⋅∇+ OO u t  ρ ∂ ρ∂ ( ) ( ) ( ) 0,,,,,, ,,,, =      ⋅∇+ ∂ ∂ =      ⋅∇+∇⋅+ ∂ ∂ = ⋅∇+      ∇⋅+ ∂ ∂ =+== vdu t vduu t uvdvdu t vd tD D vd tD D vd tD D tD mD OOOOOO OOOO   ρ ρ ρρ ρ ρρ ρ ρ ρ ρ SOLO
  • 52. 52 FLUID DYNAMICS ∑+= openings i iopenW SCSCSC .... 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.1) CONSERVATION OF MASS (CONTINUE – 4) SOLO Control Volume with fixed shape C.V. and boundary C.S. in O Coordinates( ) 0,  =OS V There are no sources or sinks in the volume C.V. The change in the mass of the system is due only to the flow through the surface openings C.Sopen i (i=1,2,…). The surface C.S. can be divided in: • C.Sw the impermeable wall through which the fluid can not escape .         =−= 0 0 ,,,  OSOs VuV • C.Sopen i the openings (i=1,2,…) through which the fluid enters or exits .( )0>m ( )0<m  ∑∑ ∫∫∫∫∫∫∫∫∫ =⋅−⋅−=⋅−== openings i i openings i m SC O SC O SC O VC msdusdusduvd td d td md i iopenw     . , . 0 , .. , .. ρρρρ Therefore where is the flow rate entering through the opening Sopen i.∫∫ ⋅−= iopenSC Oi sdum . ,   ρ Return to Table of Content
  • 53. 53 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.2) CONSERVATION OF LINEAR MOMENTUM (C.L.M.) -Fluid density at he point and time t( )tr,  ρ  r ( )3 / mKg -Fluid inertial velocity at the point and time t ( )tru I ,,   r ( )sec/m -Surface Stress ( )2 / mNT  -Pressure (force per unit surface) of the surrounding on the control surface ( )2 / mN p -Stress tensor (force per unit surface) of the surrounding on the control surface ( )2 / mN σ~ -Body forces acceleration -(gravitation, electromagnetic,..) G  ( )2 sec/m nnpnT ˆ~ˆˆ~ ⋅+−=⋅= τσ  Consider a volume vF(t) attached to the fluid, bounded by the closed surface SF(t). SOLO -unit vector normal to the surface S(t) and pointing outside the volume v (t)nˆ vF (t) m SF (t) O x y z r u,O np ˆ− nˆ~⋅τ nˆ~⋅σ dSnˆ -Shear stress tensor (force per unit surface) of the surrounding on the control surface ( )2 / mN τ~
  • 54. 54 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.2) CONSERVATION OF LINEAR MOMENTUM (CONTINUE - 1) Derivation From Integral Form The LINEAR MOMENTUM of the Constant Mass in vF(t) is given by: ∫∫∫= )( , tv I F vduP  ρ The External Forces acting on the mass are Body and Surface Forces: ( )     ForcesSurface tS ForcesBody tv external FF sdTvdGF ∫∫∫∫∫∑ += )( ρ According to NEWTON’s Second Law, for a constant mass in vF(t), we have: I external td Pd F   =∑ SOLO
  • 55. 55 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.2) CONSERVATION OF LINEAR MOMENTUM (CONTINUE - 2) VECTOR NOTATION CARTESIAN TENSOR NOTATION ( ) I IMomentumLinear tv I REYNOLDS tv I I ForcesSurface tS ForcesBody tv external P td d vdu td d vd tD uD sdvdGF FF FF         === ⋅+= ∫∫∫∫∫∫ ∫∫∫∫∫∑ )( , 3 )( , )()( ~ ρρ σρ i tv i REYNOLDS tv i tS kik tv iiex P td d vdu dt d vd tD uD dsvdGF FF FF === += ∫∫∫∫∫∫ ∫∫∫∫∫∑ )( 3 )( )()( _ ρρ σρ C.L.M.-1      T ds n ds ds ds n ds = ⋅ ⋅ = =~ ~σ σ T ds n ds dsi ik k ds n ds ik k k k = = =σ σ C.L.M.-2 ( )∫∫∫ ∫∫∫∫∫∫∫∫ ⋅∇+= ⋅+= )( , )()()( , ~ ~ tv I tStvtv I I F FFF vdG sdvdGvd tD uD σρ σρρ   ∫∫∫ ∫∫∫∫∫∫∫∫       += += )( )()()( tv i ik i tS kik tv i tv i F FFF vd x G sdvdGvd tD uD ∂ σ∂ ρ σρρ SOLO Derivation From Integral Form (Continue)
  • 56. 56 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.2) CONSERVATION OF LINEAR MOMENTUM (CONTINUE - 3) VECTOR NOTATION CARTESIAN TENSOR NOTATION C.L.M.-2 Since this is true for all volumes vF (t) attached to the fluid we can drop the volume integral. [ ] [ ] [ ]τσ τρσρ ∂ ∂ ρ ∂ ∂ ρρ ~~ ~~ 2 1 ,,, , 2 , , .).( +−= ⋅∇+∇−=⋅∇+=         ×∇×−      ∇+=         ∇⋅+= Ip pGG uuu t u uu t u tD uD III II I I I DM I      ikikik i ik i i i ik i k i k i j jjj i i k i k i DM i p xx p G x G x u u x u uuu xt u x u u t u tD uD τδσ ∂ τ∂ ∂ ∂ ρ ∂ σ∂ ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ρ ∂ ∂ ∂ ∂ ρρ +−= +−=+=             ⋅−⋅−      +=       ⋅+= 2 1 .).( SOLO Derivation From Integral Form (Continue) ( )∫∫∫ ∫∫∫∫∫∫∫∫ ⋅∇+= ⋅+= )( , )()()( , ~ ~ tv I tStvtv I I F FFF vdG sdvdGvd tD uD σρ σρρ   ∫∫∫ ∫∫∫∫∫∫∫∫       += += )( )()()( tv i ik i tS kik tv i tv i F FFF vd x G sdvdGvd tD uD ∂ σ∂ ρ σρρ
  • 57. 57 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.2) CONSERVATION OF LINEAR MOMENTUM (CONTINUE - 4) Derivation From a Cartesian Differential Volume VECTOR NOTATION CARTESIAN TENSOR NOTATION σ ∂ σ ∂ xx xx x dx+ 1 2 σ ∂ σ ∂ xx xx x dx− 1 2 τ ∂ τ ∂ yx yx y dy+ 1 2 τ ∂ τ ∂ yz yz y dy− 1 2 τ ∂τ ∂ zx zx z dz+ 1 2 τ ∂τ ∂ zx zx z dz− 1 2 τ ∂ τ ∂ xy xy x dx+ 1 2 τ ∂ τ ∂ xy xy x dx− 1 2 σ ∂ σ ∂ yy yy y dy+ 1 2 σ ∂ σ ∂ yy yy y dy− 1 2 τ ∂τ ∂ zy zy z dz+ 1 2 τ ∂τ ∂ zy zy z dz− 1 2 τ ∂ τ ∂ xz xz x dx− 1 2 τ ∂ τ ∂ yz yz y dy+ 1 2 τ ∂ τ ∂ yx yx y dy− 1 2 σ ∂ σ ∂ zz zz z dz+ 1 2 σ ∂ σ ∂ zz zz z dz− 1 2 z y x dy dx dz O τ ∂ τ ∂ xz xz x dx+ 1 2 ∂σ ∂ ∂τ ∂ ∂τ ∂ ρ ρ ∂τ ∂ ∂σ ∂ ∂τ ∂ ρ ρ ∂τ ∂ ∂τ ∂ ∂σ ∂ ρ ρ xx yx zx xB x xy yy zy yB y xz yz zz zB z x y z G a x y z G a x y z G a + + + = + + + = + + + = CAUCHY’s First Law of Motion I tD uD a aG    = =+⋅∇ ρρσ~ tD uD a aG x i i ii i ij = =+ ρρ ∂ σ∂ SOLO AUGUSTIN LOUIS CAUCHY )1789-1857(
  • 58. 58 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.2) CONSERVATION OF LINEAR MOMENTUM (CONTINUE-5) Derivation For Any Control Volume v (t) (the velocity of an element of surface is )d s  IS V ,  V(t) b ds V*(t) I T d s= ⋅~σ G m u Use REYNOLDS’ Transport Theorem (REYNOLDS 2) with and O = I, and then the Conservation of Linear Momentum (C.L.M.) I u,  =η VECTOR NOTATION CARTESIAN TENSOR NOTATION ( )[ ] ( ) ( ) ( ) ∑∫∫∫∫∫ ∫∫∫∫∫∫ ∫∫∫∫∫ =⋅+= ⋅∇+== ⋅−+ iexternal tStv tv I MLC tv I REYNOLDS tS ISII I tv I FsdvdG vdGvd tD uD sdVuuvdu td d FF FF FF    )()( )( , ... )( 2 )( ,,, )( , ~ ~ σρ σρρ ρρ ( ) ( ) ( ) ∑∫∫∫∫∫ ∫∫∫∫∫∫ ∫∫∫∫∫ =+=         +== −+ iexternal tS kik tv i tv k ik i MLC tv i REYNOLDS tS kkISki tv i FsdvdG vd x Gvd tD uD sdVuuvdu td d )()( )( ... )( 2 )( , )( σρ ∂ σ∂ ρρ ρρ SOLO Return to Table of Content
  • 59. 59 ( ) ( ) PdRRvdVRRHd OOO  ×−=×−= ρ, 2. BASIC LAWS IN FLUID DYNAMICS (2.3) CONSERVATION OF MOMENT-OF-MOMENTUM (C.M.M.) SOLO The Absolute Angular Momentum, of the differential mass and Inertial Velocity ,relative to a reference point O is defined as vdmd ρ= V  The Absolute Angular Momentum of the mass enclosed by C.V. is defined as ( ) ( )∫∫∫∫∫∫ ×−=×−= .... , VC O VC OOCV PdRRvdVRRH  ρ Let differentiate the Absolute Angular Momentum and use Reynolds’ Transport Theorem ( ) ( ) ( ) ( )∫∫∫∫∫∫∫∫ ⋅−×−+ ×− =×−= .. , .... , SC md SO VC I O REYNOLDS I VC O I OCV sdVVRRvd tD VRRD vdVRR td d td Hd       ρρρ We have ( ) ( ) ( ) ( ) ( ) VV tD VD RRVVV tD VD RR V tD RD tD RD tD VD RR tD VRRD O I OO I O I O II O I O          ×−×−=×−+×−= ×         −+×−= ×− FLUID DYNAMICS
  • 60. 60 ( ) ( ) ( ) int, : fdRRfdRRvd tD VD RRMd OextO I OO    ×−+×−=×−= ρ ( ) ( ) ( ) ( )∫∫∫∫∫∫∫∫∫∫∫ ⋅−×−+×−×−=×−= .. , ...... , SC md SO P VC O VC I O REYNOLDS I VC O I OCV sdVVRRvdVVvd tD VD RRvdVRR td d td Hd CV         ρρρρ 2. BASIC LAWS IN FLUID DYNAMICS (2.3) CONSERVATION OF MOMENT-OF-MOMENTUM (C.M.M.) SOLO The Moment, of the differential mass dm = ρdv, relative to a reference point O is defined as Therefore Let integrate this equation over the control volume C.V. ( ) ( ) ( )        0 .. int .... , ∫∫∫∫∫∫∫∫∫∑ ×−+×−=×−= VC O VC extO VC I OOCV fdRRfdRRvd tD VD RRM ρ Using the differential of Angular Momentum equation we obtain ( ) ( ) ( )∫∫∫∫∫∑∫∫∫ ⋅−×−+×−=×−= .. , .. , .. , SC md SO P VC OOCV I VC O I OCV sdVVRRvdVVMvdVRR td d td Hd CV       ρρρ ( ) ( ) ( ) ( ) ( ) ∑∑∫∫∫∫∫∫∫∫∑ +×−++−×−+×−=×−= =⋅ k k j jOj SC sdTsd O VC O VC extOOtCV MFRRsdtfnpRRvdgRRfdRRM      ...... , 11 σ ρ Also ( )∑ ×− j jOj FRR  - Moment, relative to O, of discrete forces exerting by the surrounding at point jR  - Discrete Moments exerting by the surrounding.∑ k k M  FLUID DYNAMICS
  • 61. 61 ( ) ( ) ( ) ∑∑∫∫∫∫∫∫∫∫ +×+×+×=×+⋅−×−× k k j jO tv O tv extO P VC O SC md SO I VC O MFrfdrfdrvdVVsdVVrvdVr td d CV         , 0 int,, .... ,, .. , ρρρ 2. BASIC LAWS IN FLUID DYNAMICS (2.3) CONSERVATION OF MOMENT-OF-MOMENTUM (C.M.M.) SOLO Let find the equation of moment around the turbomachine axis. We shall use polar coordinates , where z is the turbomachine axis. zr ,,θ zzrrrO ˆˆ, +=  zVVrVV zr ˆˆˆ ++= θθ  zFFrFF zr ˆˆˆ ++= θθ  ( ) zVrVrVzrVz VVV zr zr Vr zrz zr O ˆˆ0 ˆˆˆ , θ θ θ +−+−==×  ( )  ( ) ∑∑∫∫∫∫ ++=×+⋅−− k kz j j tv extCVO SC S VC MFrdfrPVsdVVrvdVr td d θθθθ ρρ   0 .. , .. The moment of momentum equation around the turbomachine z axis. Example FLUID DYNAMICS
