SlideShare a Scribd company logo
Types of FM
• Narrow Band FM (NBFM)
• Modulation index is small (β<<1)
• Frequency deviation is small( ≈ 20 Hz)
• Wide Band FM (WBFM)
• Modulation index is large (β>>1)
• Frequency deviation is large ( ≈ 75 kHz)
Narrow Band FM
• The FM signal is defined as
s(t)  Ac cos[2fct   sin 2fmt]     (1)
• Expanding Eq.(1), we get (cos(a+b)=cosacosb-sinasinb)
Narrow Band FM
• The FM signal is defined as
s(t)  Ac cos[2fct   sin 2fmt]     (1)
• Expanding Eq.(1), we get
s(t)  Accos2fct cos[ sin 2fmt] Acsin 2fctsin[ sin 2fmt]   (2)
• As modulation index β is small, we may use the following
approximations:
Narrow Band FM
• The FM signal is defined as
s(t)  Ac cos[2fct   sin 2fmt]     (1)
• Expanding Eq.(1), we get
s(t)  Accos2fct cos[ sin 2fmt] Ac sin 2fctsin[ sin 2fmt]   (2)
• As modulation index β is small, we may use the following
approximations:
• Now Eq.(2) becomes
cos[ sin 2f t] 1
m
sin[ sin 2fmt]   sin 2fmt
Narrow Band FM
• The FM signal is defined as
s(t)  Ac cos[2fct   sin 2fmt]     (1)
• Expanding Eq.(1), we get
s(t)  Accos2fct cos[ sin 2fmt] Ac sin 2fctsin[ sin 2fmt]   (2)
• As modulation index β is small, we may use the following
approximations: cos[ sin 2f t] 1
m
sin[ sin 2fmt]   sin 2fmt
• Now Eq.(2) becomes
s(t)  Ac cos2fct  Ac sin 2fctsin 2fmt    (3)
• Eq.(3) defines the approximate form of NBFM signal produced by
sinusoidal message signal
Narrow Band FM
• Expanding Eq.(3), we get
2
m
c
c c m
c c
s(t)  A cos2f t 
1
A {cos[2( f  f )t ] cos[2( f  f )t]}  (4)
Narrow Band FM
• Expanding Eq.(3), we get
• The above equation is somewhat similar to AM signal
2
m
c
c c m
c c
s(t)  A cos2f t 
1
A {cos[2( f  f )t]  cos[2( f  f )t]}  (4)
2
m
c
c c m
c c
s(t)  A cos2f t 
1
mA {cos[2( f  f )t ] cos[2( f  f )t]}  (5)
Narrow Band FM
• Expanding Eq.(3), we get
• The above equation is somewhat similar to AM signal
• The difference between the two signals is the algebric sign of the lower
side frequency in the narrow band FM is reversed
• The NBFM signal requires the same transmission bandwidth of the AM
signal (2fm)
2
m
c
c c m
c c
s(t)  A cos2f t 
1
A {cos[2( f  f )t]  cos[2( f  f )t]}  (4)
2
m
c
c c m
c c
s(t)  A cos2f t 
1
mA {cos[2( f  f )t]  cos[2( f  f )t]}  (5)
Phasor diagram of NBFM and AM
Phasor diagram of NBFM and AM
• In NBFM, the resultant phasor has same amplitude of the carrier
phasor but out of phase w.r.t it
• In AM, the resultant phasor has different amplitude of the carrier phasor
but always inphase w.r.t it
Narrow Band FM
• Ideally FM signal contains constant envelope
• But here the FM signal produced differs from ideal condition
• The envelope contains a residual amplitude modulation and varies in time
• For a sinusoidal message signal, the angle θi(t) contains harmonic distortion in
the form of third and higher harmonics of fm
• By restricting   0.3 , the effect of residual AM and harmonic distortion
can be limited to negligible levels
Wide Band FM
• The FM signal is defined as
s(t)  Ac cos[2fct   sin 2fmt]     (1)
• Eq.(1) is non-periodic unless the carrier signal frequency fc
integral multiple of the message signal frequency fm
• Assume the carrier signal frequency fc is large
is an
• Rewriting Eq.(1) by using complex representation of band-pass signals,
we get
Wide Band FM
• The FM signal is defined as
s(t)  Ac cos[2fct   sin 2fmt]     (1)
• Eq.(1) is non-periodic unless the carrier signal frequency fc
integral multiple of the message signal frequency fm
• Assume the carrier signal frequency fc is large
is an
• Rewriting Eq.(1) by using complex representation of band-pass signals,
we get
m
c
c
s(t)  Re[A exp( j2f t  j sin 2f t)]
Wide Band FM
• The FM signal is defined as
s(t)  Ac cos[2fct   sin 2fmt]     (1)
• Eq.(1) is non-periodic unless the carrier signal frequency fc
integral multiple of the message signal frequency fm
• Assume the carrier signal frequency fc is large
is an
• Rewriting Eq.(1) by using complex representation of band-pass signals,
we get
c c m
s(t)  Re[A exp( j2f t  j sin 2f t)]
c
s(t)  Re[~
s (t)exp( j2f t)]   (2)
• where ~
s(t)is the complex envelope of the FM signal defined as
Wide Band FM
• The FM signal is defined as
s(t)  Ac cos[2fct   sin 2fmt]     (1)
• Eq.(1) is non-periodic unless the carrier signal frequency fc
integral multiple of the message signal frequency fm
• Assume the carrier signal frequency fc is large
is an
• Rewriting Eq.(1) by using complex representation of band-pass signals,
we get
c c m
s(t)  Re[A exp( j2f t  j sin 2f t)]
c
s(t)  Re[~
s (t)exp( j2f t)]   (2)
• where ~
s(t)is the complex envelope of the FM signal defined as
~
s (t)  A exp[ j sin 2f t]   (3)
c m
• ~
s (t) is a periodic function of time with fundamental frequency fm
Wide Band FM
Wide Band FM
~
s (t)  A exp[ j sin 2f t]   (3)
c m
• Expand ~
s(t) in the form of complex Fourier series is given as
• Cn – Complex Fourier coefficient

