Objectives 
The student will be able to: 
1. multiply monomials. 
2. simplify expressions with monomials. 
A-APR.1.1
A monomial is a 
1. number, 
2. variable, or 
3. a product of one or more 
numbers and variables. 
Examples: 
5 
y 
3x2y3
Why are the following not 
monomials? 
x + y 
addition 
x 
y 
division 
2 - 3a 
subtraction
REMEMBER YOUR EXPONENT PROPERTIES!!!!
Multiplying Monomials 
When multiplying monomials, you 
ADD the exponents. 
1) x2 • x4 
x2+4 
x6 
2) 2a2y3 • 3a3y4 
6a5y7
Simplify m3(m4)(m) 
1. m7 
2. m8 
3. m12 
4. m13
Power of a Power 
When you have an exponent with an 
exponent, you multiply those exponents. 
1) (x2)3 
x2• 3 
x6 
2) (y3)4 
y12
Simplify (p2)4 
1. p2 
2. p4 
3. p8 
4. p16
Power of a Product 
When you have a power outside of the 
parentheses, everything in the 
parentheses is raised to that power. 
1) (2a)3 
23a3 
8a3 
2) (3x)2 
9x2
Simplify (4r)3 
1. 12r3 
2. 12r4 
3. 64r3 
4. 64r4
Power of a Monomial 
This is a combination of all of the other 
rules. 
1) (x3y2)4 
x3• 4 y2• 4 
x12 y8 
2) (4x4y3)3 
64x12y9
Simplify (3a2b3)4 
1. 12a8b12 
2. 81a6b7 
3. 81a16b81 
4. 81a8b12
Objectives 
The student will be able to: 
1. multiply a monomial and a 
polynomial. 
A-APR.1.1
Review: When multiplying variables, 
add the exponents! 
1) Simplify: 5(7n - 2) 
Use the distributive property. 
5 • 7n 
35n - 10 
- 5 • 2
3 
2) Simplify: a a  
(8 12) 
4 
a 8 
a 
3 
 a 
4 
6a2 + 9a 
3 
4 
12 
3) Simplify: 6rs(r2s - 3) 
6rs • r2s 
6r3s2 - 18rs 
- 6rs • 3
4) Simplify: 4t2(3t2 + 2t - 5) 
12t4 
5) Simplify: - 4m3(-3m - 6n + 4p) 
12m4 
+ 8t3 - 20t2 
+ 24m3n - 16m3p 
YOUR TURN!!!
OH NO!! Fractions!! WHAT DO I DO! 
…..the same as before….. 
x 
3 
6) Simplify: (27x2 - 6x + 12) 
-9x3 + 2x2 - 4x
Simplify 4y(3y2 – 1) 
1. 7y2 – 1 
2. 12y2 – 1 
3. 12y3 – 1 
4. 12y3 – 4y
Simplify -3x2y3(y2 – x2 + 2xy) 
1. -3x2y5 + 3x4y3 – 6x3y4 
2. -3x2y6 + 3x4y3 – 6x2y3 
3. -3x2y5 + 3x4y3 – 6x2y3 
4. 3x2y5 – 3x4y3 + 6x3y4

Multiplying Monomials

  • 1.
    Objectives The studentwill be able to: 1. multiply monomials. 2. simplify expressions with monomials. A-APR.1.1
  • 2.
    A monomial isa 1. number, 2. variable, or 3. a product of one or more numbers and variables. Examples: 5 y 3x2y3
  • 3.
    Why are thefollowing not monomials? x + y addition x y division 2 - 3a subtraction
  • 4.
    REMEMBER YOUR EXPONENTPROPERTIES!!!!
  • 5.
    Multiplying Monomials Whenmultiplying monomials, you ADD the exponents. 1) x2 • x4 x2+4 x6 2) 2a2y3 • 3a3y4 6a5y7
  • 6.
    Simplify m3(m4)(m) 1.m7 2. m8 3. m12 4. m13
  • 7.
    Power of aPower When you have an exponent with an exponent, you multiply those exponents. 1) (x2)3 x2• 3 x6 2) (y3)4 y12
  • 8.
    Simplify (p2)4 1.p2 2. p4 3. p8 4. p16
  • 9.
    Power of aProduct When you have a power outside of the parentheses, everything in the parentheses is raised to that power. 1) (2a)3 23a3 8a3 2) (3x)2 9x2
  • 10.
    Simplify (4r)3 1.12r3 2. 12r4 3. 64r3 4. 64r4
  • 11.
    Power of aMonomial This is a combination of all of the other rules. 1) (x3y2)4 x3• 4 y2• 4 x12 y8 2) (4x4y3)3 64x12y9
  • 12.
    Simplify (3a2b3)4 1.12a8b12 2. 81a6b7 3. 81a16b81 4. 81a8b12
  • 13.
    Objectives The studentwill be able to: 1. multiply a monomial and a polynomial. A-APR.1.1
  • 14.
    Review: When multiplyingvariables, add the exponents! 1) Simplify: 5(7n - 2) Use the distributive property. 5 • 7n 35n - 10 - 5 • 2
  • 15.
    3 2) Simplify:a a  (8 12) 4 a 8 a 3  a 4 6a2 + 9a 3 4 12 3) Simplify: 6rs(r2s - 3) 6rs • r2s 6r3s2 - 18rs - 6rs • 3
  • 16.
    4) Simplify: 4t2(3t2+ 2t - 5) 12t4 5) Simplify: - 4m3(-3m - 6n + 4p) 12m4 + 8t3 - 20t2 + 24m3n - 16m3p YOUR TURN!!!
  • 17.
    OH NO!! Fractions!!WHAT DO I DO! …..the same as before….. x 3 6) Simplify: (27x2 - 6x + 12) -9x3 + 2x2 - 4x
  • 18.
    Simplify 4y(3y2 –1) 1. 7y2 – 1 2. 12y2 – 1 3. 12y3 – 1 4. 12y3 – 4y
  • 19.
    Simplify -3x2y3(y2 –x2 + 2xy) 1. -3x2y5 + 3x4y3 – 6x3y4 2. -3x2y6 + 3x4y3 – 6x2y3 3. -3x2y5 + 3x4y3 – 6x2y3 4. 3x2y5 – 3x4y3 + 6x3y4