  • 62. 62 2. BASIC LAWS IN FLUID DYNAMICS (2.3) CONSERVATION OF MOMENT-OF-MOMENTUM (C.M.M.) SOLO ( ) ( ) ( ) ( ) ( ) ( )          systemoutsidefromexertedTorque M l lz j j tv ext AVVrAVVr SC S statesteady VC zSnSn MFrdfrsdVVrvdVr td d ∑∑∫∫∫∫ ++=⋅−− +−−→ θθ ρρ θθ θθ ρρ 22,21111,122 .. , 0 .. We obtain ( ) ( )[ ] zflow MQVrVr =− 111122 ρθθ or ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) zSnSnSn MAVVrVrAVVrAVVr =−=− 11,1112211,11122,222 ρρρ θθθθ Euler Turbine Equation ρ1 - mean fluid density one inlet (1) of area A1. where ρ2 - mean fluid density one outlet (2) of area A2. (Vθ )1, r1 - mean fluid tangential velocity and radius one inlet (1) of area A1. (Vθ )2, r2 - mean fluid tangential velocity and radius one outlet (2) of area A2. (V,Sn )1 - mean fluid normal velocity (relative to A1) one inlet (1) of area A1. (V,Sn )2 - mean fluid normal velocity (relative to A2) one outlet (2) of area A2. - mean flow rate one outlet (1) of area A1.( ) 11,1 : AVQ Snflow = FLUID DYNAMICS Return to Table of Content
  • 63. 63 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.4) CONSERVATION OF ENERGY (C.E.) – THE FIRST LAW OF THERMODYNAMICS (DIFFERENTIAL FORM) -Fluid mean velocity [m/sec[( )  u r t, -Body Forces Acceleration -(gravitation, electromagnetic,..) G  -Surface Stress [N/m2 [T  nnpnT ˆ~ˆˆ~ ⋅+−=⋅= τσ  m V(t) G q T n= ⋅~σ d E d t ∂ ∂ Q t uu d s n ds= -Internal Energy of Fluid molecules (vibration, rotation, translation per mass [W/kg[ e - Rate of Heat transferred to the Control Volume (chemical, external sources of heat) [W/m3 [ ∂ ∂ Q t - Rate of Work change done on fluid by the surrounding (rotating shaft, others) positive for a compressor, negative for a turbine) [W[td Ed SOLO Consider a volume vF(t) attached to the fluid, bounded by the closed surface SF(t). -Rate of Conduction and Radiation of Heat from the Control Surface (per unit surface) [W/m3 [ q
  • 64. 64 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.4) CONSERVATION OF ENERGY (C.E.) – THE FIRST LAW OF THERMODYNAMICS (CONTINUE - 1) - The Internal Energy of the molecules of the fluid plus the Kinetic Energy of the mass moving relative to an Inertial System (I) The FIRST LAW OF THERMODYNAMICS CHANGE OF INTERNAL ENERGY + KINETIC ENERGY = CHANGE DUE TO HEAT + WORK + ENERGY SUPPLIED BY SUROUNDING SOLO The energy of the constant mass m in the volume vF(t) attached to the fluid, bounded by the closed surface SF(t) is This energy will change due to - The Work done by the surrounding - Absorption of Heat - Other forms of energy supplied to the mass (electromagnetic, chemical,…)
  • 65. 65 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.4) CONSERVATION OF ENERGY (C.E.) – THE FIRST LAW OF THERMODYNAMICS (CONTINUE - 2) VECTOR NOTATION CARTESIAN TENSOR NOTATION C.E.-1               systementering td Qd tSv systemontnmenenvirobydone td Wd shaft tSv v REYNOLDS KineticInternal tv FF FF FF sdqvd t Q td Wd ForcesSurface sdTu ForcesBody vdGu vdue tD D vdue td d ∫∫∫∫∫ ∫∫∫∫∫ ∫∫∫∫∫∫ ⋅−+ +⋅+⋅=       +=      + + )( )( 2 )3( )( 2 2 1 2 1 ∂ ∂ ρ ρρ             systementering td Qd tS kk tv systemontnemnoenvirbydone td Wd shaft tS kk tv kk tv REYNOLDS KineticInternal tv FF FF FF dsqvd t Q td Wd ForcesSurface sdTu ForcesBody vdGu vdue tD D vdue td d ∫∫∫∫∫ ∫∫∫∫∫ ∫∫∫∫∫∫ −+ ++=       +=      + + )()( )()( )( 2 )3( )( 2 2 1 2 1 ∂ ∂ ρ ρρ SOLO
  • 66. 66 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.4) CONSERVATION OF ENERGY (C.E.) – THE FIRST LAW OF THERMODYNAMICS (CONTINUE - 3) VECTOR NOTATION CARTESIAN TENSOR NOTATIONC.E.-2 ( ) ( ) ∫∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫ ∫∫∫∫∫ ∫∫∫∫∫∫∫ ∫∫∫ ⋅∇−+ ⋅⋅∇+⋅∇−⋅= ⋅−+ ⋅⋅+⋅−⋅= +       + )()( )()()( )1( )()( )()()( )( 2 ~ ~ 2 1 tvtv tvtvtv GAUSS td Qd tStv td Wd tStStv tv FF FFF FF FFF F vdqvd t Q vduvdupvdGu sdqvd t Q sdusdupvdGu KineticInternal vdue tD D              ∂ ∂ τρ ∂ ∂ τρ ρ ( ) ( ) ∫∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫= ∫∫∫∫∫ ∫∫∫∫∫∫∫ ∫∫∫ −+ +− −+ +−=       + + )()( )()()( )1( )()( )()()( )( 2 2 1 tV s s tV tV k k iki tV k k k tV kk GAUSS td Qd tS kk tV td Wd tS kiki tS kk tV kk KineticInternal tV vd x q vd t Q ds x u ds x up vdGu dsqvd t Q dsudsupvdGu vdue tD D ∂ ∂ ∂ ∂ ∂ τ∂ ∂ ∂ ρ ∂ ∂ τρ ρ                T n pn n ds n ds= ⋅ = − + ⋅ =~ ~ &σ τ0= td Wd shaft assume and use SOLO
  • 67. 67 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.4) CONSERVATION OF ENERGY (C.E.) – THE FIRST LAW OF THERMODYNAMICS (CONTINUE-4) VECTOR NOTATION CARTESIAN TENSOR NOTATIONC.E.-3 Since the last equation is valid for each vF(t) we can drop the integral and obtain: ( ) ( ) q t Q uGuupue tD D   ⋅∇−+ ⋅+⋅⋅∇+⋅−∇=      + ∂ ∂ ρτρ ~ 2 1 2 ( ) ( ) k k kk k iik k k x q t Q uG x u x up ue tD D ∂ ∂ ∂ ∂ ρ ∂ τ∂ ∂ ∂ ρ −+ ++−=      + 2 2 1 Multiply (C.L.M.-2) by  u τρρ ~⋅∇⋅+∇⋅−⋅=⋅ upuuG tD uD u   ( ) k ik i k kkk i i x u x p uuGu tD D tD uD u ∂ τ∂ ∂ ∂ ρρρ +−== 2 Subtract this equation from (C.E.-3) C.E.-4 ( )[ ]ρ τ τ ∂ ∂ D e D t p u u u Q t q = − ∇⋅ + ∇⋅ ⋅ − ⋅∇⋅ + −∇⋅        ~ ~ Φ ρ ∂ ∂ τ ∂ ∂ ∂ ∂ ∂ ∂ D e D t p u x u u x Q t q x k k ik i k k k =− + + − Φ   ( )Φ ≡ ∇⋅ ⋅ − ⋅∇ ⋅ >~ ~τ τ   u u 0 Φ ≡ >τ ∂ ∂ ik i k u x 0 (Proof of inequality given later) SOLO
  • 68. 68 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.4) CONSERVATION OF ENERGY (C.E.) – THE FIRST LAW OF THERMODYNAMICS (CONTINUE - 5) VECTOR NOTATION CARTESIAN TENSOR NOTATION Enthalpy Use this result and (C.E.-4) C.E.-5 ρ p eh +=: ( ) tD pD up tD hD u p tD pD tD hD tD Dp tD pD tD hD tD pD tD hD tD eD −⋅∇−=⋅∇−+−= +−=       −=  ρρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρρρ 2 tD pD x u p tD hD x up tD pD tD hD tD pDp tD hD tD pD tD pD tD hD tD eD k k k k −−=        −+−= +−=       −= ∂ ∂ ρ ∂ ∂ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρρρ 2 Φ++⋅∇−= t Q q tD pD tD hD ∂ ∂ ρ  Φ++−= t Q x q tD pD tD hD k k ∂ ∂ ∂ ∂ ρ SOLO ( )Φ ≡ ∇⋅ ⋅ − ⋅∇ ⋅ >~ ~τ τ   u u 0 Φ ≡ >τ ∂ ∂ ik i k u x 0
  • 69. 69 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.4) CONSERVATION OF ENERGY (C.E.) – THE FIRST LAW OF THERMODYNAMICS (CONTINUE - 6) VECTOR NOTATION CARTESIAN TENSOR NOTATION Total Enthalpy Use this result and (C.E.-3) C.E.-6 22 2 1 2 1 : u p euhH ++=+= ρ ( ) t p up tD HD tD pD up tD HD p tD D tD HD ue tD D ∂ ∂ ρρ ρ ρρρ −⋅∇−=−⋅∇−=       −=      +  2 2 1 ( ) t p up xtD HD tD pD x u p tD HD p tD D tD HD ue tD D kk k ∂ ∂ ∂ ∂ ρ ∂ ∂ ρ ρ ρρρ −−=−−=       −=      +  2 2 1 ( ) q t Q uGu t p tD HD  ⋅∇−+⋅+⋅⋅∇+= ∂ ∂ ρτ ∂ ∂ ρ ~ ( ) k k kk k iik x q t Q uG x u t p tD HD ∂ ∂ ∂ ∂ ρ ∂ τ∂ ∂ ∂ ρ −+++= SOLO Return to Table of Content
  • 70. 70 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) SOLO THERMODYNAMIC PROCESSES 1. ADIABATIC PROCESSES 2. REVERSIBLE PROCESSES 3. ISENTROPIC PROCESSES No Heat is added or taken away from the System No dissipative phenomena (viscosity, thermal, conductivity, mass diffusion, friction, etc) Both adiabatic and reversible (2.5) THE SECOND LAW OF THERMODYNAMICS AND ENTROPY PRODUCTION
  • 71. 71 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.5) THE SECOND LAW OF THERMODYNAMICS AND ENTROPY PRODUCTION 2nd LAW OF THERMODYNAMICS Using GAUSS’ THEOREM 0 )()( ≥+ ∫∫∫∫∫ tStv FF Ad T q vds td d  ρ 00 )( )1( )()( ≥            ⋅∇+⇒≥+ ∫∫∫∫∫∫∫∫ tv GAUSS tStv FFF vd T q tD sD Ad T q vd tD sD  ρρ - Change in Entropy per unit volumed s - Local TemperatureT [ ]K - Fluid Densityρ [ ]3 / mKg d e q w T ds pdv= + = −δ δ d s d e T p T dv= + SOLO For a Reversible Process - Rate of Conduction and Radiation of Heat from the System per unit surface q  [ ]2 / mW
  • 72. 72 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.5) THE SECOND LAW OF THERMODYNAMICS (CONTINUE - 1) d e q w T ds pdv= + = −δ δ d s d e T p T dv= + u T p tD eD T u T p tD eD T tD D T p tD eD TtD D T p tD eD TtD vD T p tD eD TtD sD u tD D MC v   ⋅∇+=      ⋅∇+=       −+=      +=+= ⋅∇−= = ρ ρ ρ ρρ ρ ρ ρρ ρ ρρρρ ρ ρ ρ ρ 2 .).( 2 1 1 11 The Energy Equation (C.E.-4) is ( ) k i ik x u oruu t Q qup tD eD ∂ ∂ τττ ∂ ∂ ρ =Φ⋅∇⋅−⋅⋅∇=ΦΦ++⋅∇−⋅∇−= ~~  Tt Q TT q up tD eD TtD sD Φ ++ ⋅∇ −=      ⋅∇+= ∂ ∂ ρ 11   or Φ++⋅−∇= t Q q tD sD T ∂ ∂ ρ  SOLO