~
s(t)  
n
cn exp[ j2nfmt]   (4)
Wide Band FM
~
s (t)  A exp[ j sin 2f t]   (3)
c m
• Expand ~
s(t) in the form of complex Fourier series is given as
• Cn – Complex Fourier coefficient
• Sub Eq.(3) in Eq.(5)

~
s(t)  
n
cn exp[ j2nfmt]   (4)
1
1
c  f 
2 fm

2 fm
m
~
s (t)exp( j2nf t)dt    (5)
m
n
Wide Band FM
~
s (t)  A exp[ j sin 2f t]   (3)
c m
• Expand ~
s(t) in the form of complex Fourier series is given as
• Cn – Complex Fourier coefficient
• Sub Eq.(3) in Eq.(5)
1

~
s(t)  
n
cn exp[ j2nfmt]   (4)
2 fm
cn  Ac fm exp( j sin 2fmt  j2nfmt)dt    (6)
1

2 fm
1
1
c  f 
2 fm

2 fm
m
~
s (t)exp( j2nf t)dt    (5)
m
n
Wide Band FM
• Define a new variable,
• Now the limits become
x  2fmt,
dx  2fmdt
Wide Band FM
• Define a new variable,
• Now the limits become
when t  
• Rewrite Eq.(6),
x  2fmt,
dx  2fmdt
, x  
, x  ,
when t 
2 fm
2 fm
1
1
Wide Band FM
• Define a new variable,
• Rewrite Eq.(6),
• The integral on the right side of the equation except the scaling factor is
recognized as nth order Bessel function of the 1st kind and argument β.
This function is defined by Jn(β)
x  2fmt,
dx  2fmdt
• Now the limits become
when t  
, x  
, x  ,
when t 
2 fm
2 fm
1
1
exp[ j( sin x  nx)]dx    (7)
c  
Ac
2
n


Wide Band FM
1 

• Now Eq.(7) is reduced to
Jn () 
2 exp[ j( sin x  nx)]dx    (8)
Wide Band FM
1 
Jn () 
2 exp[ j( sin x  nx)]dx    (8)

• Now Eq.(7) is reduced to
cn  Ac Jn ()    (9)
• Sub Eq.(9) in Eq.(4)
Wide Band FM
• Sub Eq.(10) in Eq.(2)
1 
Jn () 
2 exp[ j( sin x  nx)]dx    (8)

• Now Eq.(7) is reduced to
cn  Ac Jn ()    (9)
• Sub Eq.(9) in Eq.(4) 
n
~
s (t)  A J ()exp[ j2nf t]   (10)
c
 n m
Wide Band FM
• Sub Eq.(10) in Eq.(2)
• Interchanging the order of the summation and evaluation of the real
part in the R.H.S,
1 
Jn () 
2 exp[ j( sin x  nx)]dx    (8)

• Now Eq.(7) is reduced to
cn  Ac Jn ()    (9)
• Sub Eq.(9) in Eq.(4) 
n
~
s (t)  A J ()exp[ j2nf t]   (10)
c
 n m

s(t)  Ac.Re[ Jn ()exp[ j2( fc  nfm )t]   (11)
n
Wide Band FM
• By taking Fourier transform, Eq.(12) becomes

s(t)  Ac Jn ()cos[2( fc  nfm )t]   (12)
n
• Eq.(12) is the Fourier series representation of the single tone FM signal
for an arbitrary value of β
Wide Band FM
• By taking Fourier transform, Eq.(12) becomes

s(t)  Ac Jn ()cos[2( fc  nfm )t]   (12)
n
• Eq.(12) is the Fourier series representation of the single tone FM signal
for an arbitrary value of β
2
S( f ) 
Ac
m
c


