Interactive Analytics With
Spark And Cassandra
Evan Chan
Ooyala, Inc.
April 7th, 2014
Monday, April 7, 14
• Staff Engineer, Compute and Data Services, Ooyala
• Building multiple web-scale real-time systems on top of
C*, Kafka, Storm, etc.
• Scala/Akka guy
• Very excited by open source, big data projects
• @evanfchan
Who is this guy?
2
Monday, April 7, 14
• Cassandra at Ooyala
• What problem are we trying to solve?
• Spark and Shark
• Integrating Cassandra and Spark
• Our Spark/Cassandra Architecture
Agenda
3
Monday, April 7, 14
CASSANDRA AT
OOYALA
4
Monday, April 7, 14
OOYALA
Powering personalized video
experiences across all
screens.
Monday, April 7, 14
CONFIDENTIAL—DO NOT DISTRIBUTE 6CONFIDENTIAL—DO NOT DISTRIBUTE
Founded in 2007
Commercially launch in 2009
230+ employees in Silicon Valley, LA, NYC,
London, Paris, Tokyo, Sydney & Guadalajara
Global footprint, 200M unique users,
110+ countries, and more than 6,000 websites
Over 1 billion videos played per month
and 2 billion analytic events per day
25% of U.S. online viewers watch video
powered by Ooyala
COMPANY OVERVIEW
Monday, April 7, 14
CONFIDENTIAL—DO NOT DISTRIBUTE 7
TRUSTED VIDEO PARTNER
STRATEGIC PARTNERS
CUSTOMERS
CONFIDENTIAL—DO NOT DISTRIBUTE
Monday, April 7, 14
TITLE TEXT GOES HERE
• 12 clusters ranging in size from 3 to 107
nodes
• Total of 28TB of data managed over
~220 nodes
• Powers all of our analytics infrastructure
• Traditional analytics aggregations
• Recommendations and trends
• DSE/C* 1.0.x, 1.1.x, 1.2.6
We are a large Cassandra user
8
Monday, April 7, 14
TITLE TEXT GOES HERE
• Started investing in Spark beginning of 2013
• 2 teams of developers doing stuff with Spark
• Actively contributing to Spark developer community
• Deploying Spark to a large (>100 node) production
cluster
• Spark community very active, huge amount of interest
Becoming a big Spark user...
9
Monday, April 7, 14
WHAT PROBLEM ARE
WE TRYING TO SOLVE?
10
Monday, April 7, 14
From mountains of raw data...
Monday, April 7, 14
• Quickly
• Painlessly
• At scale?
To nuggets of truth...
Monday, April 7, 14
Today: Precomputed Aggregates
• Video metrics computed along several high cardinality dimensions
• Very fast lookups, but inflexible, and hard to change
• Most computed aggregates are never read
• What if we need more dynamic queries?
• Top content for mobile users in France
• Engagement curves for users who watched recommendations
• Data mining, trends, machine learning
Monday, April 7, 14
The Static - Dynamic Continuum
• Super fast lookups
• Inflexible,
wasteful
• Best for 80% most
common queries
• Always compute results
from raw data
• Flexible but slow
100% Precomputation 100% Dynamic
Monday, April 7, 14
Where We Want To Be
Partly dynamic
• Pre-aggregate most
common queries
• Flexible, fast
dynamic queries
• Easily generate
many materialized
views
Monday, April 7, 14
WHY SPARK?
16
Monday, April 7, 14
Introduction To Spark
• In-memory distributed computing framework
• Created by UC Berkeley AMP Lab in 2010
• Targeted problems that MR is bad at:
–Iterative algorithms (machine learning)
–Interactive data mining
• More general purpose than Hadoop MR
• Top level Apache project
• Active contributions from Intel, Yahoo, lots of
companies -- huge momentum
Monday, April 7, 14
Spark Vs Hadoop
HDFS
Map
Reduce
Map
Reduce
Data
map()
join()
Source 2
cache()
transform
Monday, April 7, 14
Throughput: Memory Is King
0 37500 75000 112500 150000
C*, cold cache
C*, warm cache
Spark RDD
6-node C*/DSE 1.1.9 cluster,
Spark 0.7.0
Spark cached RDD 10-50x faster than raw Cassandra
Monday, April 7, 14
Developers Love It
• “I wrote my first aggregation job in 30
minutes”
• High level “distributed collections” API
• No Hadoop cruft
• Full power of Scala, Java, Python
• Interactive REPL shell
Monday, April 7, 14
Spark Vs Hadoop Word Count
file = spark.textFile("hdfs://...")
