We know stuff. And get people excited about it.*
*Even German engineers
Rachel Pedreschi @RachelPedreschi
Patrick McFadin @PatrickMcFadin
A Cassandra + Solr + Spark Love Triangle Using
DataStax Enterprise
1
Not 

(all queries preplanned. Very Fast)
Very

(Ask anything, anytime. Slowest)

Adhociness
C* Search Analytics
What is Search?
The bright blue butterfly hangs on the breeze.
[the] [bright] [blue] [butterfly] [hangs] [on] [the] [breeze]
Tokens
Credit: https://developer.apple.com/library/mac/documentation/userexperience/conceptual/SearchKitConcepts/searchKit_basics/searchKit_basics.html
Terms
It can be lonely for Solr

+ =
Cassandra
✓ Highly available
✓ Linear scalability
✓ Low latency OLTP queries C*
Like… High Availability
Data Partitioning
Application
Data Center 1
hash(key) => token(43)
80
10
3050
70
60
40
20
Replication
Data Center 1
hash(key) => token(43)
replication factor = 3
80
10
3050
70
60
40
20
Application
Multi-Data Center Replication
Data Center 1
hash(key) => token(43)
replication factor = 3
80
10
3050
70
60
40
20
Data Center 2
replication factor = 3
81
11
3151
71
61
41
21
Application
How does DSE integrate Solr?
C* C*/Solr
Transactional Search
SELECT *
FROM killrvideo.videos
WHERE solr_query='{
"q": "{!edismax qf="name^2 tags^1
description”}datastax"
}';
SELECT id, value
FROM keyspace.table
WHERE token(id) >= -3074457345618258601
AND token(id) <= 3074457345618258603
AND solr_query='id:*'
Vocab
Cassandra term Solr term
Column Family /Table Core
Row Document
Column Field
SSTable Index
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
18
Node memory
Node file system
Client
partition key1 first:Oscar last:Orange level:42
partition key2 first:Ricky last:Red
Memtable (corresponds to a CQL table)
Coordinator
CommitLog
AppendOnly
… … … …
… … … …
… … … …
SSTables
Flush current state to SSTable
Compact related

SSTables
W
rite 

<3, Betty, Blue, 63>
Acknowledge
partition key3 first:Betty last:Blue level:63
Compaction
Each write request …
Periodically …
Periodically …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
19
Node memory
Node file system
Client
1 best 1
2 bright 2,3
Ram Buffer
Coordinator
… … … …
… … … …
… … … …
Segments
Flushes current state to Segment (Softcommit)
Write 