n
Jn ()[( f  fc  nfm ) ( f  f  nf )]   (13)
Put 𝑛 = 0,
⟹ 𝑠 𝑓 =
𝐴c
2
𝐽0  𝛿 𝑓 —𝑓c + 𝛿 𝑓 + 𝑓c
Wide Band FM
Spectrum of WBFM:
Put 𝑛 = 1,
𝐴c
2 c
𝐽1 β 𝛿 𝑓 — 𝑓 + 𝑛𝑓m c
+ 𝛿 𝑓 + 𝑓 + 𝑛𝑓m
𝑠 𝑓 =
Put 𝑛 = —1,
𝑠 𝑓 =
𝐴c
2 –1 c
𝐽 β 𝛿 𝑓 — 𝑓 + 𝑛𝑓
m c
+ 𝛿 𝑓 + 𝑓 + 𝑛𝑓m
fc  fm  fc  fm  fm fc  fm fc fc  fm  f
0
𝐴c
2
𝐽 β
0
𝐴c
2
𝐽 β
1
𝐴c
2
𝐽 β
–1
𝐴c
2
𝐽 β
0
𝐴c
2
𝐽 β
1
𝐴c
2 𝐽–1 β
𝑠 (𝑓)
Bessel function Jn(β) vs Modulation index β
Properties of Bessel function Jn(β)
1. Jn ()  (1) J ()
n n
for all values of n both positive and negative
2. For small values of β
J0 () 1
3.
2
1
Jn ()  0,n  2
J () 


J 2
n () 1
n
Bessel table (n vs β)
Observations from Bessel function analysis
• The spectrum of FM signal consists of a carrier component and an
infinite set of side frequencies locate symmetrically on either side of the
carrier at frequency separations of fm, 2fm, 3fm,…..
fc  fm  fc  fm  fm fc  fm fc fc  fm  f
0
𝐴c
2
𝐽 β
0
𝐴c
2
𝐽 β
1
𝐴c
2
𝐽 β
–1
𝐴c
2
𝐽 β
0
𝐴c
2
𝐽 β
1
𝐴c
2 𝐽–1 β
Observations from Bessel function analysis
• The spectrum of FM signal consists of a carrier component and an
infinite set of side frequencies locate symmetrically on either side of the
carrier at frequency separations of fm, 2fm, 3fm,…..
• For small values of β less than unity, only the Bessel coefficients J0(β)
and J1(β) have significant values – Carrier and single pair of side
frequencies fc+/-fm – NBFM
fc  fm  fc  fm  fm fc  fm fc fc  fm  f
0
𝐴c
2
𝐽 β
0
𝐴c
2
𝐽 β
1
𝐴c
2
𝐽 β
–1
𝐴c
2
𝐽 β
0
𝐴c
2
𝐽 β
1
𝐴c
2 𝐽–1 β
Observations from Bessel function analysis
• Unlike AM, the amplitude of the carrier component varies with β. The
average power of the FM signal can be determined as

n
c 
P  J 2
n ()
A
1
2
2
2
1
2
c
A
P 
fc  fm  fc  fm  fm fc  fm fc fc  fm  f
0
𝐴c
2
𝐽 β
0
𝐴c
2
𝐽 β
1
𝐴c
2
𝐽 β
–1
𝐴c
2
𝐽 β
0
𝐴c
2
𝐽 β
1
𝐴c
2 𝐽–1 β
Observations from Bessel function analysis
• Unlike AM, the amplitude of the carrier component varies with β. The
average power of the FM signal can be determined as

n
c 
P  J 2
n ()
A
1
2
2
2
1
2
c
A
P 
Sideband power, 𝑃SB =
2
2 2 2 2
𝐽1 β + ⋯ + 𝐽n β + 𝐽–1 β + ⋯ + 𝐽–n β
= 2
𝐴C
2
2
2
𝐽1 β
2
+ ⋯ + 𝐽n β = 𝐴C
2
𝐽1
2
β
2
+ ⋯ + 𝐽n β
𝐴C
2
Total modulated power, 𝑃T = 𝑃C + 𝑃SB

More Related Content

What's hot

Curso de conserto de radio am fm
Curso de conserto de radio am fmCurso de conserto de radio am fm
Curso de conserto de radio am fmBruno Pereira
 
Wideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdfWideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdf
ArijitDhali
 
Angle modulation
Angle modulationAngle modulation
Angle modulationJay Shah
 
Phase modulation
Phase modulationPhase modulation
Phase modulation
Learn By Watch
 
FM Demodulator
FM DemodulatorFM Demodulator
An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014
Rohde & Schwarz North America
 
FM demodulation using PLL
FM demodulation using PLLFM demodulation using PLL
FM demodulation using PLL
mpsrekha83
 
Fm Transmitter and receiver
 Fm Transmitter and receiver Fm Transmitter and receiver
Fm Transmitter and receiver
nurnaser1234
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
Akanksha_Seth
 
Butterworth filter design
Butterworth filter designButterworth filter design
Butterworth filter designSushant Shankar
 
electronics and telecommunications: Amplitude modulation
electronics and telecommunications: Amplitude modulationelectronics and telecommunications: Amplitude modulation
electronics and telecommunications: Amplitude modulation
Arti Parab Academics
 
PULSE WIDTH MODULATION &DEMODULATION
PULSE WIDTH MODULATION &DEMODULATIONPULSE WIDTH MODULATION &DEMODULATION
PULSE WIDTH MODULATION &DEMODULATION
bharath405
 
Quantum mechanics 1
Quantum mechanics 1Quantum mechanics 1
Quantum mechanics 1
UCP
 