 
file.flatMap(line => line.split(" "))
    .map(word => (word, 1))
    .reduceByKey(_ + _)
1 package org.myorg;
2
3 import java.io.IOException;
4 import java.util.*;
5
6 import org.apache.hadoop.fs.Path;
7 import org.apache.hadoop.conf.*;
8 import org.apache.hadoop.io.*;
9 import org.apache.hadoop.mapreduce.*;
10 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
11 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
12 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
13 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
14
15 public class WordCount {
16
17 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable>
{
18 private final static IntWritable one = new IntWritable(1);
19 private Text word = new Text();
20
21 public void map(LongWritable key, Text value, Context context) throws
IOException, InterruptedException {
22 String line = value.toString();
23 StringTokenizer tokenizer = new StringTokenizer(line);
24 while (tokenizer.hasMoreTokens()) {
25 word.set(tokenizer.nextToken());
26 context.write(word, one);
27 }
28 }
29 }
30
31 public static class Reduce extends Reducer<Text, IntWritable, Text,
IntWritable> {
32
33 public void reduce(Text key, Iterable<IntWritable> values, Context context)
34 throws IOException, InterruptedException {
35 int sum = 0;
36 for (IntWritable val : values) {
37 sum += val.get();
38 }
39 context.write(key, new IntWritable(sum));
40 }
41 }
42
43 public static void main(String[] args) throws Exception {
44 Configuration conf = new Configuration();
45
46 Job job = new Job(conf, "wordcount");
47
48 job.setOutputKeyClass(Text.class);
49 job.setOutputValueClass(IntWritable.class);
50
51 job.setMapperClass(Map.class);
52 job.setReducerClass(Reduce.class);
53
54 job.setInputFormatClass(TextInputFormat.class);
55 job.setOutputFormatClass(TextOutputFormat.class);
56
57 FileInputFormat.addInputPath(job, new Path(args[0]));
58 FileOutputFormat.setOutputPath(job, new Path(args[1]));
59
60 job.waitForCompletion(true);
61 }
62
63 }
Monday, April 7, 14
One Platform To Rule Them All
HIVE on Spark
Spark Streaming -
discretized stream
processing
• SQL, Graph, ML, Streaming all in one
framework
• Much higher code sharing/reuse
• Easy integration between components
• Fewer platforms == lower TCO
• Integration with Mesos, YARN helps
share resources
Monday, April 7, 14
Shark - HIVE On Spark
• 100% HiveQL compatible
• 10-100x faster than HIVE, answers in seconds
• Reuse UDFs, SerDe’s, StorageHandlers
• Can use DSE / CassandraFS for Metastore
Monday, April 7, 14
INTEGRATING
CASSANDRA & SPARK
24
Monday, April 7, 14
Our Spark/Shark/Cassandra Stack
Node1
Cassandra
InputFormat
SerDe
Spark
Worker
Shark
Node2
Cassandra
InputFormat
SerDe
Spark
Worker
Shark
Node3
Cassandra
InputFormat
SerDe
Spark
Worker
Shark
Spark Master Job Server
Monday, April 7, 14
OPTIONS FOR READING FROM C*
• Hadoop InputFormat
– ColumnFamilyInputFormat - reads all rows from 1
CF
– CqlPagingInputFormat, etc. - CQL3, 2-dary indexes
– Roll your own (join multiple CFs, etc)
• Spark native RDD
– sc.parallelize(rowkeys).flatMap(readColum
ns(_))
– JdbcRdd + Cassandra JDBC driver
Monday, April 7, 14
ColumnFamilyInputFormat
video type
Record1 10 1
Record2 11 5
id Video Type
Record1 10 1
Record2 11 5
• Must read from all rows
• One CF only, not very flexible
Monday, April 7, 14
Node 2Node 1
Spark RDD
• RDD = Resilient Distributed Dataset
• Multiple partitions living on different
nodes
• Each partition has records
Partition 1 Partition 2 Partition 3 Partition 4
Monday, April 7, 14
Inputformat Vs RDD
InputFormat RDD
Supports Hadoop, HIVE, Spark,
Shark
Spark / Shark only
Have to implement multiple classes
- InputFormat, RecordReader,
Writeable, etc. Clunky API.