<1,blue, 2,3>
3 blue 2,3
Merge (STW)
Each write request …
Periodically …
On C* Memtable Flush, In memory segments hard commit to disk
Shard Router
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
20
Node memory
Node file system
1 best 1
2 bright 2,3
Ram Buffer
… … … …
… … … …
… … … …
Segments
3 blue 2,3
Not Searchable
Searchable
Coordinator
Shard Router
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
… … … …
And… Scalability
80
10
3050
70
60
40
20
Data Center 1
Application
Data Center 1
80
10
30
50
70
60
40
20
Application
Data Center 1
80
8
32
56
72
64
48
16
24
4040
24
Application
Even… Improved Performance
Standard Solr Indexing
DSE Search Live Indexing
Spark and Cassandra
Great combo
Store a ton of data Analyze a ton of data
Great combo
Spark Streaming
Near Real-time
SparkSQL
Structured Data
MLLib
Machine Learning
GraphX
Graph Analysis
Spark Streaming
Near Real-time
SparkSQL
Structured Data
MLLib
Machine Learning
GraphX
Graph Analysis
Great combo
CREATE TABLE raw_weather_data (
wsid text,
year int,
month int,
day int,
hour int,
temperature double,
dewpoint double,
pressure double,
wind_direction int,
wind_speed double,
sky_condition int,
sky_condition_text text,
one_hour_precip double,
six_hour_precip double,
PRIMARY KEY ((wsid), year, month, day, hour)
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);
Spark Connector
How does it work? OSS Stack
Executer
Master
Worker
Executer
Executer
Server
How does it work? OSS Stack
Master
Worker
0-24
Token Ranges
0-100
25-49
50-74
75-99
I will only
analyze 25% of
the data.
Worker Worker
Worker
Master
0-24
25-49
50-74
75-99
AnalyticsTransactional
Worker
WorkerWorker
Worker
0-24
75-99 25-49
50-74
75-99
SELECT *
FROM keyspace.table
WHERE token(pk) > 75
AND token(pk) <= 99
Spark RDD
Spark Partition
Spark Partition
Spark Partition
Spark Connector
Executer
Executer
Executer
Worker
Master
Spark RDD
Spark Partition
Spark Partition
Spark Partition
Master
Worker
Executer
Executer
Executer
75-99
Spark Connector
Cassandra
Cassandra +
Spark
Joins and Unions No Yes
Transformations Limited Yes
Outside Data
Integration
No Yes
Aggregations Limited Yes
Type mapping
CQL Type Scala Type
ascii String
bigint Long
boolean Boolean
counter Long
decimal BigDecimal, java.math.BigDecimal
double Double
float Float
inet java.net.InetAddress
int Int
list Vector, List, Iterable, Seq, IndexedSeq, java.util.List
map Map, TreeMap, java.util.HashMap
set Set, TreeSet, java.util.HashSet
text, varchar String
timestamp Long, java.util.Date, java.sql.Date, org.joda.time.DateTime
timeuuid java.util.UUID
uuid java.util.UUID
varint BigInt, java.math.BigInteger
*nullable values Option
Confidential
Let’s go code diving!
Behind the scenes…
// Videos by id
CREATE TABLE videos (
videoid uuid,
userid uuid,
name text,
description text,
location text,
location_type int,
preview_image_location text,
tags set<text>,
added_date timestamp,
PRIMARY KEY (videoid)
);
// Index for tag keywords
CREATE TABLE videos_by_tag (
tag text,
videoid uuid,
added_date timestamp,
userid uuid,
name text,
preview_image_location text,
tagged_date timestamp,
PRIMARY KEY (tag, videoid)
);
Not a great idea
Possible Index
// Videos by id
CREATE TABLE videos (
videoid uuid,
userid uuid,
name text,
description text,
location text,
location_type int,
preview_image_location text,
tags set<text>,
added_date timestamp,
PRIMARY KEY (videoid)
And
this?
This?
This?
1) Spin up a new C* Cluster with search enabled using the DSE
installer.
$ sudo service dse cassandra -s
2) Run your schema DDL to create the C* keyspace and tables.
3) Run dse_tool on the videos table
$ dsetool create_core killrvideo.videos generateResources=true
4) Use the Solr Admin to check sanity and make sure you have a
core.
5) Write a CQL query with a Solr Search in it.
SELECT * FROM killrvideo.videos
WHERE solr_query='{ "q": "{!edismax qf="name^2 tags^1 description
”}?" }';
Search all of the things in 5 easy steps…
Now you get this!
SELECT name 

FROM videos 

WHERE solr_query = 'tags:crime*';
Attaching to Spark and Cassandra
// Import Cassandra-specific functions on SparkContext and RDD objects
import org.apache.spark.{SparkContext, SparkConf}

import com.datastax.spark.connector._
/** The setMaster("local") lets us run & test the job right in our IDE */

val conf = new SparkConf(true)
.set("spark.cassandra.connection.host", "127.0.0.1")
.setMaster(“local[*]")
.setAppName(getClass.getName)
// Optionally

.set("cassandra.username", "cassandra")

.set("cassandra.password", “cassandra")


val sc = new SparkContext(conf)
Comment table example
CREATE TABLE comments_by_video (

videoid uuid,

commentid timeuuid,

userid uuid,

comment text,

PRIMARY KEY (videoid, commentid)