Noise
NoiseNoise
Noise
bhavyaw
 
Double sideband suppressed carrier (dsb sc) modulation
Double sideband suppressed carrier (dsb sc) modulationDouble sideband suppressed carrier (dsb sc) modulation
Double sideband suppressed carrier (dsb sc) modulation
Quaid i Azam university Islamabad
 
Travelling Wave Tube
Travelling Wave TubeTravelling Wave Tube
Travelling Wave Tube
Binita Khua
 
Receivers
ReceiversReceivers
Receivers
abhishek reddy
 
Signals and systems
Signals and systemsSignals and systems
Signals and systems
Dr.SHANTHI K.G
 
PAM
PAMPAM

What's hot (20)

Curso de conserto de radio am fm
Curso de conserto de radio am fmCurso de conserto de radio am fm
Curso de conserto de radio am fm
 
Wideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdfWideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdf
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 
Phase modulation
Phase modulationPhase modulation
Phase modulation
 
FM Demodulator
FM DemodulatorFM Demodulator
FM Demodulator
 
An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014
 
FM demodulation using PLL
FM demodulation using PLLFM demodulation using PLL
FM demodulation using PLL
 
Fm Transmitter and receiver
 Fm Transmitter and receiver Fm Transmitter and receiver
Fm Transmitter and receiver
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
 
Butterworth filter design
Butterworth filter designButterworth filter design
Butterworth filter design
 
electronics and telecommunications: Amplitude modulation
electronics and telecommunications: Amplitude modulationelectronics and telecommunications: Amplitude modulation
electronics and telecommunications: Amplitude modulation
 
PULSE WIDTH MODULATION &DEMODULATION
PULSE WIDTH MODULATION &DEMODULATIONPULSE WIDTH MODULATION &DEMODULATION
PULSE WIDTH MODULATION &DEMODULATION
 
Quantum mechanics 1
Quantum mechanics 1Quantum mechanics 1
Quantum mechanics 1
 
Noise
NoiseNoise
Noise
 
Double sideband suppressed carrier (dsb sc) modulation
Double sideband suppressed carrier (dsb sc) modulationDouble sideband suppressed carrier (dsb sc) modulation
Double sideband suppressed carrier (dsb sc) modulation
 
Travelling Wave Tube
Travelling Wave TubeTravelling Wave Tube
Travelling Wave Tube
 
Receivers
ReceiversReceivers
Receivers
 
Signals and systems
Signals and systemsSignals and systems
Signals and systems
 
Pll
PllPll
Pll
 
PAM
PAMPAM
PAM
 

Similar to 12 Narrow_band_and_Wide_band_FM.pdf

frequency modulation
frequency modulationfrequency modulation
frequency modulation
Waqas Afzal
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
wafaa_A7
 
Angle modulation fm
Angle modulation fmAngle modulation fm
Angle modulation fm
The Hoa Nguyen
 
Angle modulation
Angle modulationAngle modulation
Angle modulationUmang Gupta
 
Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Jyothirmaye Suneel
 
Angel modulization in Frequency modulation and Phase modulation
Angel modulization in Frequency modulation and Phase modulationAngel modulization in Frequency modulation and Phase modulation
Angel modulization in Frequency modulation and Phase modulation
swatihalunde
 
10 Angle_modulation.pdf
10 Angle_modulation.pdf10 Angle_modulation.pdf
10 Angle_modulation.pdf
Mohamedshabana38
 
Frequency Modulation
Frequency ModulationFrequency Modulation
Frequency Modulation
Soudip Sinha Roy
 
Lecture_ch5.pptx
Lecture_ch5.pptxLecture_ch5.pptx
Lecture_ch5.pptx
rshoukatimtek
 
AM - Modulator and Demodulator
AM - Modulator and DemodulatorAM - Modulator and Demodulator
AM - Modulator and Demodulator
KannanKrishnana
 
Amplitute modulation
Amplitute modulationAmplitute modulation
Amplitute modulation
ZunAib Ali
 
Ref angle modulation (1)
Ref angle modulation (1)Ref angle modulation (1)
Ref angle modulation (1)Sarah Krystelle
 
F Comm 8 FM.pptx
F Comm 8 FM.pptxF Comm 8 FM.pptx
F Comm 8 FM.pptx
MohamedAbdullahiYusu
 
Analog communication.ppt
Analog communication.pptAnalog communication.ppt
Analog communication.ppt
YashwanthChandra7
 
Frequency deviation
Frequency deviation Frequency deviation
Frequency deviation
The Hoa Nguyen
 
Amplitute modulation
Amplitute modulationAmplitute modulation
Amplitute modulation
Akanksha_Seth
 
Communication Systems 1 - Spring 2024 AM Lectures Group 2.pptx
Communication Systems 1 - Spring 2024 AM Lectures Group 2.pptxCommunication Systems 1 - Spring 2024 AM Lectures Group 2.pptx
Communication Systems 1 - Spring 2024 AM Lectures Group 2.pptx
mahmoudmaher2042
 