  • 73. 73 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.5) THE SECOND LAW OF THERMODYNAMICS (CONTINUE - 2) Define ρ ∂ ∂ T D s Dt q Q t = −∇ ⋅ + +  Φ Θ ≡ + ∇ ⋅       ≥ρ Ds Dt q T  0 Entropy Production Rate per unit volume Therefore ( ) Θ Φ Θ= − ∇ ⋅ + + + ∇ ⋅       ≥∫∫∫   q T T Q t T q T dv V t 1 0 ∂ ∂ & SOLO or    0 1 ≥Φ++⋅∇⋅−=Θ nDissipatio System toadded Heat System from Radiation Heat t Q Tq T T ∂ ∂
  • 74. 74 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.5) THE SECOND LAW OF THERMODYNAMICS (CONTINUE - 3)     q q q q conduction rate per unit surface q radiation rate per unit surfacec r c r = +     q K T K FOURIER s Conduction Lawc = − ∇ > 0 ' ( )− ∇ ⋅ + ∇ ⋅       = − ∇ ⋅ + ∇ ⋅ + ⋅∇       = ⋅∇       = − ∇ + ⋅∇       = − ∇ ⋅ − ∇       + ⋅∇       = ∇      + ⋅∇                q T q T q T T q q T q T K T q T K T T T q T K T T q T r r r 1 1 1 1 1 1 1 2 2 Θ Φ Φ= ∇      + + + ⋅∇       > > >      K T T T T Q t q T K T r 2 1 1 0 0 0 ∂ ∂  Θ Φ ≡ + ∇⋅       = ∇      + + + ⋅∇       ≥ρ ∂ ∂ D s D t q T K T T T T Q t q Tr   2 1 1 0 SOLO JEAN FOURIER 1768-1830
  • 75. 75 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.5) THE SECOND LAW OF THERMODYNAMICS (CONTINUE - 4) SOLO Gibbs Function Helmholtz Function sThG ⋅−=: sTeH ⋅−=: Josiah Willard Gibbs (1839-1903) Hermann Ludwig Ferdinand von Helmholtz (1821 – 1894) Using the Relations vdpsdTed ⋅−⋅= ( ) pdvsdTvpdedhd ⋅+⋅=⋅+=vpe p eh ⋅+=+= ρ : pdvTdssdTTdshdGd ⋅+⋅−=⋅−⋅−= vdpTdsTdssdTedHd ⋅−⋅−=⋅−⋅−= dv T p T ed sd +=
  • 76. 76 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.5) THE SECOND LAW OF THERMODYNAMICS (CONTINUE - 5) SOLO Maxwell’s Relations vdpsdTed ⋅−⋅= pdvsdThd ⋅+⋅= pdvTdsGd ⋅+⋅−= vdpTdsHd ⋅−⋅−= Ts pv v F p v e s h T s e       ∂ ∂ =−=      ∂ ∂       ∂ ∂ ==      ∂ ∂ vp Ts T F s T G p G v p h       ∂ ∂ =−=      ∂ ∂       ∂ ∂ ==      ∂ ∂ ps vs s v p T s p v T       ∂ ∂ =      ∂ ∂       ∂ ∂ −=      ∂ ∂ vT pT T p v s T v p s       ∂ ∂ =      ∂ ∂       ∂ ∂ −=      ∂ ∂ James Clerk Maxwell (1831-1879) Return to Table of Content
  • 77. 77 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6) CONSTITUTIVE RELATIONS FOR GASES (2.6.1) NEWTONIAN FLUID DEFINITION – NAVIER–STOKES EQUATIONS [ ] τσ ~~ +−= Ip Stress NEWTONIAN FLUID: The Shear Stress on A Surface Parallel To the Flow = Distance Rate of Change of Velocity SOLO CARTESIAN TENSOR NOTATION ikikik p τδσ +−= VECTOR NOTATION - Stress tensor (force per unit surface) of the surrounding on the control surface ( )2 / mN σ~ -Shear stress tensor (force per unit surface) of the surrounding on the control surface ( )2 / mN τ~
  • 78. 78 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6) CONSTITUTIVE RELATIONS (2.6.1) NEWTONIAN FLUID DEFINITION – NAVIER–STOKES EQUATIONS M. NAVIER 1822 INCOMPRESSIBLE FLUIDS (MOLECULAR MODEL) G.G. STOKES 1845 COMPRESSIBLE FLUIDS (MACROSCOPIC MODEL) VECTOR NOTATION CARTESIAN TENSOR NOTATION [ ] [ ] ( )[ ] [ ]IuuuIpIp T  ∇+∇+∇+−=+−= λµτσ ~~ ik k k i k k i ikikikik x u x u x u pp δ ∂ ∂ λ ∂ ∂ ∂ ∂ µδτδσ +      ++−=+−= ( )[ ] [ ]( ) ( ) ( ) µλλµλµτ 3 2 32~0 −=⇒∇+∇=∇+∇+∇== utrutrIutruutrtr T  ( ) µλ ∂ ∂ λµδ ∂ ∂ λ ∂ ∂ µτ 3 2 0322 −=⇒=+=+= i i ik k k i i ii x u x u x u SOLO STOKES ASSUMPTION µλ 3 2 −=0~ =τtrace μ, λ - Lamé parameters from Elasticity
  • 79. 79 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6) CONSTITUTIVE RELATIONS (2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE) (2.6.1.2) VECTORIAL DERIVATION I x y z T n= ⋅~σ d s n ds= r dru u +du( )unrdtd t u urdtd t u ud      ∇⋅+=∇⋅+= 1 ∂ ∂ ∂ ∂ ( ) ( ) ( ) rdnurdnuuntd t u ud RotationnTranslatio         1 2 1 1 2 1 1 ××∇+      ××∇−∇⋅+= ∂ ∂ OR DEFINITION OF NEWTONIAN FLUID, NAVIER-STOKES EQUATION ( ) ( ) nnunuunnpT nTranslatio      1~11 2 1 121 ⋅=⋅∇+      ××∇−∇⋅+−≡ σλµ CONSERVATION OF LINEAR MOMENTUM EQUATIONS SOLO
  • 80. 80 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6) CONSTITUTIVE RELATIONS (2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE) (2.6.1.2)VECTORIAL DERIVATION (CONTINUE) I x y z T n= ⋅~σ d s n ds= r dru u + du CONSERVATION OF LINEAR MOMENTUM EQUATIONS ( ) ( ) ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( ) ( ) ( ) ∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫           ⋅∇∇+×∇×∇+∇⋅∇+∇−= =⋅∇+×∇×+∇⋅+−=       ⋅∇+      ××∇−∇⋅+⋅−=+= )( )()()()()( )()()()()()( 251 2 2 2 11 2 1 121 tV GAUSS tStStStStV tStStVtStVtV vd GAUSS u GAUSS u GAUSS u GAUSS pG usdusdusdsdpvdG sdnunuunsdnpvdGdsTvdGvd tD uD         λµµρ λµµρ λµρρρ BUT ( ) ( ) ( )∇× ∇× ≡ ∇ ∇⋅ − ∇⋅ ∇2 2 2µ µ µ    u u u ( ) ( ) ( ) ( )∇⋅ ∇ + ∇× ∇× = ∇ ∇⋅ − ∇× ∇×2 2µ µ µ µ     u u u u THEN SOLO
  • 81. 81 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) I x y z T n= ⋅~σ d s n ds= r dru u + du THEREFORE ( ) ( ) ( ){ }∫∫∫∫∫∫ ⋅∇∇+×∇×∇−⋅∇∇+∇−= )()( 2 tVtV vduuupGvd tD uD  λµµρρ OR ( ) ( )[ ]uupG tD uD  ⋅∇+∇+×∇×∇−∇−= µλµρρ 2 SOLO (2.6) CONSTITUTIVE RELATIONS (2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE) (2.6.1.2)VECTORIAL DERIVATION (CONTINUE)
  • 82. 82 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION CONSERVATION OF LINEAR MOMENTUM ( ) ( )[ ]∇ ⋅ = − ∇ − ∇ × ∇ × + ∇ + ∇ ⋅~σ µ µ λp u u   2 ( )       ++            ++−= k k ii k k i iii ik x u xx u x u xx p x ∂ ∂ λµ ∂ ∂ ∂ ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ ∂ σ∂ 2 ( ) ( )[ ] ρ ρ σ ρ µ µ λ Du Dt G G p u u      = + ∇ ⋅ = − ∇ − ∇ × ∇ × + ∇ + ∇ ⋅ ~ 2 ( )       ++            ++−= += k k ii k k i ii i i ik i i x u xx u x u xx p G x G tD uD ∂ ∂ λµ ∂ ∂ ∂ ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ ρ ∂ σ∂ ρρ 2 USING STOKES ASSUMPTION tr ~τ λ µ= ⇒ = −0 2 3 ( )     ⋅∇∇+×∇×∇−∇−= ⋅∇+= uupG G tD uD   µµρ σρρ 3 4 ~       +            ++−= += k k ki k k i ii i i ik i i x u i xx u x u xx p G x G tD uD ∂ ∂ µ ∂ ∂ ∂ ∂ ∂ ∂ µ ∂ ∂ ∂ ∂ ρ ∂ σ∂ ρρ 3 4 SOLO (2.6) CONSTITUTIVE RELATIONS (2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE)
  • 83. 83 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) VECTOR NOTATION CARTESIAN TENSOR NOTATION Euler Equations are obtained by assuming Inviscid Flow 0 3 2 0~ =−=⇒= µλτ pG tD uD ∇−=  ρρ i i i x p G tD uD ∂ ∂ ρρ −= SOLO (2.6) CONSTITUTIVE RELATIONS (2.6.2) EULER EQUATIONS Leonhard Euler (1707-1783) pGuu t u ∇−=      ∇⋅+ ∂ ∂   ρρ i i k i k i x p G x u u t u ∂ ∂ ρρ −=      ∂ ∂ + ∂ ∂ or or
  • 84. 84 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6.1.3) COMPUTATION BUT Φ Φ = = +       = +             = = τ ∂ ∂ τ ∂ ∂ τ ∂ ∂ τ ∂ ∂ ∂ ∂ τ τ τ ik i k ik i k ki k i ik i k k i ik ik u x u x u x u x u x D ik ki1 2 1 2 τ µ λ δik ik kk ikD D= +2 HENCE ( )Φ = = +τ µ λ δik ik ik kk ik ikD D D D2 OR ( )[ ] ( )[ ] ( )[ ] ( ) Φ = + + + + + + + + + + + + + + + + + ⇒ = 2 2 2 2 11 11 22 33 11 22 11 22 33 22 33 11 22 33 33 12 2 21 2 13 2 31 2 23 2 32 2 µ λ µ λ µ λ µ D D D D D D D D D D D D D D D D D D D D D D Dij ji ( ) ( )Φ = + + + + + + + +2 2 2 211 2 22 2 33 2 12 2 13 2 23 2 11 22 33 2 µ λD D D D D D D D DOR SOLO (2.6) CONSTITUTIVE RELATIONS (2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE)
  • 85. 85 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6.1.3) COMPUTATION (CONTINUE) USING STOKES ASSUMPTION: tr ~τ λ µ= ⇒ = −0 2 3 Φ ( ) ( )Φ = + + + + + + + +2 2 2 211 2 22 2 33 2 12 2 13 2 23 2 11 22 33 2 µ λD D D D D D D D D ( ) ( ) ( ) ( ) ( )  ( ) Φ = + + − + + + + + + + + − + + + + 2 3 4 3 4 3 4 2 3 11 22 33 2 11 22 11 33 22 33 11 2 22 2 33 2 2 12 2 13 2 23 2 11 22 33 2 11 2 22 2 33 2 µ µ µ µ µ λ µ D D D D D D D D D D D D D D D D D D D D D    OR ( ) ( ) ( )[ ] ( )Φ = − + − + − + + + > 2 3 4 011 22 2 11 33 2 22 33 2 12 2 13 2 23 2µ µD D D D D D D D D SOLO (2.6) CONSTITUTIVE RELATIONS (2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE)
  • 86. 86 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6.1.4) ENTROPY AND VORTICITY From (C.L.M.) or ( ) ( )[ ]Du Dt u t u u u G p u u        = + ∇       − × ∇ × = − ∇ − ∇ × ∇ × + ∇ + ∇ ⋅ ∂ ∂ ρ ρ µ ρ λ µ 2 2 1 1 1 2 GIBBS EQUATION: T d s d h d p = − ρ       ∀      +⋅∇−      +⋅∇=      +⋅∇ →→→→ tld pd td t p ldp hd td t h ldh sd td t s ldsT & 1        ∂ ∂ ρ∂ ∂ ∂ ∂ Since this is true for all d l t → & T s h p T s t h t p t ∇ = ∇ − ∇ = − ρ ∂ ∂ ∂ ∂ ρ ∂ ∂ & 1 SOLO (2.6) CONSTITUTIVE RELATIONS (2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE) Josiah Willard Gibbs (1903 – 1839)