) WITH CLUSTERING ORDER BY (commentid DESC);
Simple example
/** keyspace & table */

val tableRDD = sc.cassandraTable("killrvideo", “comments_by_video”)





/** get a simple count of all the rows in the raw_weather_data table */

val rowCount = tableRDD.count()





println(s"Total Rows in Comments Table: $rowCount")

sc.stop()
Simple example
/** keyspace & table */

val tableRDD = sc.cassandraTable("killrvideo", “comments_by_video”)





/** get a simple count of all the rows in the comments_by_video table */

val rowCount = tableRDD.count()





println(s"Total Rows in Comments Table: $rowCount")

sc.stop()
Executer
SELECT *
FROM killrvideo.comments_by_video
Spark RDD
Spark Partition
Spark Connector
Using CQL
SELECT userid

FROM comments_by_video

WHERE videoid = '01860584-de45-018f-12be-5f81704e8033'

val cqlRRD = sc.cassandraTable("killrvideo", “comments_by_video”)

.select("userid")

.where("videoid = ?”,

“01860584-de45-018f-12be-5f81704e8033")
qAAAaqq
spark-sql> SELECT cast(videoid as String) videoid, count(*) c
FROM comments_by_video

GROUP BY cast(videoid as String)

ORDER BY c DESC limit 10;
Saving back to Cassandra
// Create insert data

val collection = sc.parallelize(Seq(("01860584-de45-018f-12be-5f81704e8033", "Great video", "cdaf6bd5-8914-29e0-
f0b6-8b0bc6156777"),

("01860584-de45-018f-12be-5f81704e8033", "Hated it", "cdaf6bd5-8914-29e0-f0b6-8b0bc6156777")))

// Insert data into table

collection.saveToCassandra("killrvideo", "comments_by_video", SomeColumns("videoid", "comment", "userid"))





val solrQueryRDD = sc.cassandraTable("killrvideo", “videos")
.select("name").where("solr_query='tags:crime*'")



solrQueryRDD.collect().map(row => println(row.getString("name")))
C*
C*/Solr C*/Spark
OLTP
Search Analytics
Confidential
Resources
www.killrvideo.com
https://github.com/LukeTillman/killrvideo-csharp
www.datastax.com
Thank You

Beyond the Query: A Cassandra + Solr + Spark Love Triangle Using Datastax Enterprise (English)

  • 1.
    We know stuff.And get people excited about it.* *Even German engineers Rachel Pedreschi @RachelPedreschi Patrick McFadin @PatrickMcFadin A Cassandra + Solr + Spark Love Triangle Using DataStax Enterprise 1
  • 2.
    Not 
 (all queriespreplanned. Very Fast) Very
 (Ask anything, anytime. Slowest)
 Adhociness C* Search Analytics
  • 3.
  • 5.
    The bright bluebutterfly hangs on the breeze. [the] [bright] [blue] [butterfly] [hangs] [on] [the] [breeze] Tokens
  • 6.
  • 7.
    It can belonely for Solr