Similar to 12 Narrow_band_and_Wide_band_FM.pdf (20)

frequency modulation
frequency modulationfrequency modulation
frequency modulation
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Angle modulation fm
Angle modulation fmAngle modulation fm
Angle modulation fm
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 
Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15
 
Angel modulization in Frequency modulation and Phase modulation
Angel modulization in Frequency modulation and Phase modulationAngel modulization in Frequency modulation and Phase modulation
Angel modulization in Frequency modulation and Phase modulation
 
10 Angle_modulation.pdf
10 Angle_modulation.pdf10 Angle_modulation.pdf
10 Angle_modulation.pdf
 
Frequency Modulation
Frequency ModulationFrequency Modulation
Frequency Modulation
 
Lecture_ch5.pptx
Lecture_ch5.pptxLecture_ch5.pptx
Lecture_ch5.pptx
 
AM - Modulator and Demodulator
AM - Modulator and DemodulatorAM - Modulator and Demodulator
AM - Modulator and Demodulator
 
Amplitute modulation
Amplitute modulationAmplitute modulation
Amplitute modulation
 
Ref angle modulation
Ref angle modulationRef angle modulation
Ref angle modulation
 
Ref angle modulation (1)
Ref angle modulation (1)Ref angle modulation (1)
Ref angle modulation (1)
 
F Comm 8 FM.pptx
F Comm 8 FM.pptxF Comm 8 FM.pptx
F Comm 8 FM.pptx
 
Analog communication.ppt
Analog communication.pptAnalog communication.ppt
Analog communication.ppt
 
ADC PPT.pptx
ADC PPT.pptxADC PPT.pptx
ADC PPT.pptx
 
Frequency deviation
Frequency deviation Frequency deviation
Frequency deviation
 
Amplitute modulation
Amplitute modulationAmplitute modulation
Amplitute modulation
 
Communication Systems 1 - Spring 2024 AM Lectures Group 2.pptx
Communication Systems 1 - Spring 2024 AM Lectures Group 2.pptxCommunication Systems 1 - Spring 2024 AM Lectures Group 2.pptx
Communication Systems 1 - Spring 2024 AM Lectures Group 2.pptx
 

More from Mohamedshabana38

1 Sampling and Signal Reconstruction.pdf
1 Sampling and Signal Reconstruction.pdf1 Sampling and Signal Reconstruction.pdf
1 Sampling and Signal Reconstruction.pdf
Mohamedshabana38
 
2 Aliasing (1).pdf
2 Aliasing (1).pdf2 Aliasing (1).pdf
2 Aliasing (1).pdf
Mohamedshabana38
 
1.pdf
1.pdf1.pdf
dsl-advances-0130938106-9780130938107.pdf
dsl-advances-0130938106-9780130938107.pdfdsl-advances-0130938106-9780130938107.pdf
dsl-advances-0130938106-9780130938107.pdf
Mohamedshabana38
 
419907669-Linear-Algebra-by-Gilbert-Strang.pdf
419907669-Linear-Algebra-by-Gilbert-Strang.pdf419907669-Linear-Algebra-by-Gilbert-Strang.pdf
419907669-Linear-Algebra-by-Gilbert-Strang.pdf
Mohamedshabana38
 
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdfCable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Mohamedshabana38
 
exfo_spec-sheet_maxtester-635_v16_en.pdf
exfo_spec-sheet_maxtester-635_v16_en.pdfexfo_spec-sheet_maxtester-635_v16_en.pdf
exfo_spec-sheet_maxtester-635_v16_en.pdf
Mohamedshabana38
 
mod_2.pdf
mod_2.pdfmod_2.pdf
mod_2.pdf
Mohamedshabana38
 
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
Mohamedshabana38
 
mod_3.pdf
mod_3.pdfmod_3.pdf
mod_3.pdf
Mohamedshabana38
 
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
Mohamedshabana38
 
mod_4.pdf
mod_4.pdfmod_4.pdf
mod_4.pdf
Mohamedshabana38
 
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
Mohamedshabana38
 
408375669-XDSL.pdf
408375669-XDSL.pdf408375669-XDSL.pdf
408375669-XDSL.pdf
Mohamedshabana38
 
Exfo-CABLESHARK-P3-Specifications-11A67.pdf
Exfo-CABLESHARK-P3-Specifications-11A67.pdfExfo-CABLESHARK-P3-Specifications-11A67.pdf
Exfo-CABLESHARK-P3-Specifications-11A67.pdf
Mohamedshabana38
 
101483423-Fiber-Characterization-Training.pdf
101483423-Fiber-Characterization-Training.pdf101483423-Fiber-Characterization-Training.pdf
101483423-Fiber-Characterization-Training.pdf
Mohamedshabana38
 
424185963-Introduction-to-VoLTE.pdf
424185963-Introduction-to-VoLTE.pdf424185963-Introduction-to-VoLTE.pdf
424185963-Introduction-to-VoLTE.pdf
Mohamedshabana38
 
exfo_reference-guide_otn.pdf
exfo_reference-guide_otn.pdfexfo_reference-guide_otn.pdf
exfo_reference-guide_otn.pdf
Mohamedshabana38
 
