Apache Spark and Cassandra
1
Patrick McFadin

Chief Evangelist for Apache Cassandra, DataStax
@PatrickMcFadin
About me
• Chief Evangelist for Apache Cassandra
• Senior Solution Architect at DataStax
• Chief Architect, Hobsons
• Web applications and performance since 1996
Apache Cassandra
Cassandra is…
• Shared nothing
• Masterless peer-to-peer
• Great scaling story
• Resilient to failure
Cassandra for Applications
APACHE
CASSANDRA
Example: Weather Station
• Weather station collects data
• Cassandra stores in sequence
• Application reads in sequence
Queries supported
CREATE TABLE raw_weather_data (

wsid text,

year int,

month int,

day int,

hour int,

temperature double,

dewpoint double,

pressure double,

wind_direction int,

wind_speed double,

sky_condition int,

sky_condition_text text,

one_hour_precip double,

six_hour_precip double,

PRIMARY KEY ((wsid), year, month, day, hour)

) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);
Get weather data given
•Weather Station ID
•Weather Station ID and Time
•Weather Station ID and Range of Time
Aggregation Queries
CREATE TABLE daily_aggregate_temperature (

wsid text,

year int,

month int,

day int,

high double,

low double,

mean double,

variance double,

stdev double,

PRIMARY KEY ((wsid), year, month, day)

) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC);
Get temperature stats given
•Weather Station ID
•Weather Station ID and Time
•Weather Station ID and Range of Time
Windsor California
July 1, 2014
High: 73.4
Low : 51.4
?
Apache Spark
Map Reduce
Input Data
Map
Reduce
Intermediate Data
Output Data
Disk
Data Science at Scale
2009
In memory
Input Data
Map
Reduce
Intermediate Data
Output Data
Disk
In memory
Input Data
Spark Intermediate Data
Output Data
Disk Memory
Resilient Distributed Dataset
RDD
Tranformations
•Produces new RDD
•Calls: filter, flatmap, map,
distinct, groupBy, union, zip,
reduceByKey, subtract
Are
•Immutable
•Partitioned
•Reusable
Actions
•Start cluster computing operations
•Calls: collect: Array[T], count,
fold, reduce..
and Have
API
filter
groupBy
sort
union
join
leftOuterJoin
rightOuterJoin
count
fold
reduceByKey
groupByKey
cogroup
cross
zip
sample
take
first
partitionBy
mapWith
pipe
save 