  • 8.
  • 9.
    Cassandra ✓ Highly available ✓Linear scalability ✓ Low latency OLTP queries C*
  • 10.
  • 11.
    Data Partitioning Application Data Center1 hash(key) => token(43) 80 10 3050 70 60 40 20
  • 12.
    Replication Data Center 1 hash(key)=> token(43) replication factor = 3 80 10 3050 70 60 40 20 Application
  • 13.
    Multi-Data Center Replication DataCenter 1 hash(key) => token(43) replication factor = 3 80 10 3050 70 60 40 20 Data Center 2 replication factor = 3 81 11 3151 71 61 41 21 Application
  • 14.
    How does DSEintegrate Solr? C* C*/Solr Transactional Search
  • 16.
    SELECT * FROM killrvideo.videos WHEREsolr_query='{ "q": "{!edismax qf="name^2 tags^1 description”}datastax" }'; SELECT id, value FROM keyspace.table WHERE token(id) >= -3074457345618258601 AND token(id) <= 3074457345618258603 AND solr_query='id:*'
  • 17.
    Vocab Cassandra term Solrterm Column Family /Table Core Row Document Column Field SSTable Index
  • 18.
    … … …… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … 18 Node memory Node file system Client partition key1 first:Oscar last:Orange level:42 partition key2 first:Ricky last:Red Memtable (corresponds to a CQL table) Coordinator CommitLog AppendOnly … … … … … … … … … … … … SSTables Flush current state to SSTable Compact related
 SSTables W rite 
 <3, Betty, Blue, 63> Acknowledge partition key3 first:Betty last:Blue level:63 Compaction Each write request … Periodically … Periodically …
  • 19.
    … … …… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … 19 Node memory Node file system Client 1 best 1 2 bright 2,3 Ram Buffer Coordinator … … … … … … … … … … … … Segments Flushes current state to Segment (Softcommit) Write 
 <1,blue, 2,3> 3 blue 2,3 Merge (STW) Each write request … Periodically … On C* Memtable Flush, In memory segments hard commit to disk Shard Router … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … …
  • 20.
    … … …… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … 20 Node memory Node file system 1 best 1 2 bright 2,3 Ram Buffer … … … … … … … … … … … … Segments 3 blue 2,3 Not Searchable Searchable Coordinator Shard Router … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … …
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
    Standard Solr Indexing DSESearch Live Indexing
  • 27.
  • 28.
    Great combo Store aton of data Analyze a ton of data
  • 29.
    Great combo Spark Streaming NearReal-time SparkSQL Structured Data MLLib Machine Learning GraphX Graph Analysis
  • 30.
    Spark Streaming Near Real-time SparkSQL StructuredData MLLib Machine Learning GraphX Graph Analysis Great combo CREATE TABLE raw_weather_data ( wsid text, year int, month int, day int, hour int, temperature double, dewpoint double, pressure double, wind_direction int, wind_speed double, sky_condition int, sky_condition_text text, one_hour_precip double, six_hour_precip double, PRIMARY KEY ((wsid), year, month, day, hour) ) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC); Spark Connector
  • 31.
    How does itwork? OSS Stack Executer Master Worker Executer Executer Server
  • 32.
    How does itwork? OSS Stack Master Worker 0-24 Token Ranges 0-100 25-49 50-74 75-99 I will only analyze 25% of the data. Worker Worker Worker
  • 33.
  • 34.
    75-99 SELECT * FROM keyspace.table WHEREtoken(pk) > 75 AND token(pk) <= 99 Spark RDD Spark Partition Spark Partition Spark Partition Spark Connector Executer Executer Executer Worker Master
  • 35.
    Spark RDD Spark Partition SparkPartition Spark Partition Master Worker Executer Executer Executer 75-99
  • 36.
    Spark Connector Cassandra Cassandra + Spark Joinsand Unions No Yes Transformations Limited Yes Outside Data Integration No Yes Aggregations Limited Yes
  • 37.
    Type mapping CQL TypeScala Type ascii String bigint Long boolean Boolean counter Long decimal BigDecimal, java.math.BigDecimal double Double float Float inet java.net.InetAddress int Int list Vector, List, Iterable, Seq, IndexedSeq, java.util.List map Map, TreeMap, java.util.HashMap set Set, TreeSet, java.util.HashSet text, varchar String timestamp Long, java.util.Date, java.sql.Date, org.joda.time.DateTime timeuuid java.util.UUID uuid java.util.UUID varint BigInt, java.math.BigInteger *nullable values Option
  • 39.
  • 40.
    Behind the scenes… //Videos by id CREATE TABLE videos ( videoid uuid, userid uuid, name text, description text, location text, location_type int, preview_image_location text, tags set<text>, added_date timestamp, PRIMARY KEY (videoid) ); // Index for tag keywords CREATE TABLE videos_by_tag ( tag text, videoid uuid, added_date timestamp, userid uuid, name text, preview_image_location text, tagged_date timestamp, PRIMARY KEY (tag, videoid) ); Not a great idea Possible Index
  • 41.
    // Videos byid CREATE TABLE videos ( videoid uuid, userid uuid, name text, description text, location text, location_type int, preview_image_location text, tags set<text>, added_date timestamp, PRIMARY KEY (videoid) And this? This? This?
  • 43.
    1) Spin upa new C* Cluster with search enabled using the DSE installer. $ sudo service dse cassandra -s 2) Run your schema DDL to create the C* keyspace and tables. 3) Run dse_tool on the videos table $ dsetool create_core killrvideo.videos generateResources=true 4) Use the Solr Admin to check sanity and make sure you have a core. 5) Write a CQL query with a Solr Search in it. SELECT * FROM killrvideo.videos WHERE solr_query='{ "q": "{!edismax qf="name^2 tags^1 description ”}?" }';
  • 44.
    Search all ofthe things in 5 easy steps…
  • 45.
    Now you getthis! SELECT name 
 FROM videos 
 WHERE solr_query = 'tags:crime*';
  • 46.
    Attaching to Sparkand Cassandra // Import Cassandra-specific functions on SparkContext and RDD objects import org.apache.spark.{SparkContext, SparkConf}
 import com.datastax.spark.connector._ /** The setMaster("local") lets us run & test the job right in our IDE */
 val conf = new SparkConf(true) .set("spark.cassandra.connection.host", "127.0.0.1") .setMaster(“local[*]") .setAppName(getClass.getName) // Optionally
 .set("cassandra.username", "cassandra")
 .set("cassandra.password", “cassandra") 
 val sc = new SparkContext(conf)
  • 47.
    Comment table example CREATETABLE comments_by_video (
 videoid uuid,
 commentid timeuuid,
 userid uuid,
 comment text,
 PRIMARY KEY (videoid, commentid)
 ) WITH CLUSTERING ORDER BY (commentid DESC);
  • 48.
    Simple example /** keyspace& table */
 val tableRDD = sc.cassandraTable("killrvideo", “comments_by_video”)
 