  • 87. 87 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6.1.4) ENTROPY AND VORTICITY from (C.L.M.) or GIBBS EQUATION: T d s d h d p = − ρ       ∀      +⋅∇−      +⋅∇=      +⋅∇ →→→→ tld pd td t p ldp hd td t h ldh sd td t s ldsT & 1        ∂ ∂ ρ∂ ∂ ∂ ∂ Since this is true for all d l t → & T s h p T s t h t p t ∇ = ∇ − ∇ = − ρ ∂ ∂ ∂ ∂ ρ ∂ ∂ & 1 SOLO hsTG p Guuu t u II III II I ,, ,,, , 2 , ~~ 2 1 ∇−∇+ ⋅∇ += ⋅∇ + ∇ −=         ×∇×−      ∇+ ρ τ ρ τ ρ∂ ∂   ρ p hsT dlpdp dlhdh dlsds ∇ −∇=∇→               ⋅∇= ⋅∇= ⋅∇=
  • 88. 88 Luigi Crocco 1909-1986 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6.1.4) ENTROPY AND VORTICITY (CONTINUE) Define Let take the CURL of this equation Vorticityu  ×∇≡Ω If , then from (C.L.M.) we get:  G = −∇Ψ CRROCO’s EQUATION (1937)  ( ) ( )       ⋅∇×∇+      Ψ++∇×∇−∇×∇=×Ω×∇+×∇ Ω τ ρ∂ ∂ ~1 0 2 2      u hsTuu t SOLO ρ τ ∂ ∂ ~ 2 1 ,2 ,, ⋅∇ +      Ψ++∇−∇=×Ω+ I II I uhsTu t u  hsTGuuu t u II I II I ,, , , 2 , ~ 2 1 ∇−∇+ ⋅∇ +=         ×∇×−      ∇+ ρ τ ∂ ∂   From
  • 89. 89 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6.1.4) ENTROPY AND VORTICITY (CONTINUE) ( ) ( ) ( ) ( ) ( )∇ × × = ⋅∇ − ∇ ⋅ + ∇ ⋅ − ⋅∇ ← ∇ ⋅ = ∇ ⋅∇ × =               Ω Ω Ω Ω Ω Ωu u u u u u 0 0 ( )∇ × ∇ = ∇ × ∇T s T s τ ρ τ ρ τ ρ ~ 0 1~1~1 ⋅∇×∇+⋅∇×      ∇=       ⋅∇×∇  Therefore ( ) ( ) ( ) τ ρ∂ ∂ ~1 ⋅∇×      ∇−∇×∇=∇⋅Ω−Ω⋅∇+Ω∇⋅+ Ω sTuuu t   SOLO ( ) ( ) τ ρ ~1 ⋅∇×      ∇−∇×∇+⋅∇Ω−∇⋅Ω= Ω sTuu tD D   or
  • 90. 90 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6) CONSTITUTIVE RELATIONS (2.6.1) NAVIER–STOKES EQUATIONS (CONTINUE) (2.6.1.4) ENTROPY AND VORTICITY (CONTINUE) ( ) ( ) τ ρ ~1 ⋅∇×      ∇−∇×∇+⋅∇Ω−∇⋅Ω= Ω sTuu tD D   FLUID WITHOUT VORTICITY WILL REMAIN FOREVER WITHOUT VORTICITY IN ABSENSE OF ENTROPY GRADIENTS OR VISCOUS FORCES - FOR AN INVISCID FLUID ( )λ µ τ= = → =0 0~ ~ ( ) ( ) sTuu tD D INVISCID ∇×∇+⋅∇Ω−∇⋅Ω= Ω =   0 ~~τ - FOR AN HOMENTROPIC FLUID INITIALLY AT REST s const everywhere i e s s t . ; . . &∇ = =      0 0 ∂ ∂( )( )   Ω 0 0= ( ) D Dt s     Ω Ω= = = ∇ =0 0 0 0 0~ ~ , ,τ SOLO Return to Table of Content
  • 91. 91 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6) CONSTITUTIVE RELATIONS (2.6.2) STATE EQUATION p - PRESSURE (FORCE / SURFACE) V - VOLUME OF GAS M - MASS OF GAS R - 8314 - 286.9 T - GAS TEMPERATURE - GAS DENSITY [ ]m3 [ ]kg [ ]J kg mol Ko / ( )⋅ [ ]J kg Ko / ( )⋅R [ ]kgmol /−η [ ]o K [ ]kg m/ 3 ρ [ ]2 / mN IDEAL GAS TRMVp η= TMVp R= DEFINE: ρ ρ = = = ∆ ∆M V v V M & 1 pv T= R p T= ρ R OR SOLO
  • 92. 92 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) IDEAL GAS TMVp R= SOLO (2.6) CONSTITUTIVE RELATIONS (2.6.2) STATE EQUATION Return to Table of Content
  • 93. 93 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6) CONSTITUTIVE RELATIONS (2.6.3) THERMALLY PERFECT GAS AND CALORICALLLY PERFECT GAS A THERMALLY PERFECT GAS IS DEFINED AS A GAS FOR WHICH THE INTERNAL ENERGY e IS A FUNCTION ONLY OF THE TEMPERATURE T. ( ) ( )h e T p e T RT h T= + = + =/ ( )ρ THERMALLY PERFECT GAS DEFINE C C v V V p p p p p e T q T h T de pdv v d p d T de pdv d T dq d T = = = = = =                   + +      +            ∆ ∆ ∂ ∂ ∂ ∂ ∂ ∂ A CALORICALLY PERFECT GAS IS DEFINED AS A GAS FOR WHICH Cv IS CONSTANT CALORICALLY PERFECT GASe C Tv= SOLO
  • 94. 94 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6) CONSTITUTIVE RELATIONS (2.6.3) CALORICALLLY PERFECT GAS (CONTINUE) A CALORICALLY PERFECT GAS IS DEFINED AS A GAS FOR WHICH Cv IS CONSTANT CALORICALLY PERFECT GASe C Tv= FOR A CALORICALLY PERFECT GAS ( )h C T RT C R T C T C C Rv v p p v= + = + = → = + γ γ γ γ = ⇒ = − ⇒ = − = + = −∆ C C C R C Rp v C C R p R C C v p v p v 1 1 γ air = 14. SOLO
  • 95. 95 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6) CONSTITUTIVE RELATIONS (2.6.3) CALORICALLLY PERFECT GAS (CONTINUE) (2.6.3.1) ENTROPY CALCULATIONS FOR A CALORICALLLY PERFECT GAS pv T= R p T= ρ R IDEAL GAS ( ) ds de pdv T de pdv vdp vdp T dh vdp T = + = + + − = −∆ ds C dT T R dv v s s C T T R v v C T T Rv v v= + → − = + = −2 1 2 1 2 1 2 1 2 1 ln ln ln ln ρ ρ 1 2 1 2 12 lnln p p R T T Css p dp R T dT Cds pp −=−→−= s s C p p R C p p Cv v p2 1 2 1 1 2 2 1 2 1 2 1 − = ⋅       − = −ln ln ln ln ρ ρ ρ ρ ρ ρ ENTROPY SOLO
  • 96. 96 FLUID DYNAMICS 2. BASIC LAWS IN FLUID DYNAMICS (CONTINUE) (2.6) CONSTITUTIVE RELATIONS (2.6.3) CALORICALLLY PERFECT GAS (CONTINUE) (2.6.3.1) ENTROPY CALCULATIONS FOR A CALORICALLLY PERFECT GAS p p T T e T T e p p T T C R s s R s s R isentropic s s p 2 1 2 1 2 1 1 2 1 2 1 12 1 2 1 2 1 =       =       =       − − − − − = − ⇒ γ γ γ γ ρ ρ ρ ρ γ γ γ 2 1 2 1 2 1 1 1 2 1 2 1 1 12 1 2 1 2 1 =       =       =       − − − − − = − ⇒ T T e T T e T T C R s s R s s R isentropic s s v p p e e p p C C s s R s s R isentropic s s p v 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 =       =       =       − − − − = ⇒ ρ ρ ρ ρ ρ ρ γ γ T T h h p p e p p e T T h h p p s s C s s C isentropic s s v p2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 12 1 2 1 2 1 = = ⋅ =       =       = =       =       − − − − − − = − − ⇒ ρ ρ ρ ρ ρ ρ γ γ γ γ γ γ ISENTROPIC CHAIN SOLO Return to Table of Content
  • 97. 97 FLUID DYNAMICS BASIC LAWS IN FLUID DYNAMICS (CONTINUE) BOUNDARY CONDITIONS SOLO Return to Table of Content
  • 98. 98 SOLO Dimensionless Equations Dimensionless Variables are: 0/~ ρρρ = 0/ ~ Uuu = gGG / ~ = ( )2 00/~ Upp ρ= 0/~ lUtt = 2 0/ ~ UCTT p=( )2 00/~ Uρττ = 2 0/ ~ UHH = 2 0/ ~ Uhh = 2 0/~ Uee = ( )2 00/~ Uqq ρ= ( )2 / ~ UQQ = ∇=∇ 0 ~ l Field Equations (C.M.): ( ) 00 0 0 U l u t ρ ρ ∂ ρ∂ =⋅∇+  ( ) 2 00 0 ~ 3 4 U l uupGuu t u ρ µµρ ∂ ∂ ρ τ      ⋅∇       ⋅∇∇+×∇×∇−∇−=      ∇⋅+(C.L.M.): ( ) ( ) 3 00 0~ U l Tk t Q uGu t p Hu t H q ρ∂ ∂ ρτ ∂ ∂ ρ    ∇⋅∇−+⋅+⋅⋅∇+=      ∇⋅+ ∂ ∂ (C.E.): ( ) ( ) ( ) 0 / / 00 0 00 0 =      ⋅∇+ U u l lUt  ρ ρ ∂ ρρ∂ ( ) ( ) ( ) ( ) ( )       ⋅∇∇      +      ×∇×∇      − ∇−=       ∇⋅+ 0 00 000 0 0 0 0 0 000 0 2 00 02 0 0 00 0 000 0 0 3 4 / / U u ll UlU u ll Ul U p l g G U lg U u l U u lUt Uu   ρ µ µ µ ρ µ ρρ ρ ∂ ∂ ρ ρ ( ) ( ) ( ) ( ) ( ) ( )         ∇⋅∇               −+⋅+        ⋅⋅∇+        ∂ ∂ =        2 0 0 0 0 0 0 000 0 2 00000 2 0 0 0 2 00 02 0000 2 00000 / ~ // U CT l k k l C k UlU Q lUtU u g G U gl U u U l U p lUtU H lUtD D p pµρ µ ∂ ∂ ρ ρ ρ τ ρρρ ρ  0/~ ρρρ = 0/ ~ Uuu = gGG / ~ = ( )2 00/~ Upp ρ= 0/~ lUtt = 2 0/ ~ UCTT p=( )2 00/~ Uρττ = 2 0/ ~ UHH = 2 0/ ~ Uhh = 2 0/~ Uee = ( )2 00/~ Uqq ρ= ( )2 / ~ UQQ = ∇=∇ 0 ~ l 0/~ µµµ = 0/ ~ kkk = Reference Quantities: ρ0(density), U0(velocity), l0 (length), g (gravity), μ0 (viscosity), k0 (Fourier Constant), λ0 (mean free path) 0/ ~ λλλ =
  • 99. 99 SOLO Dimensionless Equations Dimentionless Field Equations (C.M.): ( ) 0 ~~~~ =⋅∇+ u t  ρ ∂ ρ∂ ( ) ( )u R u R pG F uu t u eer ~~~~1 3 4~~~~1~~~~1~~~ ~ ~ ~ 2   ⋅∇∇+×∇×∇−∇−=        ∇⋅+ µµρ ∂ ∂ ρ(C.L.M.): ( ) ( )Tk PRt Q uG F u t p Hu t H rer ∇⋅∇−+⋅+⋅⋅∇+=        ∇⋅+ ∂ ∂ 11 ~ ~ ~~~1~~~ ~ ~~~~ ~ ~ ~ 2 ∂ ∂ ρτ ∂ ∂ ρ  (C.E.): Reynolds: 0 000 µ ρ lU Re = Prandtl: 0 0 k C P p r µ = Froude: 0 0 gl U Fr = 0/~ ρρρ = 0/ ~ Uuu = gGG / ~ = ( )2 00/~ Upp ρ= 0/~ lUtt = 2 0/ ~ UCTT p=( )2 00/~ Uρττ = 2 0/ ~ UHH = 2 0/ ~ Uhh = 2 0/~ Uee = ( )2 00/~ Uqq ρ= ( )2 / ~ UQQ = ∇=∇ 0 ~ l 0/~ ρρρ = 0/ ~ Uuu = gGG / ~ = ( )2 00/~ Upp ρ= 0/~ lUtt = 2 0/ ~ UCTT p=( )2 00/~ Uρττ = 2 0/ ~ UHH = 2 0/ ~ Uhh = 2 0/~ Uee = ( )2 00/~ Uqq ρ= ( )2 / ~ UQQ = ∇=∇ 0 ~ l 0/~ µµµ = 0/ ~ kkk = Dimensionless Variables are: Reference Quantities: ρ0(density), U0(velocity), l0 (length), g (gravity), μ0 (viscosity), k0 (Fourier Constant), λ0 (mean free path) 0/ ~ λλλ = Knudsen l Kn 0 0 : λ =
  • 100. 100 SOLO Dimensionless Equations Constitutive Relations TRp ρ= 2 2 1 uTCH p += Tkq ∇−=  TCh p=      − == 2 00 2 00 2 00 1 U TC U TC C R U p pp p ρ ρ γ γ ρ ρ ρ       =      2 0 2 0 U TC U h p 2 0 2 0 2 0 2 1       +      =      U u U TC U H p ( )       ∇               −= 2 0 0 00 0 000 0 3 00 U TC l k k C k UlU q p p µρ µ ρ  ( ) [ ]3 3 2~ Iuuu T  ⋅∇−∇+∇= µµτ [ ]3 0 0 0000 0 0 0 0 0 0000 0 00 3 2~ I U u l UlU u l U u l UlU T  ⋅∇      −      ∇+∇      = µ µ ρ µ µ µ ρ µ ρ τ 0/~ ρρρ = 0/ ~ Uuu = gGG / ~ = ( )2 00/~ Upp ρ= 0/~ lUtt = 2 0/ ~ UCTT p=( )2 00/~ Uρττ = 2 0/ ~ UHH = 2 0/ ~ Uhh = 2 0/~ Uee = ( )2 00/~ Uqq ρ= ( )2 / ~ UQQ = ∇=∇ 0 ~ l 0/~ ρρρ = 0/ ~ Uuu = gGG / ~ = ( )2 00/~ Upp ρ= 0/~ lUtt = 2 0/ ~ UCTT p=( )2 00/~ Uρττ = 2 0/ ~ UHH = 2 0/ ~ Uhh = 2 0/~ Uee = ( )2 00/~ Uqq ρ= ( )2 / ~ UQQ = ∇=∇ 0 ~ l 0/~ µµµ = 0/ ~ kkk = Dimensionless Variables are: Reference Quantities: ρ0(density), U0(velocity), l0 (length), g (gravity), μ0 (viscosity), k0 (Fourier Constant), λ0 (mean free path) 0/ ~ λλλ =