...
reducemap
Spark Streaming
Near Real-time
SparkSQL
Structured Data
MLLib
Machine Learning
GraphX
Graph Analysis
Cassandra and Spark
Great combo
Store a ton of data Analyze a ton of data
Great combo
Spark Streaming
Near Real-time
SparkSQL
Structured Data
MLLib
Machine Learning
GraphX
Graph Analysis
Great combo
Spark Streaming
Near Real-time
SparkSQL
Structured Data
MLLib
Machine Learning
GraphX
Graph Analysis
CREATE TABLE raw_weather_data (
wsid text,
year int,
month int,
day int,
hour int,
temperature double,
dewpoint double,
pressure double,
wind_direction int,
wind_speed double,
sky_condition int,
sky_condition_text text,
one_hour_precip double,
six_hour_precip double,
PRIMARY KEY ((wsid), year, month, day, hour)
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);
Spark Connector
Executer
Master
Worker
Executer
Executer
Server
Master
Worker
Worker
Worker Worker
0-24Token Ranges
0-100
25-49
50-74
75-99
I will only
analyze 25% of
the data.
Master
Worker
Worker
Worker Worker
0-24
25-49
50-74
75-9975-99
0-24
25-49
50-74
AnalyticsTransactional
Executer
Master
Worker
Executer
Executer
75-99
SELECT *
FROM keyspace.table
WHERE token(pk) > 75
AND token(pk) <= 99
Spark RDD
Spark Partition
Spark Partition
Spark Partition
Spark Connector
Executer
Master
Worker
Executer
Executer
75-99
Spark RDD
Spark Partition
Spark Partition
Spark Partition
Spark Connector
Cassandra
Cassandra +
Spark
Joins and Unions No Yes
Transformations Limited Yes
Outside Data
Integration
No Yes
Aggregations Limited Yes
Spark Reads on Cassandra
Awesome animation by DataStax’s own Russell Spitzer
Spark RDDs
Represent a Large
Amount of Data
Partitioned into Chunks
RDD
1 2 3
4 5 6
7 8 9Node 2
Node 1 Node 3
Node 4
Node 2
Node 1
Spark RDDs
Represent a Large
Amount of Data
Partitioned into Chunks
RDD
2
346
7 8 9
Node 3
Node 4
1 5
Node 2
Node 1
RDD
2
346
7 8 9
Node 3
Node 4
1 5
Spark RDDs
Represent a Large
Amount of Data
Partitioned into Chunks
Cassandra Data is Distributed By Token Range
Cassandra Data is Distributed By Token Range
0
500
Cassandra Data is Distributed By Token Range
0
500
999
Cassandra Data is Distributed By Token Range
0
500
Node 1
Node 2
Node 3
Node 4
Cassandra Data is Distributed By Token Range
0
500
Node 1
Node 2
Node 3
Node 4
Without vnodes
Cassandra Data is Distributed By Token Range
0
500
Node 1
Node 2
Node 3
Node 4
With vnodes
Node 1
120-220
300-500
780-830
0-50
spark.cassandra.input.split.size 50
Reported  density  is  0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
Node 1
120-220
300-500
0-50
spark.cassandra.input.split.size 50
Reported  density  is  0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
1
780-830
1
Node 1
120-220
300-500
0-50
spark.cassandra.input.split.size 50
Reported  density  is  0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
2
1
Node 1 300-500
0-50
spark.cassandra.input.split.size 50
Reported  density  is  0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
2
1
Node 1 300-500
0-50
spark.cassandra.input.split.size 50
Reported  density  is  0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
2
1
Node 1
300-400
0-50
spark.cassandra.input.split.size 50
Reported  density  is  0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
400-500
21
Node 1
0-50
spark.cassandra.input.split.size 50
Reported  density  is  0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
400-500
21
Node 1
0-50
spark.cassandra.input.split.size 50
Reported  density  is  0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
400-500
3
21
Node 1
0-50
spark.cassandra.input.split.size 50
Reported  density  is  0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
3
400-500
21
Node 1
0-50
spark.cassandra.input.split.size 50
Reported  density  is  0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
3
4
21
Node 1
0-50
spark.cassandra.input.split.size 50
Reported  density  is  0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
3
4
21
Node 1
0-50
spark.cassandra.input.split.size 50
Reported  density  is  0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
3
421
Node 1
spark.cassandra.input.split.size 50
Reported  density  is  0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
3
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50780-830
Node 1
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows 50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
Attaching to Spark and Cassandra
// Import Cassandra-specific functions on SparkContext and RDD objects
import org.apache.spark.{SparkContext, SparkConf}

import com.datastax.spark.connector._
/** The setMaster("local") lets us run & test the job right in our IDE */

val conf = new SparkConf(true)
.set("spark.cassandra.connection.host", "127.0.0.1")
.setMaster(“local[*]")
.setAppName(getClass.getName)
// Optionally

.set("cassandra.username", "cassandra")

.set("cassandra.password", “cassandra")


val sc = new SparkContext(conf)
Weather station example
CREATE TABLE raw_weather_data (

wsid text, 

year int, 

month int, 

day int, 

hour int, 

temperature double, 

dewpoint double, 

pressure double, 

wind_direction int, 

wind_speed double, 

sky_condition int, 

sky_condition_text text, 

one_hour_precip double, 

six_hour_precip double, 

PRIMARY KEY ((wsid), year, month, day, hour)

) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);
Simple example
/** keyspace & table */

val tableRDD = sc.cassandraTable("isd_weather_data", "raw_weather_data")





/** get a simple count of all the rows in the raw_weather_data table */

val rowCount = tableRDD.count()





println(s"Total Rows in Raw Weather Table: $rowCount")

sc.stop()
Simple example
/** keyspace & table */

val tableRDD = sc.cassandraTable("isd_weather_data", "raw_weather_data")





/** get a simple count of all the rows in the raw_weather_data table */

val rowCount = tableRDD.count()





println(s"Total Rows in Raw Weather Table: $rowCount")

sc.stop()
Executer
SELECT *
FROM isd_weather_data.raw_weather_data
Spark RDD
Spark Partition
Spark Connector
Using CQL
SELECT temperature

FROM raw_weather_data

WHERE wsid = '724940:23234'

AND year = 2008

AND month = 12

AND day = 1;
val cqlRRD = sc.cassandraTable("isd_weather_data", "raw_weather_data")