One class - simple API.
Two APIs, and often need to
implement both (HIVE needs older...)
Just one API.
• You can easily use InputFormats in
Spark using newAPIHadoopRDD().
• Writing a custom RDD could have
saved us lots of time.
Monday, April 7, 14
Node 2Node 1
Skipping The InputFormat
Row 1 data Row 2 data Row 3 data Row 4 data
Rowkey1 Rowkey2 Rowkey3 Rowkey4
sc.parallelize(rowkeys).flatMap(readColumns(_))
Monday, April 7, 14
OUR CASSANDRA /
SPARK ARCHITECTURE
31
Monday, April 7, 14
From Raw Logs To Fast Queries
Process
C*
columnar
storage
Raw Logs
Raw Logs
Raw Logs
Spark
Spark
Spark
OLAP Table
1
OLAP Table
2
OLAP Table
3
Spark
Shark
Predefined
queries
Ad-hoc
HiveQL
Monday, April 7, 14
Why Cassandra Alone Isn’t Enough
• Over 30 million multi-dimensional
fact table rows per day
• Materializing every possible answer
isn’t close to possible
• Multi dimensional filtering and
grouping alone leads to many
billions of possible answers
• Querying fact tables in Cassandra is
too slow
• Reading millions or billion
random rows
• CQL doesn’t support grouping
Monday, April 7, 14
Our Approach
• Use Cassandra to store the raw
fact tables
• Optimize the schema for OLAP
workloads
• Fast full table reads
• Easily read fewer columns
• Use Spark for fast random row
access and fast distributed
computation
Monday, April 7, 14
uuid-
part-0
uuid-
part-1
2013-04-05T
00:00Z#id1
Section 0 Section 1 Section 2
country rows 0-9999 rows 10000-19999 rows ....
city rows 0-9999 rows 10000-19999 rows ....
Index CF
Columns CF
An OLAP Schema for Cassandra
Metadata
2013-04-05T
00:00-part-0
{columns:
[“country”,
“city”,
“plays” ]}
Metadata CF
•Optimized for: selective column loading, maximum throughput and compression
Monday, April 7, 14
OLAP Workflow
Dataset
Aggregation
Job
Query
Job
Spark
Executors
Cassandra
REST Job Server
Query
Job
Aggregate Query
Result
Query
Result
Monday, April 7, 14
Querying Data In Spark
Node 2Node 1
Partition 1
record1
record2
record3
Partition 2
record4
record5
record6
Partition 3
record7
record8
record9
Partition 4
record10
record11
record12
Convert to Spark SQL /
Shark Table
Shark / Spark SQL
rdd.group / .map / .sort /
.join etc
rdd.reduce / .collect /
.top
Monday, April 7, 14
Fault Tolerance
• Cached dataset lives in Java Heap only - what if
process dies?
• Spark lineage - automatic recomputation from
source, but this is expensive!
• Can also replicate cached dataset to survive single
node failures
• Persist materialized views back to C*, then load into
cache -- now recovery path is much faster
Monday, April 7, 14
DEMO
39
Monday, April 7, 14
Creating a Shark Table
Monday, April 7, 14
Creating a Cached Table
Monday, April 7, 14
Querying a Cached Table
Monday, April 7, 14
THANK YOU
And YES, We’re HIRING!!
ooyala.com/careers
@evanfchan
Monday, April 7, 14
Industry Trends
• Fast execution frameworks
• Impala
• In-memory databases
• VoltDB, Druid
• Streaming and real-time
• Higher-level, productive data
frameworks
Monday, April 7, 14
PERFORMANCE #’S
Spark: C* -> OLAP aggregates
cold cache, 1.4 million events
130 seconds
C* -> OLAP aggregates
warmed cache
20-30 seconds
OLAP aggregate query via
Spark
(56k records)
60 ms
6-node C*/DSE 1.1.9 cluster,
Spark 0.7.0
Monday, April 7, 14
EXAMPLE: OLAP PROCESSING
t0
2013-0
4-05T0
0:00Z#i
d1
{vide
o:
10,
type:
5}
2013-0
4-05T0
0:00Z#i
{vide
o:
20,
C* events
OLAP
Aggregates
OLAP
Aggregates
OLAP
Aggregates
Cached Materialized Views
Spark
Spark
Spark
Union
Query 1: Plays by
Provider
Query 2: Top content
for mobile
Monday, April 7, 14

Cassandra Day 2014: Interactive Analytics with Cassandra and Spark

  • 1.