  • 101. 101 SOLO Dimensionless Equations Dimensionless Constitutive Relations 2~ 2 1~~ uTH += Tp ~~1~ ρ γ γ − = Ideal Gas ( ) [ ]3 ~~~ 3 2~~~~~~~ Iu R uu R e T e  ⋅∇−∇+∇= µµ τ Navier-Stokes Th ~~ = Calorically Perfect Gas Tk PR q re ~~~11~ ∇−=  Fourier Law Reynolds: 0 000 µ ρ lU Re = Prandtl: 0 0 k C P p r µ = 0/~ ρρρ = 0/ ~ Uuu = gGG / ~ = ( )2 00/~ Upp ρ= 0/~ lUtt = 2 0/ ~ UCTT p=( )2 00/~ Uρττ = 2 0/ ~ UHH = 2 0/ ~ Uhh = 2 0/~ Uee = ( )2 00/~ Uqq ρ= ( )2 / ~ UQQ = ∇=∇ 0 ~ l 0/~ ρρρ = 0/ ~ Uuu = gGG / ~ = ( )2 00/~ Upp ρ= 0/~ lUtt = 2 0/ ~ UCTT p=( )2 00/~ Uρττ = 2 0/ ~ UHH = 2 0/ ~ Uhh = 2 0/~ Uee = ( )2 00/~ Uqq ρ= ( )2 / ~ UQQ = ∇=∇ 0 ~ l 0/~ µµµ = 0/ ~ kkk = Dimensionless Variables are: Reference Quantities: ρ0(density), U0(velocity), l0 (length), g (gravity), μ0 (viscosity), k0 (Fourier Constant), λ0 (mean free path) 0/ ~ λλλ = Return to Table of Content
  • 102. 102 SOLO Mach Number Mach number (M or Ma) / is a dimensionless quantity representing the ratio of speed of an object moving through a fluid and the local speed of sound. • M is the Mach number, • U0 is the velocity of the source relative to the medium, and • a0 is the speed of sound Mach: 0 0 a U M = The Mach number is named after Austrian physicist and philosopher Ernst Mach, a designation proposed by aeronautical engineer Jakob Ackeret. Ernst Mach (1838–1916) Jakob Ackeret (1898–1981) m Tk Mo TR a Bγγ ==0 • R is the Universal gas constant, (in SI, 8.314 47215 J K−1 mol−1 ), [M1 L2 T−2 θ−1 'mol'−1 ] • γ is the rate of specific heat constants Cp/Cv and is dimensionless γair = 1.4. • T is the thermodynamic temperature [θ1 ] • Mo is the molar mass, [M1 'mol'−1 ] • m is the molecular mass, [M1 ] AERODYNAMICS
  • 103. 103 SOLO Mach Number – Flow Regimes Regime Mach mph km/h m/s General plane characteristics Subsonic <0.8 <610 <980 <270 Most often propeller-driven and commercial turbofan aircraft with high aspect-ratio (slender) wings, and rounded features like the nose and leading edges. Transonic 0.8-1.2 610- 915 980-1,470 270-410 Transonic aircraft nearly always have swept wings, delaying drag- divergence, and often feature design adhering to the principles of the Whitcomb Area rule. Supersonic 1.2–5.0 915- 3,840 1,470– 6,150 410–1,710 Aircraft designed to fly at supersonic speeds show large differences in their aerodynamic design because of the radical differences in the behaviour of flows above Mach 1. Sharp edges, thin aerofoil- sections, and all-moving tailplane/canards are common. Modern combat aircraft must compromise in order to maintain low-speed handling; "true" supersonic designs include the F-104 Starfighter, SR-71 Blackbird and BAC/Aérospatiale Concorde. Hypersonic 5.0–10.0 3,840– 7,680 6,150– 12,300 1,710– 3,415 Cooled nickel-titanium skin; highly integrated (due to domination of interference effects: non-linear behaviour means that superposition of results for separate components is invalid), small wings, such as those on the X-51A Waverider High- hypersonic 10.0–25.0 7,680– 16,250 12,300– 30,740 3,415– 8,465 Thermal control becomes a dominant design consideration. Structure must either be designed to operate hot, or be protected by special silicate tiles or similar. Chemically reacting flow can also cause corrosion of the vehicle's skin, with free-atomic oxygen featuring in very high-speed flows. Hypersonic designs are often forced into blunt configurations because of the aerodynamic heating rising with a reduced radius of curvature. Re-entry speeds >25.0 >16,25 0 >30,740 >8,465 Ablative heat shield; small or no wings; blunt shape
  • 104. 104 SOLO Different Regimes of Flow Mach Number – Flow Regimes AERODYNAMICS
  • 105. 105 where ρ = air density V = true speed l = characteristic length μ = absolute (dynamic) viscosity υ = kinematic viscosity Reynolds: υµ ρ ρ µ υ lVlV Re = == Osborne Reynolds (1842 –1912) It was observed by Reynolds in 1884 that a Fluid Flow changes from Laminar to Turbulent at approximately the same value of the dimensionless ratio (ρ V l/ μ) where l is the Characteristic Length for the object in the Flow. This ratio is called the Reynolds number, and is the governing parameter for Viscous Flow. Reynolds Number and Boundary Layer SOLO 1884AERODYNAMICS
  • 106. 106 Boundary Layer SOLO 1904AERODYNAMICS Ludwig Prandtl (1875 – 1953) In 1904 at the Third Mathematical Congress, held at Heidelberg, Germany, Ludwig Prandtl (29 years old) introduced the concept of Boundary Layer. He theorized that the fluid friction was the cause of the fluid adjacent to surface to stick to surface – no slip condition, zero local velocity, at the surface – and the frictional effects were experienced only in the boundary layer a thin region near the surface. Outside the boundary layer the flow may be considered as inviscid (frictionless) flow. In the Boundary Layer on can calculate the •Boundary Layer width •Dynamic friction coefficient μ •Friction Drag Coefficient CDf
  • 107. 107 The flow within the Boundary Layer can be of two types: •The first one is Laminar Flow, consists of layers of flow sliding one over other in a regular fashion without mixing. •The second one is called Turbulent Flow and consists of particles of flow that moves in a random and irregular fashion with no clear individual path, In specifying the velocity profile within a Boundary Layer, one must look at the mean velocity distribution measured over a long period of time. There is usually a transition region between these two types of Boundary-Layer Flow SOLO AERODYNAMICS
  • 108. 108 Normalized Velocity profiles within a Boundary-Layer, comparison between Laminar and Turbulent Flow. SOLO Boundary-Layer AERODYNAMICS
  • 109. 109 Flow Characteristics around a Cylindrical Body as a Function of Reynolds Number (Viscosity) AERODYNAMICS SOLO
  • 110. 110 Relative Drag Force as a Function of Reynolds Number (Viscosity) AERODYNAMICS Drag CD0 due to Flow Separation SOLO
  • 111. 111 Relative Drag Force as a Function of Reynolds Number (Viscosity) AERODYNAMICS Drag due to Viscosity: 1.Skin Friction 2.Flow Separation (Drop in pressure behind body) ∫∫ ∫∫         ⋅+⋅ − −=         ⋅+⋅−= ∧∧ ∞ ∧∧ W W S S fpD ds w t V f w n V pp S ds w tC w nC S C xx xx 11 11 ˆ 2/ ˆ 2/ 1 ˆˆ 1 22 ρρ SOLO
  • 112. 112 Parasite Drag Pressure Differential, Viscous Shear Stress, and Separation AERODYNAMICS Relative Drag Force as a Function of Reynolds Number (Viscosity)       DragFrictionSkin ET EL ll ET EL uu DragPressure ET EL ll ET EL uu sdfsdf sdpsdpD ∫∫ ∫∫ ++ +−= .. .. .. .. .. .. .. .. coscos sinsin θθ θθ SOLO
  • 113. 113 AERODYNAMICS Relative Drag Force as a Function of Reynolds Number (Viscosity) • Blunt Body: Most of Drag is Pressure Drag. • Streamlined Body: Most of Drag is Skin Friction Drag. SOLO
  • 114. 114 AERODYNAMICS Relative Drag Force as a Function of Reynolds Number (Viscosity) SOLO
  • 115. 115 AERODYNAMICS Relative Drag Force as a Function of Reynolds Number (Viscosity) SOLO
  • 116. 116 AERODYNAMICS Relative Drag Force as a Function of Reynolds Number (Viscosity) SOLO Variation of total skin-friction coefficient with Reynolds number for a smooth, flat plate.[From Dommasch, et al. (1967).]
  • 117. 117 Typical Effect of Reynolds Number on Parasitic Drag Flow may stay attached farther at high Re, reducing the drag AERODYNAMICSSOLO Return to Table of Content
  • 118. 118 FluidsSOLO Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of the body in a fluid. The number is named after Danish physicist Martin Knudsen. Knudsen l Kn 0 0 : λ = Martin Knudsen (1871–1949). For a Boltzmann gas, the mean free path may be readily calculated as: • kB is the Boltzmann constant (1.3806504(24) × 10−23 J/K in SI units), [M1 L2 T−2 θ−1 ] p TkB 20 2 σπ λ = • T is the thermodynamic temperature [θ1 ] λ0 = mean free path [L1 ] Knudsen Number l0 = representative physical length scale [L1 ]. • σ is the particle hard shell diameter, [L1 ] • p is the total pressure, [M1 L−1 T−2 ]. See “Kinetic Theory of Gases” Presentation For particle dynamics in the atmosphere and assuming standard atmosphere pressure i.e. 25 °C and 1 atm, we have λ0 ≈ 8x10-8 m.