388865344-990dsl-Manu-copper-loop-tester.pdf
388865344-990dsl-Manu-copper-loop-tester.pdf388865344-990dsl-Manu-copper-loop-tester.pdf
388865344-990dsl-Manu-copper-loop-tester.pdf
Mohamedshabana38
 

More from Mohamedshabana38 (20)

1 Sampling and Signal Reconstruction.pdf
1 Sampling and Signal Reconstruction.pdf1 Sampling and Signal Reconstruction.pdf
1 Sampling and Signal Reconstruction.pdf
 
2 Aliasing (1).pdf
2 Aliasing (1).pdf2 Aliasing (1).pdf
2 Aliasing (1).pdf
 
1.pdf
1.pdf1.pdf
1.pdf
 
dsl-advances-0130938106-9780130938107.pdf
dsl-advances-0130938106-9780130938107.pdfdsl-advances-0130938106-9780130938107.pdf
dsl-advances-0130938106-9780130938107.pdf
 
419907669-Linear-Algebra-by-Gilbert-Strang.pdf
419907669-Linear-Algebra-by-Gilbert-Strang.pdf419907669-Linear-Algebra-by-Gilbert-Strang.pdf
419907669-Linear-Algebra-by-Gilbert-Strang.pdf
 
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdfCable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
 
Module 1 (1).pdf
Module 1 (1).pdfModule 1 (1).pdf
Module 1 (1).pdf
 
exfo_spec-sheet_maxtester-635_v16_en.pdf
exfo_spec-sheet_maxtester-635_v16_en.pdfexfo_spec-sheet_maxtester-635_v16_en.pdf
exfo_spec-sheet_maxtester-635_v16_en.pdf
 
mod_2.pdf
mod_2.pdfmod_2.pdf
mod_2.pdf
 
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
 
mod_3.pdf
mod_3.pdfmod_3.pdf
mod_3.pdf
 
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
 
mod_4.pdf
mod_4.pdfmod_4.pdf
mod_4.pdf
 
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
 
408375669-XDSL.pdf
408375669-XDSL.pdf408375669-XDSL.pdf
408375669-XDSL.pdf
 
Exfo-CABLESHARK-P3-Specifications-11A67.pdf
Exfo-CABLESHARK-P3-Specifications-11A67.pdfExfo-CABLESHARK-P3-Specifications-11A67.pdf
Exfo-CABLESHARK-P3-Specifications-11A67.pdf
 
101483423-Fiber-Characterization-Training.pdf
101483423-Fiber-Characterization-Training.pdf101483423-Fiber-Characterization-Training.pdf
101483423-Fiber-Characterization-Training.pdf
 
424185963-Introduction-to-VoLTE.pdf
424185963-Introduction-to-VoLTE.pdf424185963-Introduction-to-VoLTE.pdf
424185963-Introduction-to-VoLTE.pdf
 
exfo_reference-guide_otn.pdf
exfo_reference-guide_otn.pdfexfo_reference-guide_otn.pdf
exfo_reference-guide_otn.pdf
 
388865344-990dsl-Manu-copper-loop-tester.pdf
388865344-990dsl-Manu-copper-loop-tester.pdf388865344-990dsl-Manu-copper-loop-tester.pdf
388865344-990dsl-Manu-copper-loop-tester.pdf
 

Recently uploaded

在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 

Recently uploaded (20)