    Interactive Analytics With SparkAnd Cassandra Evan Chan Ooyala, Inc. April 7th, 2014 Monday, April 7, 14
  • 2.
    • Staff Engineer,Compute and Data Services, Ooyala • Building multiple web-scale real-time systems on top of C*, Kafka, Storm, etc. • Scala/Akka guy • Very excited by open source, big data projects • @evanfchan Who is this guy? 2 Monday, April 7, 14
  • 3.
    • Cassandra atOoyala • What problem are we trying to solve? • Spark and Shark • Integrating Cassandra and Spark • Our Spark/Cassandra Architecture Agenda 3 Monday, April 7, 14
  • 4.
  • 5.
    OOYALA Powering personalized video experiencesacross all screens. Monday, April 7, 14
  • 6.
    CONFIDENTIAL—DO NOT DISTRIBUTE6CONFIDENTIAL—DO NOT DISTRIBUTE Founded in 2007 Commercially launch in 2009 230+ employees in Silicon Valley, LA, NYC, London, Paris, Tokyo, Sydney & Guadalajara Global footprint, 200M unique users, 110+ countries, and more than 6,000 websites Over 1 billion videos played per month and 2 billion analytic events per day 25% of U.S. online viewers watch video powered by Ooyala COMPANY OVERVIEW Monday, April 7, 14
  • 7.
    CONFIDENTIAL—DO NOT DISTRIBUTE7 TRUSTED VIDEO PARTNER STRATEGIC PARTNERS CUSTOMERS CONFIDENTIAL—DO NOT DISTRIBUTE Monday, April 7, 14
  • 8.
    TITLE TEXT GOESHERE • 12 clusters ranging in size from 3 to 107 nodes • Total of 28TB of data managed over ~220 nodes • Powers all of our analytics infrastructure • Traditional analytics aggregations • Recommendations and trends • DSE/C* 1.0.x, 1.1.x, 1.2.6 We are a large Cassandra user 8 Monday, April 7, 14
  • 9.
    TITLE TEXT GOESHERE • Started investing in Spark beginning of 2013 • 2 teams of developers doing stuff with Spark • Actively contributing to Spark developer community • Deploying Spark to a large (>100 node) production cluster • Spark community very active, huge amount of interest Becoming a big Spark user... 9 Monday, April 7, 14
  • 10.
    WHAT PROBLEM ARE WETRYING TO SOLVE? 10 Monday, April 7, 14
  • 11.
    From mountains ofraw data... Monday, April 7, 14
  • 12.
    • Quickly • Painlessly •At scale? To nuggets of truth... Monday, April 7, 14
  • 13.
    Today: Precomputed Aggregates •Video metrics computed along several high cardinality dimensions • Very fast lookups, but inflexible, and hard to change • Most computed aggregates are never read • What if we need more dynamic queries? • Top content for mobile users in France • Engagement curves for users who watched recommendations • Data mining, trends, machine learning Monday, April 7, 14
  • 14.
    The Static -Dynamic Continuum • Super fast lookups • Inflexible, wasteful • Best for 80% most common queries • Always compute results from raw data • Flexible but slow 100% Precomputation 100% Dynamic Monday, April 7, 14
  • 15.
    Where We WantTo Be Partly dynamic • Pre-aggregate most common queries • Flexible, fast dynamic queries • Easily generate many materialized views Monday, April 7, 14
  • 16.
  • 17.
    Introduction To Spark •In-memory distributed computing framework • Created by UC Berkeley AMP Lab in 2010 • Targeted problems that MR is bad at: –Iterative algorithms (machine learning) –Interactive data mining • More general purpose than Hadoop MR • Top level Apache project • Active contributions from Intel, Yahoo, lots of companies -- huge momentum Monday, April 7, 14
  • 18.
  • 19.