  • 119. 119 FluidsSOLO Martin Knudsen (1871–1949). Knudsen Number (continue – 1) Relationship to Mach and Reynolds numbers Dynamic viscosity, Average molecule speed (from Maxwell–Boltzmann distribution), thus the mean free path, where • kB is the Boltzmann constant (1.3806504(24) × 10−23 J/K in SI units), [M1 L2 T−2 θ−1 ] • T is the thermodynamic temperature [θ1 ] • ĉ is the average molecular speed from the Maxwell–Boltzmann distribution, [L1 T−1 ] • μ is the dynamic viscosity, [M1 L−1 T−1 ] • m is the molecular mass, [M1 ] • ρ is the density, [M1 L−3 ]. 0 2 1 λρµ c= m Tk c B π 8 = Tk m B2 0 π ρ µ λ =
  • 120. 120 FluidsSOLO Martin Knudsen (1871–1949). Knudsen Number (continue – 2) Relationship to Mach and Reynolds numbers (continue – 1) The dimensionless Reynolds number can be written: Dividing the Mach number by the Reynolds number, and by multiplying by yields the Knudsen number. The Mach, Reynolds and Knudsen numbers are therefore related by: Reynolds:Re 0 000 µ ρ lU = Tk m lmTklallU aUM BB γρ µ γρ µ ρ µ µρ 00 0 00 0 000 0 0000 00 // / Re ==== Kn Tk m lTk m l BB == 22 00 0 00 0 π ρ µπγ γρ µ 2Re πγM Kn =
  • 121. 121 FluidsSOLO Knudsen Number (continue – 3) Relationship to Mach and Reynolds numbers (continue –2) According to the Knudsen Number the Gas Flow can be divided in three regions: 1.Free Molecular Flow (Kn >> 1): M/Re > 3 molecule-interface interaction negligible between incident and reflected particles 2.Transition (from molecular to continuum flow) regime: 3 > M/Re and M/(Re)1/2 > 0.01 (Re >> 1). Both intermolecular and molecule-surface collision are important. 3.Continuum Flow (Kn << 1): 0.01 > M/(Re)1/2 . Dominated by intermolecular collisions. 2Re πγM Kn =
  • 122. FluidsSOLO Knudsen Number (continue – 4) Inviscid Limit Free Molecular LimitKnudsen Number Boltzman Equation Collisionless Boltzman Equation Discrete Particle model Euler Equation Navier-Stokes Equation Continuum model Conservation Equation do not form a closed set Validity of conventional mathematical models as a function of local Knudsen Number Return to Table of Content
  • 123. 123 AERODYNAMICS Fluid flow is characterized by a velocity vector field in three-dimensional space, within the framework of continuum mechanics. Streamlines, Streaklines and Pathlines are field lines resulting from this vector field description of the flow. They differ only when the flow changes with time: that is, when the flow is not steady. • Streamlines are a family of curves that are instantaneously tangent to the velocity vector of the flow. These show the direction a fluid element will travel in at any point in time. • Streaklines are the locus of points of all the fluid particles that have passed continuously through a particular spatial point in the past. Dye steadily injected into the fluid at a fixed point extends along a streakline • Pathlines are the trajectories that individual fluid particles follow. These can be thought of as a "recording" of the path a fluid element in the flow takes over a certain period. The direction the path takes will be determined by the streamlines of the fluid at each moment in time. • Timelines are the lines formed by a set of fluid particles that were marked at a previous instant in time, creating a line or a curve that is displaced in time as the particles move. The red particle moves in a flowing fluid; its pathline is traced in red; the tip of the trail of blue ink released from the origin follows the particle, but unlike the static pathline (which records the earlier motion of the dot), ink released after the red dot departs continues to move up with the flow. (This is a streakline.) The dashed lines represent contours of the velocity field (streamlines), showing the motion of the whole field at the same time. (See high resolution version. Flow Description SOLO
  • 124. 124 3-D Flow Flow Description SOLO Steady Motion: If at various points of the flow field quantities (velocity, density, pressure) associated with the fluid flow remain unchanged with time, the motion is said to be steady. ( ) ( ) ( )zyxppzyxzyxuu ,,,,,,,, === ρρ  Unsteady Motion: If at various points of the flow field quantities (velocity, density, pressure) associated with the fluid flow change with time, the motion is said to be unsteady. ( ) ( ) ( )tzyxpptzyxtzyxuu ,,,,,,,,,,, === ρρ  Path Line: The curve described in space by a moving fluid element is known as its trajectory or path line. tt tt ∆+ t tt ∆+ tt ∆+ 2 t tt ∆+ tt ∆+ 2 Path Line (steady flow) t tt ∆+ t tt ∆+ 2 tt ∆+ t Path Line (unsteady flow) tt ∆+ 2 tt ∆+ t
  • 125. 125 3-D Flow Flow Description SOLO Path Line: The curve described in space by a moving fluid element is known as its trajectory or path line. t tt ∆+ tt ∆+ 2 Streamlines: The family of curves such that each curve is tangent at each point to the velocity direction at that point are called streamlines. Consider the coordinate of a point P and the direction of the streamline passing through this point. If is the velocity vector of the flow passing through P at a time t, then and parallel, or: r  rd u  u  rd 0=×urd  ( ) ( ) ( ) 0 1 1 1111 =             − − − = zdyudxv ydxwdzu xdzvdyw wvu dzdydx zyx w zd v yd u xd == Cartesian t u  r  rd
  • 126. 126 3-D Flow Flow Description SOLO Path Line: The curve described in space by a moving fluid element is known as its trajectory or path line. Streamlines: The family of curves such that each curve is tangent at each point to the velocity direction at that point are called streamlines. ( ) ( ) ( )tzyxw zd tzyxv yd tzyxu xd ,,,,,,,,, == t u  r  rd Those are two independent differential equations for a streamline. Given a point the streamline is defined from those equations.( )0000 ,,, tzyxr  ( ) ( ) ( ) ( ) ( ) ( )tzyxw zd tzyxv yd tzyxv yd tzyxu xd ,,,,,, 2 ,,,,,, 1 = = ( ) ( ) ( ) ( ) ( ) ( ) 0,,,,,,,,, 0,,,,,,,,, 222 111 =++ =++ zdtzyxcydtzyxbxdtzyxa zdtzyxcydtzyxbxdtzyxa ( ) ( ) ( ) ( )21 21 22 11 •+• •+• βα βα 0 22 11 ≠ βα βα Pfaffian Differential Equations For a given a point the solution of those equations is of the form:( )0000 ,,, tzyxr  ( ) ( ) 2,,, 1,,, 02 01 consttzyx consttzyx = = ψ ψ u  ( )0 tr  rd 0t ( ) 11 cr =  ψ ( ) 22 cr =  ψ Streamline Those are two surfaces, the intersection of which is the streamline.
  • 127. 127 3-D Flow Flow Description SOLO Path Line: The curve described in space by a moving fluid element is known as its trajectory or path line. Streamlines: The family of curves such that each curve is tangent at each point to the velocity direction at that point are called streamlines. ( ) ( ) ( )tzyxw zd tzyxv yd tzyxu xd ,,,,,,,,, == t u  r  rd For a given a point the solution of those equations is of the form:( )0000 ,,, tzyxr  ( ) ( ) 2,,, 1,,, 02 01 consttzyx consttzyx = = ψ ψ u  ( )0 tr  rd 0 t ( ) 11 cr =  ψ ( ) 22 cr =  ψ Streamline Those are two surfaces, the intersection of which is the streamline. The streamline is perpendicular to the gradients (normals) of those two surfaces. ( ) ( ) ( )0201 ,, trtrVr  ψψµ ∇×∇= where μ is a factor that must satisfy the following constraint. ( )( ) ( ) ( ) 0,, 0201 =∇×∇⋅∇=⋅∇ trtrVr  ψψµ Return to Table of Content
  • 128. 128 AERODYNAMICS Streamlines, Streaklines, and Pathlines Mathematical description Streamlines If the components of the velocity are written and those of the streamline as we deduce which shows that the curves are parallel to the velocity vector Pathlines Streaklines where, is the velocity of a particle P at location and time t . The parameter , parametrizes the streakline and 0 ≤ τP ≤ t0 , where t0 is a time of interest . The suffix P indicates that we are following the motion of a fluid particle. Note that at point the curve is parallel to the flow velocity vector where the velocity vector is evaluated at the position of the particle at that time t . SOLO
  • 129. 129 ∞V Airfoil Pressure Field variation with α AERODYNAMICS Airfoil Velocity Field variation with αAirfoil Streamline variation with αAirfoil Streakline with α Streamlines, Streaklines, and Pathlines SOLO
  • 133. 133 AERODYNAMICS Streamlines, Streaklines, and Pathlines SOLO Return to Table of Content
  • 134. 134 3-D Inviscid Incompressible Flow Circulation SOLO Circulation Definition: tV ∆  ( ) tVV ∆∆+  S∆ Sn ∆1 V  ×∇ t r  ∆ ttr ∆+∆  t C tt C ∆+ ∫ ⋅=Γ C rdV  : Material Derivative of the Circulation ( )∫∫∫ ⋅+⋅=         ⋅= Γ CCC rd tD D Vrd tD VD rdV tD D tD D    From the Figure we can see that: ( ) tVrtVVr ttt ∆+∆=∆∆++∆ ∆+  ( ) Vdrd tD D V t rr t ttt  =→∆= ∆ ∆−∆ →∆ ∆+ 0 ( ) 0 2 2 =      =⋅=⋅ ∫∫∫ CCC V dVdVrd tD D V  Therefore: ∫ ⋅= Γ C rd tD VD tD D  integral of an exact differential on a closed curve. C – a closed curve
  • 135. 135 3-D Inviscid Incompressible FlowSOLO tV ∆  ( ) tVV ∆∆+  S∆ Sn ∆1 V  ×∇ t r  ∆ ttr ∆+∆  t C tt C ∆+ S ∫ ⋅=Γ tC rdV  : Material Derivative of the Circulation (second derivation) Subtract those equations: tVrdSn t ∆×=∆  1 ( )∫∆+ ⋅∆+=Γ∆+Γ ttC rdVV  : ( ) ( )∫∫∫∫ ∆⋅×∇=⋅∆+−⋅=Γ∆− ∆+ S TheoremsStoke CC SnVrdVVrdV ttt 1 '  S is the surface bounded by the curves Ct and C t+Δ t ( ) ( ) ( ) tVVrdtVrdVSnV S t S t S ∆         ×∇×⋅=∆×⋅×∇=∆⋅×∇=Γ∆− ∫∫∫∫∫∫  1 td d ttd rd t V ttD D rdd Γ + ∂ Γ∂ =Γ∇⋅+ ∂ Γ∂ =Γ∇⋅+ ∂ Γ∂ = Γ Γ∇⋅=Γ Computation of: ∫ ⋅ ∂ ∂ = ∂ Γ∂ tC rd t V t  Computation of: td d Γ
  • 136. 136 3-D Inviscid Incompressible FlowSOLO tV ∆  ( ) tVV ∆∆+  S∆ Sn ∆1 V  ×∇ t r  ∆ tt r ∆+ ∆  t C tt C ∆+ Material Derivative of the Circulation (second derivation) ( ) tVVrd S t ∆         ×∇×⋅=Γ∆− ∫∫  When Δ t → 0 the surface S shrinks to the curve C=Ct and the surface integral transforms to a curvilinear integral: ( ) ( ) ( )∫∫∫∫∫ ∇⋅⋅+      −=∇⋅⋅+      ∇⋅−=×∇×⋅−= Γ C t CC t C t C t VVrd V dVVrd V rdVVrd td d    0 22 22 Computation of: (continue) td d Γ Finally we obtain: ( ) ∫∫∫ ⋅=∇⋅⋅+⋅ ∂ ∂ = Γ + ∂ Γ∂ = Γ tt CC t C rd tD VD VVrdrd t V td d ttD D   
  • 137. 137 3-D Inviscid Incompressible FlowSOLO tV ∆  ( ) tVV ∆∆+  S∆ Sn ∆1 V  ×∇ t r  ∆ tt r ∆+ ∆  t C tt C ∆+ Material Derivative of the Circulation We obtained: ∫ ⋅= Γ tC rd tD VD tD D  Use C.L.M.: hsT p VV t V tD VD II I G II II ,, , ,, ~ ∇−∇+ ⋅∇ +Ψ∇=         ∇⋅+= τ ∂ ∂     ( ) ( )  0 , ,, , , ~~ ∫∫∫∫ −Ψ+⋅      ⋅∇ +∇=⋅∇−Ψ∇+⋅      ⋅∇ +∇= Γ tttt CC I I C I C I I I hddrd p sTrdhrd p sT tD D ττ to obtain: ∫ ⋅      ⋅∇ +∇= Γ tC I I I rd p sT tD D τ~ , , or: Kelvin’s Theorem William Thomson Lord Kelvin (1824-1907) In an inviscid , isentropic flow d s = 0 with conservative body forces the circulation Γ around a closed fluid line remains constant with respect to time. 0 ~~ =τ Ψ∇=G Return to Table of Content 1869
  • 138. 138 3-D Inviscid Incompressible FlowSOLO Circulation Definition: ∫ ⋅=Γ C rdV  : C – a closed curve Biot-Savart Formula 1820 Jean-Baptiste Biot 1774 - 1862 VorticityV  ×∇≡Ω ∫ − Ω = Space dV sr A    π4 1 ( )lddSn sr Ad     ⋅ − Ω = π4 1 The contribution of a length dl of the Vortex Filament to isA  ∫∫∫∫∫ ⋅Ω=⋅×∇=⋅=Γ SS Stokes C SdnSdnVrdV  : If the Flow is Incompressible 0=⋅∇ u  so we can write , where is the Vector Potential. We are free to choose so we choose it to satisfy . AV  ×∇= A  A  0=⋅∇ A  We obtain the Poisson Equation that defines the Vector Potential A  Ω−=∇  A2 Poisson Equation Solution( ) ∫ − Ω = Space dv sr rA    π4 1 Félix Savart 1791 - 1841 Biot-Savart Formula
  • 139. 139 3-D Inviscid Incompressible FlowSOLO Circulation Definition: ∫ ⋅=Γ C rdV  : C – a closed curve Biot-Savart Formula (continue - 1) 1820 Jean-Baptiste Biot 1774 - 1862 VorticityV  ×∇≡Ω ( )lddSn sr Ad     ⋅ − Ω = π4 1 We found ∫∫∫∫∫ ⋅Ω=⋅×∇=⋅=Γ SS Stokes C SdnSdnVrdV  : also we have dlld Ω Ω =   ( ) ( ) ∫∫∫∫∫ × − ∇⋅Ω=⋅ − Ω ×∇=×∇= Γ Ω Ω = ld sr dSnlddSn sr AdrV r S dlld v rr          1 4 1 4 1 ππ ( ) ( ) ∫ − −×Γ = 3 4 sr srld rV    π Biot-Savart Formula Félix Savart 1791 - 1841 Biot-Savart Formula

Editor's Notes

  1. J.D. Anderson, Jr, “Fundamentals of Aerodynamics”, McGraw-Hill, 3th Ed., 1984, 1991, 2001
  2. http://en.wikipedia.org/wiki/Earth%27s_atmosphere
  3. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  4. http://en.wikipedia.org/wiki/File:Atmosphere_composition_diagram.jpg
  5. Frank J, Regan, Satya M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993