在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 

12 Narrow_band_and_Wide_band_FM.pdf

  • 1. Types of FM • Narrow Band FM (NBFM) • Modulation index is small (β<<1) • Frequency deviation is small( ≈ 20 Hz) • Wide Band FM (WBFM) • Modulation index is large (β>>1) • Frequency deviation is large ( ≈ 75 kHz)
  • 2. Narrow Band FM • The FM signal is defined as s(t)  Ac cos[2fct   sin 2fmt]     (1) • Expanding Eq.(1), we get (cos(a+b)=cosacosb-sinasinb)
  • 3. Narrow Band FM • The FM signal is defined as s(t)  Ac cos[2fct   sin 2fmt]     (1) • Expanding Eq.(1), we get s(t)  Accos2fct cos[ sin 2fmt] Acsin 2fctsin[ sin 2fmt]   (2) • As modulation index β is small, we may use the following approximations:
  • 4. Narrow Band FM • The FM signal is defined as s(t)  Ac cos[2fct   sin 2fmt]     (1) • Expanding Eq.(1), we get s(t)  Accos2fct cos[ sin 2fmt] Ac sin 2fctsin[ sin 2fmt]   (2) • As modulation index β is small, we may use the following approximations: • Now Eq.(2) becomes cos[ sin 2f t] 1 m sin[ sin 2fmt]   sin 2fmt
  • 5. Narrow Band FM • The FM signal is defined as s(t)  Ac cos[2fct   sin 2fmt]     (1) • Expanding Eq.(1), we get s(t)  Accos2fct cos[ sin 2fmt] Ac sin 2fctsin[ sin 2fmt]   (2) • As modulation index β is small, we may use the following approximations: cos[ sin 2f t] 1 m sin[ sin 2fmt]   sin 2fmt • Now Eq.(2) becomes s(t)  Ac cos2fct  Ac sin 2fctsin 2fmt    (3) • Eq.(3) defines the approximate form of NBFM signal produced by sinusoidal message signal
  • 6. Narrow Band FM • Expanding Eq.(3), we get 2 m c c c m c c s(t)  A cos2f t  1 A {cos[2( f  f )t ] cos[2( f  f )t]}  (4)
  • 7. Narrow Band FM • Expanding Eq.(3), we get • The above equation is somewhat similar to AM signal 2 m c c c m c c s(t)  A cos2f t  1 A {cos[2( f  f )t]  cos[2( f  f )t]}  (4) 2 m c c c m c c s(t)  A cos2f t  1 mA {cos[2( f  f )t ] cos[2( f  f )t]}  (5)
  • 8. Narrow Band FM • Expanding Eq.(3), we get • The above equation is somewhat similar to AM signal • The difference between the two signals is the algebric sign of the lower side frequency in the narrow band FM is reversed • The NBFM signal requires the same transmission bandwidth of the AM signal (2fm) 2 m c c c m c c s(t)  A cos2f t  1 A {cos[2( f  f )t]  cos[2( f  f )t]}  (4) 2 m c c c m c c s(t)  A cos2f t  1 mA {cos[2( f  f )t]  cos[2( f  f )t]}  (5)
  • 9. Phasor diagram of NBFM and AM
  • 10. Phasor diagram of NBFM and AM • In NBFM, the resultant phasor has same amplitude of the carrier phasor but out of phase w.r.t it • In AM, the resultant phasor has different amplitude of the carrier phasor but always inphase w.r.t it
  • 11. Narrow Band FM • Ideally FM signal contains constant envelope • But here the FM signal produced differs from ideal condition • The envelope contains a residual amplitude modulation and varies in time • For a sinusoidal message signal, the angle θi(t) contains harmonic distortion in the form of third and higher harmonics of fm • By restricting   0.3 , the effect of residual AM and harmonic distortion can be limited to negligible levels
  • 12. Wide Band FM • The FM signal is defined as s(t)  Ac cos[2fct   sin 2fmt]     (1) • Eq.(1) is non-periodic unless the carrier signal frequency fc integral multiple of the message signal frequency fm • Assume the carrier signal frequency fc is large is an • Rewriting Eq.(1) by using complex representation of band-pass signals, we get
  • 13. Wide Band FM • The FM signal is defined as s(t)  Ac cos[2fct   sin 2fmt]     (1) • Eq.(1) is non-periodic unless the carrier signal frequency fc integral multiple of the message signal frequency fm • Assume the carrier signal frequency fc is large is an • Rewriting Eq.(1) by using complex representation of band-pass signals, we get m c c s(t)  Re[A exp( j2f t  j sin 2f t)]
  • 14. Wide Band FM • The FM signal is defined as s(t)  Ac cos[2fct   sin 2fmt]     (1) • Eq.(1) is non-periodic unless the carrier signal frequency fc integral multiple of the message signal frequency fm • Assume the carrier signal frequency fc is large is an • Rewriting Eq.(1) by using complex representation of band-pass signals, we get c c m s(t)  Re[A exp( j2f t  j sin 2f t)] c s(t)  Re[~ s (t)exp( j2f t)]   (2) • where ~ s(t)is the complex envelope of the FM signal defined as