    Throughput: Memory IsKing 0 37500 75000 112500 150000 C*, cold cache C*, warm cache Spark RDD 6-node C*/DSE 1.1.9 cluster, Spark 0.7.0 Spark cached RDD 10-50x faster than raw Cassandra Monday, April 7, 14
  • 20.
    Developers Love It •“I wrote my first aggregation job in 30 minutes” • High level “distributed collections” API • No Hadoop cruft • Full power of Scala, Java, Python • Interactive REPL shell Monday, April 7, 14
  • 21.
    Spark Vs HadoopWord Count file = spark.textFile("hdfs://...")   file.flatMap(line => line.split(" "))     .map(word => (word, 1))     .reduceByKey(_ + _) 1 package org.myorg; 2 3 import java.io.IOException; 4 import java.util.*; 5 6 import org.apache.hadoop.fs.Path; 7 import org.apache.hadoop.conf.*; 8 import org.apache.hadoop.io.*; 9 import org.apache.hadoop.mapreduce.*; 10 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 11 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; 12 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 13 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; 14 15 public class WordCount { 16 17 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> { 18 private final static IntWritable one = new IntWritable(1); 19 private Text word = new Text(); 20 21 public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { 22 String line = value.toString(); 23 StringTokenizer tokenizer = new StringTokenizer(line); 24 while (tokenizer.hasMoreTokens()) { 25 word.set(tokenizer.nextToken()); 26 context.write(word, one); 27 } 28 } 29 } 30 31 public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { 32 33 public void reduce(Text key, Iterable<IntWritable> values, Context context) 34 throws IOException, InterruptedException { 35 int sum = 0; 36 for (IntWritable val : values) { 37 sum += val.get(); 38 } 39 context.write(key, new IntWritable(sum)); 40 } 41 } 42 43 public static void main(String[] args) throws Exception { 44 Configuration conf = new Configuration(); 45 46 Job job = new Job(conf, "wordcount"); 47 48 job.setOutputKeyClass(Text.class); 49 job.setOutputValueClass(IntWritable.class); 50 51 job.setMapperClass(Map.class); 52 job.setReducerClass(Reduce.class); 53 54 job.setInputFormatClass(TextInputFormat.class); 55 job.setOutputFormatClass(TextOutputFormat.class); 56 57 FileInputFormat.addInputPath(job, new Path(args[0])); 58 FileOutputFormat.setOutputPath(job, new Path(args[1])); 59 60 job.waitForCompletion(true); 61 } 62 63 } Monday, April 7, 14
  • 22.
    One Platform ToRule Them All HIVE on Spark Spark Streaming - discretized stream processing • SQL, Graph, ML, Streaming all in one framework • Much higher code sharing/reuse • Easy integration between components • Fewer platforms == lower TCO • Integration with Mesos, YARN helps share resources Monday, April 7, 14
  • 23.
    Shark - HIVEOn Spark • 100% HiveQL compatible • 10-100x faster than HIVE, answers in seconds • Reuse UDFs, SerDe’s, StorageHandlers • Can use DSE / CassandraFS for Metastore Monday, April 7, 14
  • 24.
  • 25.
  • 26.
    OPTIONS FOR READINGFROM C* • Hadoop InputFormat – ColumnFamilyInputFormat - reads all rows from 1 CF – CqlPagingInputFormat, etc. - CQL3, 2-dary indexes – Roll your own (join multiple CFs, etc) • Spark native RDD – sc.parallelize(rowkeys).flatMap(readColum ns(_)) – JdbcRdd + Cassandra JDBC driver Monday, April 7, 14
  • 27.
    ColumnFamilyInputFormat video type Record1 101 Record2 11 5 id Video Type Record1 10 1 Record2 11 5 • Must read from all rows • One CF only, not very flexible Monday, April 7, 14
  • 28.
    Node 2Node 1 SparkRDD • RDD = Resilient Distributed Dataset • Multiple partitions living on different nodes • Each partition has records Partition 1 Partition 2 Partition 3 Partition 4 Monday, April 7, 14
  • 29.