  6. Frank J, Regan, Satya M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993
  7. Frank J, Regan, Satya M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993
  8. R.P.G. Collinson, “Introduction to Avionics”, Chapman &amp; Hall, Inc., 1996, 1997, 1998 Frank J, Regan, Satya M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993
  9. Frank J, Regan, Satya M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993
  10. R.P.G. Collinson, “Introduction to Avionics”, Chapman &amp; Hall, Inc., 1996, 1997, 1998 Frank J, Regan, Satya M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993
  11. R.P.G. Collinson, “Introduction to Avionics”, Chapman &amp; Hall, Inc., 1996, 1997, 1998 Frank J, Regan, Satya M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993
  12. R.P.G. Collinson, “Introduction to Avionics”, Chapman &amp; Hall, Inc., 1996, 1997, 1998 Frank J, Regan, Satya M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993
  13. Frank J, Regan, Satya M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993
  14. Frank J, Regan, Satya M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993
  15. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  16. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  17. W. Yourgrau, S. Mandelstam, “Variational Principles in Dynamics and Quantum Theory”, Dover, 1968, § 13, “Variational Principles in Hydrodynamics”, pp. 142-161 N.N. Moiseyev, V.V. Rumyantsev, “Dynamic Stability of Bodies Containing Fluids”, Springer-Verlag, 1968
  18. W. Yourgrau, S. Mandelstam, “Variational Principles in Dynamics and Quantum Theory”, Dover, 1968, § 13, “Variational Principles in Hydrodynamics”, pp. 142-161 N.N. Moiseyev, V.V. Rumyantsev, “Dynamic Stability of Bodies Containing Fluids”, Springer-Verlag, 1968
  19. O. Darrigol, “Between Hydrodynamics and Elasticity Theory: The First Five Births of Navier-Stokes Equations”, Arch. Hist. Exact Sci. 56 (2002) 95–150.c Springer-Verlag 2002, http://oceanografia.cicese.mx/oscar/mfluidos/Darrigol2002b.pdf
  20. http://en.wikipedia.org/wiki/Mach_number
  21. http://en.wikipedia.org/wiki/Mach_number
  22. J.D. Anderson, Jr, “Fundamentals of Aerodynamics”, McGraw-Hill, 3th Ed., 1984, 1991, 2001
  23. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  24. J.D. Anderson Jr., “Ludwig Prandtl ‘s Boundary Layer”, Physics Today, December 2005, http://www.aps.org/units/dfd/resources/upload/prandtl_vol58no12p42_48.pdf
  25. Asselin, M., “Introduction to Aircraft Performance”, AIAA Education Series, 1997
  26. Asselin, M., “Introduction to Aircraft Performance”, AIAA Education Series, 1997
  27. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  28. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  29. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  30. http://www.insideracingtechnology.com/tech102drag.htm http://www.vivaf1.com/glossary.php
  31. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  32. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  33. J.J. Bertin, M.L. Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979
  34. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  35. http://en.wikipedia.org/wiki/Knudsen_number Angelo Miele, “Flight Mechanics, Volume 1, Theory of Flight Paths”, Addison Wesley, 1962, pg. 71 F.J. Regan, S.M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993, Ch.11 “Flow field Description”
  36. http://en.wikipedia.org/wiki/Knudsen_number Angelo Miele, “Flight Mechanics, Volume 1, Theory of Flight Paths”, Addison Wesley, 1962, pg. 71 F.J. Regan, S.M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993, Ch.11 “Flow field Description”
  37. http://en.wikipedia.org/wiki/Knudsen_number Angelo Miele, “Flight Mechanics, Volume 1, Theory of Flight Paths”, Addison Wesley, 1962, pg. 71 F.J. Regan, S.M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993, Ch.11 “Flow field Description”
  38. F.J. Regan, S.M. Anandakrishnan, “Dynamics of Atmospheric Re-Entry”, AIAA Education Series, 1993, Ch.11 “Flow field Description”
  39. J.D. Anderson, Jr., “Hypersonic and High Temperature Gas Dynamics”, McGraw-Hill, 1989, pg.22
  40. http://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines
  41. http://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines
  42. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367
  43. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  44. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  45. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  46. M.H. Vavra, “Aero-Thermodynamics and Flow in Turbomachines”, John-Wiley &amp; Sons, 1960, pp.143-147 W.F. Hughes &amp; J.A. Brighton, “Fluid Dynamics”, Schaum’s, 1967, pg.108
  47. J.J. Bertin &amp; M.L. Smith, “Aerodynamics for Engineers”, Prentice Hall, 1979, pp.52-53 J.D. Anderson Jr., “Modern Compressible Flow with Historical Perspective”, McGraw Hill, 1982, pp. 213-215 M.H. Vavra, “Aero-Thermodynamics and Flow in Turbomachines”, John-Wiley &amp; Sons, 1960, pp.143-147 J.P. Vanyo, “Rotating Fluids in Engineering and Science”, Dover Publications, 1993, pp.163-164 Krishnamurty Karamcheti, “Principles of Ideal-Fluid Aerodynamics”, 1966, John Wiley &amp; Sons, pp.239-243
  48. J.J. Bertin &amp; M.L. Smith, “Aerodynamics for Engineers”, Prentice Hall, 1979, pp.52-53 J.D. Anderson Jr., “Modern Compressible Flow with Historical Perspective”, McGraw Hill, 1982, pp. 213-215 M.H. Vavra, “Aero-Thermodynamics and Flow in Turbomachines”, John-Wiley &amp; Sons, 1960, pp.143-147 J.P. Vanyo, “Rotating Fluids in Engineering and Science”, Dover Publications, 1993, pp.163-164
  49. J.J. Bertin &amp; M.L. Smith, “Aerodynamics for Engineers”, Prentice Hall, 1979, pp.52-53 J.D. Anderson Jr., “Modern Compressible Flow with Historical Perspective”, McGraw Hill, 1982, pp. 213-215 M.H. Vavra, “Aero-Thermodynamics and Flow in Turbomachines”, John-Wiley &amp; Sons, 1960, pp.143-147 J.P. Vanyo, “Rotating Fluids in Engineering and Science”, Dover Publications, 1993, pp.163-164
  50. http://www.desktop.aero/appliedaero/potential3d/biotsavart.html K. Karamcheti, “Principles of Ideal Fluid Aerodynamics”, John Wiley &amp; Sons, 1966, pp. 518-534
  51. http://www.desktop.aero/appliedaero/potential3d/biotsavart.html K. Karamcheti, “Principles of Ideal Fluid Aerodynamics”, John Wiley &amp; Sons, 1966, pp. 518-534 http://www-history.mcs.st-and.ac.uk/Biographies/Savart.html
  52. http://www.desktop.aero/appliedaero/potential3d/biotsavart.html K. Karamcheti, “Principles of Ideal Fluid Aerodynamics”, John Wiley &amp; Sons, 1966, pp. 518-534 http://www-history.mcs.st-and.ac.uk/Biographies/Savart.html
  53. http://www.desktop.aero/appliedaero/potential3d/biotsavart.html K. Karamcheti, “Principles of Ideal Fluid Aerodynamics”, John Wiley &amp; Sons, 1966, pp. 518-534 http://www-history.mcs.st-and.ac.uk/Biographies/Savart.html
  54. http://www.desktop.aero/appliedaero/potential3d/biotsavart.html K. Karamcheti, “Principles of Ideal Fluid Aerodynamics”, John Wiley &amp; Sons, 1966, pp. 518-534 http://www-history.mcs.st-and.ac.uk/Biographies/Savart.html
  55. J.J. Bertin &amp; M.L. Smith, “Aerodynamics for Engineers”, Prentice Hall, 1979, pp.52-53 J.D. Anderson Jr., “Modern Compressible Flow with Historical Perspective”, McGraw Hill, 1982, pp. 213-215 M.H. Vavra, “Aero-Thermodynamics and Flow in Turbomachines”, John-Wiley &amp; Sons, 1960, pp.143-147 J.P. Vanyo, “Rotating Fluids in Engineering and Science”, Dover Publications, 1993, pp.163-164 http://en.wikipedia.org/wiki/Vortex_dynamics
  56. W.H. Hager, “Blasius: A Life in Research and Education”, Experiments in Fluids 34 (2003) 566-571 http://en.wikipedia.org/wiki/Paul_Richard_Heinrich_Blasius L.J. Clancy, “Aerodynamics”, Pitman Publishing Limited, 1975
  57. W.H. Hager, “Blasius: A Life in Research and Education”, Experiments in Fluids 34 (2003) 566-571 http://en.wikipedia.org/wiki/Paul_Richard_Heinrich_Blasius L.J. Clancy, “Aerodynamics”, Pitman Publishing Limited, 1975
  58. W.H. Hager, “Blasius: A Life in Research and Education”, Experiments in Fluids 34 (2003) 566-571 http://en.wikipedia.org/wiki/Paul_Richard_Heinrich_Blasius L.J. Clancy, “Aerodynamics”, Pitman Publishing Limited, 1975
  59. W.H. Hager, “Blasius: A Life in Research and Education”, Experiments in Fluids 34 (2003) 566-571 http://en.wikipedia.org/wiki/Paul_Richard_Heinrich_Blasius L.J. Clancy, “Aerodynamics”, Pitman Publishing Limited, 1975
  60. W.H. Hager, “Blasius: A Life in Research and Education”, Experiments in Fluids 34 (2003) 566-571 http://en.wikipedia.org/wiki/Paul_Richard_Heinrich_Blasius L.J. Clancy, “Aerodynamics”, Pitman Publishing Limited, 1975
  61. W.H. Hager, “Blasius: A Life in Research and Education”, Experiments in Fluids 34 (2003) 566-571 http://en.wikipedia.org/wiki/Paul_Richard_Heinrich_Blasius L.J. Clancy, “Aerodynamics”, Pitman Publishing Limited, 1975
  62. L.J. Clancy, “Aerodynamics”, Pitman Publishing Limited, 1975
  63. L.J. Clancy, “Aerodynamics”, Pitman Publishing Limited, 1975
  64. L.J. Clancy, “Aerodynamics”, Pitman Publishing Limited, 1975
  65. http://www2.esm.vt.edu/~dtmook/AOE5104_ONLINE/Presentations/15_Online_CircularCylinders.pdf
  66. E.I. Houghton, P.W. Carpenter, “Introduction to Aerodynamics for Engineering Students”,
  67. L.J. Clancy, “Aerodynamics”, Pitman Publishing Limited, 1975
  68. http://www2.esm.vt.edu/~dtmook/AOE5104_ONLINE/Presentations/15_Online_CircularCylinders.pdf
  69. http://www2.esm.vt.edu/~dtmook/AOE5104_ONLINE/Presentations/15_Online_CircularCylinders.pdf
  70. http://www2.esm.vt.edu/~dtmook/AOE5104_ONLINE/Presentations/15_Online_CircularCylinders.pdf
  71. http://www2.esm.vt.edu/~dtmook/AOE5104_ONLINE/Presentations/15_Online_CircularCylinders.pdf
  72. http://www2.esm.vt.edu/~dtmook/AOE5104_ONLINE/Presentations/15_Online_CircularCylinders.pdf
  73. http://www2.esm.vt.edu/~dtmook/AOE5104_ONLINE/Class%20Notes/16_Class_JoukowskiMapping.pdf
  74. E.I. Houghton, P.W. Carpenter, “Introduction to Aerodynamics for Engineering Students”,
  75. E.I. Houghton, P.W. Carpenter, “Introduction to Aerodynamics for Engineering Students”,
  76. J. le Rond d’Alembert, Essai d’une nouvelle théorie de la résistance des fluides (Paris, 1752), par. 27–33; Opuscules mathématiques, vol. 5 (Paris, 1768)
  77. H. Schlichting, E. Truckenbrodt,”Aerodynamics of the Airplane”, McGraw-Hill, 1979
  78. https://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta https://en.wikipedia.org/wiki/Joukowski_airfoil https://en.wikipedia.org/wiki/Nikolay_Yegorovich_Zhukovsky https://en.wikipedia.org/wiki/Kutta%E2%80%93Joukowski_theorem
  79. https://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta https://en.wikipedia.org/wiki/Joukowski_airfoil https://en.wikipedia.org/wiki/Nikolay_Yegorovich_Zhukovsky https://en.wikipedia.org/wiki/Kutta%E2%80%93Joukowski_theorem
  80. https://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta https://en.wikipedia.org/wiki/Joukowski_airfoil https://en.wikipedia.org/wiki/Nikolay_Yegorovich_Zhukovsky https://en.wikipedia.org/wiki/Kutta%E2%80%93Joukowski_theorem
  81. https://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta https://en.wikipedia.org/wiki/Joukowski_airfoil https://en.wikipedia.org/wiki/Nikolay_Yegorovich_Zhukovsky https://en.wikipedia.org/wiki/Kutta%E2%80%93Joukowski_theorem
  82. https://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta https://en.wikipedia.org/wiki/Joukowski_airfoil https://en.wikipedia.org/wiki/Nikolay_Yegorovich_Zhukovsky https://en.wikipedia.org/wiki/Kutta%E2%80%93Joukowski_theorem
  83. https://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta https://en.wikipedia.org/wiki/Joukowski_airfoil https://en.wikipedia.org/wiki/Nikolay_Yegorovich_Zhukovsky https://en.wikipedia.org/wiki/Kutta%E2%80%93Joukowski_theorem
  84. https://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta https://en.wikipedia.org/wiki/Joukowski_airfoil https://en.wikipedia.org/wiki/Nikolay_Yegorovich_Zhukovsky https://en.wikipedia.org/wiki/Kutta%E2%80%93Joukowski_theorem
  85. H. Schlichting, E. Truckenbrodt,”Aerodynamics of the Airplane”, McGraw-Hill, 1979