 
 /** get a simple count of all the rows in the raw_weather_data table */
 val rowCount = tableRDD.count()
 
 
 println(s"Total Rows in Comments Table: $rowCount")
 sc.stop()
  • 49.
    Simple example /** keyspace& table */
 val tableRDD = sc.cassandraTable("killrvideo", “comments_by_video”)
 
 
 /** get a simple count of all the rows in the comments_by_video table */
 val rowCount = tableRDD.count()
 
 
 println(s"Total Rows in Comments Table: $rowCount")
 sc.stop() Executer SELECT * FROM killrvideo.comments_by_video Spark RDD Spark Partition Spark Connector
  • 50.
    Using CQL SELECT userid
 FROMcomments_by_video
 WHERE videoid = '01860584-de45-018f-12be-5f81704e8033'
 val cqlRRD = sc.cassandraTable("killrvideo", “comments_by_video”)
 .select("userid")
 .where("videoid = ?”,
 “01860584-de45-018f-12be-5f81704e8033")
  • 51.
    qAAAaqq spark-sql> SELECT cast(videoidas String) videoid, count(*) c FROM comments_by_video
 GROUP BY cast(videoid as String)
 ORDER BY c DESC limit 10;
  • 52.
    Saving back toCassandra // Create insert data
 val collection = sc.parallelize(Seq(("01860584-de45-018f-12be-5f81704e8033", "Great video", "cdaf6bd5-8914-29e0- f0b6-8b0bc6156777"),
 ("01860584-de45-018f-12be-5f81704e8033", "Hated it", "cdaf6bd5-8914-29e0-f0b6-8b0bc6156777")))
 // Insert data into table
 collection.saveToCassandra("killrvideo", "comments_by_video", SomeColumns("videoid", "comment", "userid"))
 

  • 53.
    
 val solrQueryRDD =sc.cassandraTable("killrvideo", “videos") .select("name").where("solr_query='tags:crime*'")
 
 solrQueryRDD.collect().map(row => println(row.getString("name")))
  • 54.
  • 55.
  • 56.