    Inputformat Vs RDD InputFormatRDD Supports Hadoop, HIVE, Spark, Shark Spark / Shark only Have to implement multiple classes - InputFormat, RecordReader, Writeable, etc. Clunky API. One class - simple API. Two APIs, and often need to implement both (HIVE needs older...) Just one API. • You can easily use InputFormats in Spark using newAPIHadoopRDD(). • Writing a custom RDD could have saved us lots of time. Monday, April 7, 14
  • 30.
    Node 2Node 1 SkippingThe InputFormat Row 1 data Row 2 data Row 3 data Row 4 data Rowkey1 Rowkey2 Rowkey3 Rowkey4 sc.parallelize(rowkeys).flatMap(readColumns(_)) Monday, April 7, 14
  • 31.
    OUR CASSANDRA / SPARKARCHITECTURE 31 Monday, April 7, 14
  • 32.
    From Raw LogsTo Fast Queries Process C* columnar storage Raw Logs Raw Logs Raw Logs Spark Spark Spark OLAP Table 1 OLAP Table 2 OLAP Table 3 Spark Shark Predefined queries Ad-hoc HiveQL Monday, April 7, 14
  • 33.
    Why Cassandra AloneIsn’t Enough • Over 30 million multi-dimensional fact table rows per day • Materializing every possible answer isn’t close to possible • Multi dimensional filtering and grouping alone leads to many billions of possible answers • Querying fact tables in Cassandra is too slow • Reading millions or billion random rows • CQL doesn’t support grouping Monday, April 7, 14
  • 34.
    Our Approach • UseCassandra to store the raw fact tables • Optimize the schema for OLAP workloads • Fast full table reads • Easily read fewer columns • Use Spark for fast random row access and fast distributed computation Monday, April 7, 14
  • 35.
    uuid- part-0 uuid- part-1 2013-04-05T 00:00Z#id1 Section 0 Section1 Section 2 country rows 0-9999 rows 10000-19999 rows .... city rows 0-9999 rows 10000-19999 rows .... Index CF Columns CF An OLAP Schema for Cassandra Metadata 2013-04-05T 00:00-part-0 {columns: [“country”, “city”, “plays” ]} Metadata CF •Optimized for: selective column loading, maximum throughput and compression Monday, April 7, 14
  • 36.
    OLAP Workflow Dataset Aggregation Job Query Job Spark Executors Cassandra REST JobServer Query Job Aggregate Query Result Query Result Monday, April 7, 14
  • 37.
    Querying Data InSpark Node 2Node 1 Partition 1 record1 record2 record3 Partition 2 record4 record5 record6 Partition 3 record7 record8 record9 Partition 4 record10 record11 record12 Convert to Spark SQL / Shark Table Shark / Spark SQL rdd.group / .map / .sort / .join etc rdd.reduce / .collect / .top Monday, April 7, 14
  • 38.
    Fault Tolerance • Cacheddataset lives in Java Heap only - what if process dies? • Spark lineage - automatic recomputation from source, but this is expensive! • Can also replicate cached dataset to survive single node failures • Persist materialized views back to C*, then load into cache -- now recovery path is much faster Monday, April 7, 14
  • 39.
  • 40.
    Creating a SharkTable Monday, April 7, 14
  • 41.
    Creating a CachedTable Monday, April 7, 14
  • 42.
    Querying a CachedTable Monday, April 7, 14
  • 43.
    THANK YOU And YES,We’re HIRING!! ooyala.com/careers @evanfchan Monday, April 7, 14
  • 44.
    Industry Trends • Fastexecution frameworks • Impala • In-memory databases • VoltDB, Druid • Streaming and real-time • Higher-level, productive data frameworks Monday, April 7, 14
  • 45.
    PERFORMANCE #’S Spark: C*-> OLAP aggregates cold cache, 1.4 million events 130 seconds C* -> OLAP aggregates warmed cache 20-30 seconds OLAP aggregate query via Spark (56k records) 60 ms 6-node C*/DSE 1.1.9 cluster, Spark 0.7.0 Monday, April 7, 14
  • 46.
    EXAMPLE: OLAP PROCESSING t0 2013-0 4-05T0 0:00Z#i d1 {vide o: 10, type: 5} 2013-0 4-05T0 0:00Z#i {vide o: 20, C*events OLAP Aggregates OLAP Aggregates OLAP Aggregates Cached Materialized Views Spark Spark Spark Union Query 1: Plays by Provider Query 2: Top content for mobile Monday, April 7, 14