.select("temperature")

.where("wsid = ? AND year = ? AND month = ? AND DAY = ?",

"724940:23234", "2008", "12", “1")
Using SQL!
spark-sql> SELECT wsid, year, month, day, max(temperature) high, min(temperature) low

FROM raw_weather_data

WHERE month = 6

AND temperature !=0.0

GROUP BY wsid, year, month, day;
724940:23234 2008 6 1 15.6 10.0
724940:23234 2008 6 2 15.6 10.0
724940:23234 2008 6 3 17.2 11.7
724940:23234 2008 6 4 17.2 10.0
724940:23234 2008 6 5 17.8 10.0
724940:23234 2008 6 6 17.2 10.0
724940:23234 2008 6 7 20.6 8.9
SQL with a Join
spark-sql> SELECT ws.name, raw.hour, raw.temperature

FROM raw_weather_data raw

JOIN weather_station ws

ON raw.wsid = ws.id

WHERE raw.wsid = '724940:23234'

AND raw.year = 2008 AND raw.month = 6 AND raw.day = 1;
SAN FRANCISCO INTL AP 23 15.0
SAN FRANCISCO INTL AP 22 15.0
SAN FRANCISCO INTL AP 21 15.6
SAN FRANCISCO INTL AP 20 15.0
SAN FRANCISCO INTL AP 19 15.0
SAN FRANCISCO INTL AP 18 14.4
Python
from pyspark_cassandra import CassandraSparkContext



from pyspark.sql import SQLContext

from pyspark import SparkContext, SparkConf



conf = SparkConf() 

.setAppName("PySpark Cassandra Test") 

.setMaster("spark://127.0.0.1:7077") 

.set("spark.cassandra.connection.host", "127.0.0.1")



sc = CassandraSparkContext(conf=conf)

sql = SQLContext(sc)



rows = sql.sql('''SELECT max(temperature) AS high, wsid, year, month, day

FROM raw_weather_data

WHERE wsid = '724940:23234'

AND month = 6

AND day =1

AND temperature !=0.0

GROUP BY wsid, year, month, day;''').collect()



for row in rows:

print row.wsid, row.day, row.high
Analyzing large data sets
val spanRDD = sc.cassandraTable[Double]("isd_weather_data", "raw_weather_data")

.select("temperature")

.where("wsid = ? AND year = ? AND month = ? AND DAY = ?",

"724940:23234", "2008", "12", "1").spanBy(row => (row.getString("wsid")))
•Specify partition grouping
•Use with large partitions
•Perfect for time series
Weather Station Analysis
• Weather station collects data
• Cassandra stores in sequence
• Spark rolls up data into new
tables
Windsor California
July 1, 2014
High: 73.4
Low : 51.4
Saving back the weather data
val cc = new CassandraSQLContext(sc)

cc.setKeyspace("isd_weather_data")

cc.sql("""

SELECT wsid, year, month, day, max(temperature) high, min(temperature) low

FROM raw_weather_data

WHERE month = 6

AND temperature !=0.0

GROUP BY wsid, year, month, day;

""")

.map{row => (row.getString(0), row.getInt(1), row.getInt(2), row.getInt(3), row.getDouble(4), row.getDouble(5))}

.saveToCassandra("isd_weather_data", "daily_aggregate_temperature")
What just happened
• Data is read from temperature table
• Transformed
• Inserted into the daily_high_low table
Table:
temperature
Table:
daily_high_low
Read data
from table
Transform
Insert data
into table
Spark Streaming
The problem domain
Petabytes of
data
Gigabytes Per Second
Analytic
Analytic
Search
Spark Streaming
Kinesis,'S3'
DStream - Micro Batches
μBatch (ordinary RDD) μBatch (ordinary RDD) μBatch (ordinary RDD)
Processing of DStream = Processing of μBatches, RDDs
DStream
• Continuous sequence of micro batches
• More complex processing models are possible with less effort
• Streaming computations as a series of deterministic batch
computations on small time intervals
Now what?
Cassandra
Only DC
Cassandra
+ Spark DC
Spark Jobs
Spark Streaming
You can do this at home!
https://github.com/killrweather/killrweather
PatrickM50- 50% off Priority Pass
PatrickMCert- 25% Certification
Thank you!
Bring the questions
Follow me on twitter
@PatrickMcFadin

Cassandra and Spark