  86. http://www2.esm.vt.edu/~dtmook/AOE5104_ONLINE/Class%20Notes/16_Class_JoukowskiMapping.pdf
  87. http://www2.esm.vt.edu/~dtmook/AOE5104_ONLINE/Class%20Notes/16_Class_JoukowskiMapping.pdf
  88. http://www2.esm.vt.edu/~dtmook/AOE5104_ONLINE/Class%20Notes/16_Class_JoukowskiMapping.pdf
  89. http://www2.esm.vt.edu/~dtmook/AOE5104_ONLINE/Class%20Notes/16_Class_JoukowskiMapping.pdf
  90. http://www2.esm.vt.edu/~dtmook/AOE5104_ONLINE/Class%20Notes/16_Class_JoukowskiMapping.pdf
  91. http://www2.esm.vt.edu/~dtmook/AOE5104_ONLINE/Class%20Notes/16_Class_JoukowskiMapping.pdf
  92. https://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta https://en.wikipedia.org/wiki/Joukowski_airfoil https://en.wikipedia.org/wiki/Nikolay_Yegorovich_Zhukovsky https://en.wikipedia.org/wiki/Kutta%E2%80%93Joukowski_theorem I.H. Abbott, A.E. von Doenhoff, “Theory of Wing Sections?, Dover, 1959, pp. 54-63
  93. https://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta https://en.wikipedia.org/wiki/Joukowski_airfoil https://en.wikipedia.org/wiki/Nikolay_Yegorovich_Zhukovsky https://en.wikipedia.org/wiki/Kutta%E2%80%93Joukowski_theorem
  94. https://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta https://en.wikipedia.org/wiki/Joukowski_airfoil https://en.wikipedia.org/wiki/Nikolay_Yegorovich_Zhukovsky https://en.wikipedia.org/wiki/Kutta%E2%80%93Joukowski_theorem
  95. https://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta https://en.wikipedia.org/wiki/Joukowski_airfoil https://en.wikipedia.org/wiki/Nikolay_Yegorovich_Zhukovsky https://en.wikipedia.org/wiki/Kutta%E2%80%93Joukowski_theorem
  96. John D. Anderson, Jr, “A History of Aerodynamics ”, Cambridge University Press, 1997
  97. John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  98. John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  99. John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  100. John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  101. John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  102. John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  103. John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  104. John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  105. John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  106. John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  107. L.J. Clancy, “Aerodynamics”, Pitman, 1978 John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  108. L.J. Clancy, “Aerodynamics”, Pitman, 1978 John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  109. L.J. Clancy, “Aerodynamics”, Pitman, 1978 John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  110. L.J. Clancy, “Aerodynamics”, Pitman, 1978 John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  111. L.J. Clancy, “Aerodynamics”, Pitman, 1978 John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979 I. H. Abbott, A.E. von Doenhoff, “Theory of Wing Sections”, Dover, 1949, 1959
  112. L.J. Clancy, “Aerodynamics”, Pitman, 1978 John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  113. L.J. Clancy, “Aerodynamics”, Pitman, 1978 John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  114. L.J. Clancy, “Aerodynamics”, Pitman, 1978 John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  115. L.J. Clancy, “Aerodynamics”, Pitman, 1978 John D. Anderson, Jr, “Fundamentals of Aerodynamics ”, McGraw-Hill, 1984 John J. Bertin, Michael Smith, “Aerodynamics for Engineers”, Prentice-Hall, 1979 Hermann Schlichting, Erich Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  116. E.I. Houghton, P.W. Carpenter, “Introduction to Aerodynamics for Engineering Students”,
  117. I. Kroo, “Applied Aerodynamics: A Digital Textbook”, Stanford University, 1997
  118. I. Kroo, “Applied Aerodynamics: A Digital Textbook”, Stanford University, 1997
  119. I. Kroo, “Applied Aerodynamics: A Digital Textbook”, Stanford University, 1997
  120. http://en.wikipedia.org/wiki/NACA_airfoil
  121. H. Schlichting, E. Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  122. H. Schlichting, E. Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  123. Asselin, M., “Introduction to Aircraft Performance”, AIAA Education Series, 1997
  124. http://en.wikipedia.org/wiki/Lifting-line_theory
  125. http://en.wikipedia.org/wiki/Frederick_W._Lanchester John D, Anderson, Jr, “History of Aerodynamics”, Cambridge University Press, 1997
  126. J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979
  127. J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979
  128. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979, pg.113 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979, pg. 165
  129. J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979
  130. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979
  131. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979
  132. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979, pg.119 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979,pg.170
  133. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979, pg.119 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979,pg.170
  134. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979, pg.119 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979,pg.170
  135. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979, pg.119 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979,pg.170
  136. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979, pg.119 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979,pg.170
  137. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979
  138. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979
  139. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979
  140. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979
  141. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979
  142. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979
  143. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979
  144. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979, pp.121-122 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979,pp.173-1975
  145. http://en.wikipedia.org/wiki/Vortex_lattice_method H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 J.J. Bertin, R.M. Cummings, “Aerodynamics for Engineering”, Pearson Prentice-Hall, 1979, 1989, 1998, 2002, 2009 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  146. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 J.J. Bertin, R.M. Cummings, “Aerodynamics for Engineering”, Pearson Prentice-Hall, 1979, 1989, 1998, 2002, 2009 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  147. J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 J.J. Bertin, R.M. Cummings, “Aerodynamics for Engineering”, Pearson Prentice-Hall, 1979, 1989, 1998, 2002, 2009 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf
  148. J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 J.J. Bertin, R.M. Cummings, “Aerodynamics for Engineering”, Pearson Prentice-Hall, 1979, 1989, 1998, 2002, 2009 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf
  149. J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 J.J. Bertin, R.M. Cummings, “Aerodynamics for Engineering”, Pearson Prentice-Hall, 1979, 1989, 1998, 2002, 2009 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf
  150. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  151. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  152. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  153. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  154. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  155. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  156. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  157. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  158. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  159. H. Schlichting, E. Truckenbrodt, “Aerodynamics of Airpline”, 1969, McGraw-Hill, 1979 J.J. Bertin, M.L. Smith, “Aerodynamics for Engineering”, Prentice-Hall, 1979 http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap6.pdf http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  160. http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  161. http://www.dept.aoe.vt.edu/~mason/Mason_f/CAtxtChap4.pdf
  162. http://en.wikipedia.org/wiki/Wing_configuration
  163. http://en.wikipedia.org/wiki/Wing_configuration
  164. http://en.wikipedia.org/wiki/Wing_configuration
  165. http://en.wikipedia.org/wiki/Wing_configuration
  166. http://en.wikipedia.org/wiki/Wing_configuration
  167. http://en.wikipedia.org/wiki/Wing_configuration
  168. http://en.wikipedia.org/wiki/Wing_configuration
  169. http://en.wikipedia.org/wiki/Wing_configuration
  170. http://en.wikipedia.org/wiki/Wing_configuration
  171. http://en.wikipedia.org/wiki/Wing_configuration
  172. http://en.wikipedia.org/wiki/Wing_configuration
  173. http://en.wikipedia.org/wiki/Wing_configuration
  174. http://en.wikipedia.org/wiki/Wing_configuration
  175. H. Schlichting, E. Truckenbrodt, “Aerodynamics of the Airplane”, McGraw-Hill, 1979
  176. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  177. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  178. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  179. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  180. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  181. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  182. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  183. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  184. “Introduction to the Aerodynamics of Flight”, NASA History Office, SP-367, Talay, 1975
  185. http://en.wikipedia.org/wiki/Ludwig_Prandtl http://en.wikipedia.org/wiki/Michael_Max_Munk http://en.wikipedia.org/wiki/Theodor_Meyer http://en.wikipedia.org/wiki/Adolf_Busemann http://en.wikipedia.org/wiki/Theodore_von_K%C3%A1rm%C3%A1n http://en.wikipedia.org/wiki/Albert_Betz http://en.wikipedia.org/wiki/Irmgard_Fl%C3%BCgge-Lotz
  186. http://aerosociety.com/Assets/Docs/Publications/The%20Journal%20of%20Aeronautical%20History/2011-02HermannGlauert_AckroydandRiley.pdf http://homepages.abdn.ac.uk/h.tan/pages/teaching/explosion-engineering/Hugoniot.pdf http://www.potto.org/gasDynamics/node58.html http://en.wikipedia.org/wiki/Gustaf_de_Laval http://en.wikipedia.org/wiki/Aurel_Stodola http://en.wikipedia.org/wiki/Eastman_Jacobs http://en.wikipedia.org/wiki/G._I._Taylor http://web.dimnp.unipi.it/it/personalita-del-passato/enrico-pistolesi
  187. http://www.nap.edu/readingroom.php?book=biomems&amp;page=rjones.html http://www.caltech.edu/content/hans-w-liepmann-94
  188. Spiegel, M.R., “Complex Variables with an introduction to Conformal Mapping and its applications”, Schaum’s Outline Series, McGraw-Hill, 1964, pp.191-192
  189. Spiegel, M.R., “Complex Variables with an introduction to Conformal Mapping and its applications”, Schaum’s Outline Series, McGraw-Hill, 1964, pp.191-192
  190. Spiegel, M.R., “Complex Variables with an introduction to Conformal Mapping and its applications”, Schaum’s Outline Series, McGraw-Hill, 1964, pp.191-192
  191. Spiegel, M.R., “Complex Variables with an introduction to Conformal Mapping and its applications”, Schaum’s Outline Series, McGraw-Hill, 1964, pp.201-202
  192. Spiegel, M.R., “Complex Variables with an introduction to Conformal Mapping and its applications”, Schaum’s Outline Series, McGraw-Hill, 1964, pp.191-192
  193. Spiegel, M.R., “Complex Variables with an introduction to Conformal Mapping and its applications”, Schaum’s Outline Series, McGraw-Hill, 1964, pp.191-192
  194. L.J. Clancy, “Aerodynamics”, Pitman, 1978, Appendix I, pp. 589-592 K. Karamcheti, “Principles of Idea-Fluid Aerodynamics”, John Wiley &amp; Sons, 1966, Appendix E , pp. 624-627
  195. L.J. Clancy, “Aerodynamics”, Pitman, 1978, Appendix I, pp. 589-592 K. Karamcheti, “Principles of Idea-Fluid Aerodynamics”, John Wiley &amp; Sons, 1966, Appendix E , pp. 624-627
  196. L.J. Clancy, “Aerodynamics”, Pitman, 1978, Appendix I, pp. 589-592 K. Karamcheti, “Principles of Idea-Fluid Aerodynamics”, John Wiley &amp; Sons, 1966, Appendix E , pp. 624-627