  • 15. Wide Band FM • The FM signal is defined as s(t)  Ac cos[2fct   sin 2fmt]     (1) • Eq.(1) is non-periodic unless the carrier signal frequency fc integral multiple of the message signal frequency fm • Assume the carrier signal frequency fc is large is an • Rewriting Eq.(1) by using complex representation of band-pass signals, we get c c m s(t)  Re[A exp( j2f t  j sin 2f t)] c s(t)  Re[~ s (t)exp( j2f t)]   (2) • where ~ s(t)is the complex envelope of the FM signal defined as ~ s (t)  A exp[ j sin 2f t]   (3) c m • ~ s (t) is a periodic function of time with fundamental frequency fm
  • 17. Wide Band FM ~ s (t)  A exp[ j sin 2f t]   (3) c m • Expand ~ s(t) in the form of complex Fourier series is given as • Cn – Complex Fourier coefficient  ~ s(t)   n cn exp[ j2nfmt]   (4)
  • 18. Wide Band FM ~ s (t)  A exp[ j sin 2f t]   (3) c m • Expand ~ s(t) in the form of complex Fourier series is given as • Cn – Complex Fourier coefficient • Sub Eq.(3) in Eq.(5)  ~ s(t)   n cn exp[ j2nfmt]   (4) 1 1 c  f  2 fm  2 fm m ~ s (t)exp( j2nf t)dt    (5) m n
  • 19. Wide Band FM ~ s (t)  A exp[ j sin 2f t]   (3) c m • Expand ~ s(t) in the form of complex Fourier series is given as • Cn – Complex Fourier coefficient • Sub Eq.(3) in Eq.(5) 1  ~ s(t)   n cn exp[ j2nfmt]   (4) 2 fm cn  Ac fm exp( j sin 2fmt  j2nfmt)dt    (6) 1  2 fm 1 1 c  f  2 fm  2 fm m ~ s (t)exp( j2nf t)dt    (5) m n
  • 20. Wide Band FM • Define a new variable, • Now the limits become x  2fmt, dx  2fmdt
  • 21. Wide Band FM • Define a new variable, • Now the limits become when t   • Rewrite Eq.(6), x  2fmt, dx  2fmdt , x   , x  , when t  2 fm 2 fm 1 1
  • 22. Wide Band FM • Define a new variable, • Rewrite Eq.(6), • The integral on the right side of the equation except the scaling factor is recognized as nth order Bessel function of the 1st kind and argument β. This function is defined by Jn(β) x  2fmt, dx  2fmdt • Now the limits become when t   , x   , x  , when t  2 fm 2 fm 1 1 exp[ j( sin x  nx)]dx    (7) c   Ac 2 n  
  • 23. Wide Band FM 1   • Now Eq.(7) is reduced to Jn ()  2 exp[ j( sin x  nx)]dx    (8)
  • 24. Wide Band FM 1  Jn ()  2 exp[ j( sin x  nx)]dx    (8)  • Now Eq.(7) is reduced to cn  Ac Jn ()    (9) • Sub Eq.(9) in Eq.(4)
  • 25. Wide Band FM • Sub Eq.(10) in Eq.(2) 1  Jn ()  2 exp[ j( sin x  nx)]dx    (8)  • Now Eq.(7) is reduced to cn  Ac Jn ()    (9) • Sub Eq.(9) in Eq.(4)  n ~ s (t)  A J ()exp[ j2nf t]   (10) c  n m
  • 26. Wide Band FM • Sub Eq.(10) in Eq.(2) • Interchanging the order of the summation and evaluation of the real part in the R.H.S, 1  Jn ()  2 exp[ j( sin x  nx)]dx    (8)  • Now Eq.(7) is reduced to cn  Ac Jn ()    (9) • Sub Eq.(9) in Eq.(4)  n ~ s (t)  A J ()exp[ j2nf t]   (10) c  n m  s(t)  Ac.Re[ Jn ()exp[ j2( fc  nfm )t]   (11) n
  • 27. Wide Band FM • By taking Fourier transform, Eq.(12) becomes  s(t)  Ac Jn ()cos[2( fc  nfm )t]   (12) n • Eq.(12) is the Fourier series representation of the single tone FM signal for an arbitrary value of β
  • 28. Wide Band FM • By taking Fourier transform, Eq.(12) becomes  s(t)  Ac Jn ()cos[2( fc  nfm )t]   (12) n • Eq.(12) is the Fourier series representation of the single tone FM signal for an arbitrary value of β 2 S( f )  Ac m c   n Jn ()[( f  fc  nfm ) ( f  f  nf )]   (13) Put 𝑛 = 0, ⟹ 𝑠 𝑓 = 𝐴c 2 𝐽0  𝛿 𝑓 —𝑓c + 𝛿 𝑓 + 𝑓c
  • 29. Wide Band FM Spectrum of WBFM: Put 𝑛 = 1, 𝐴c 2 c 𝐽1 β 𝛿 𝑓 — 𝑓 + 𝑛𝑓m c + 𝛿 𝑓 + 𝑓 + 𝑛𝑓m 𝑠 𝑓 = Put 𝑛 = —1, 𝑠 𝑓 = 𝐴c 2 –1 c 𝐽 β 𝛿 𝑓 — 𝑓 + 𝑛𝑓 m c + 𝛿 𝑓 + 𝑓 + 𝑛𝑓m fc  fm  fc  fm  fm fc  fm fc fc  fm  f 0 𝐴c 2 𝐽 β 0 𝐴c 2 𝐽 β 1 𝐴c 2 𝐽 β –1 𝐴c 2 𝐽 β 0 𝐴c 2 𝐽 β 1 𝐴c 2 𝐽–1 β 𝑠 (𝑓)
  • 30. Bessel function Jn(β) vs Modulation index β
  • 31. Properties of Bessel function Jn(β) 1. Jn ()  (1) J () n n for all values of n both positive and negative 2. For small values of β J0 () 1 3. 2 1 Jn ()  0,n  2 J ()    J 2 n () 1 n
  • 32.
  • 33. Bessel table (n vs β)
  • 34. Observations from Bessel function analysis • The spectrum of FM signal consists of a carrier component and an infinite set of side frequencies locate symmetrically on either side of the carrier at frequency separations of fm, 2fm, 3fm,….. fc  fm  fc  fm  fm fc  fm fc fc  fm  f 0 𝐴c 2 𝐽 β 0 𝐴c 2 𝐽 β 1 𝐴c 2 𝐽 β –1 𝐴c 2 𝐽 β 0 𝐴c 2 𝐽 β 1 𝐴c 2 𝐽–1 β
  • 35. Observations from Bessel function analysis • The spectrum of FM signal consists of a carrier component and an infinite set of side frequencies locate symmetrically on either side of the carrier at frequency separations of fm, 2fm, 3fm,….. • For small values of β less than unity, only the Bessel coefficients J0(β) and J1(β) have significant values – Carrier and single pair of side frequencies fc+/-fm – NBFM fc  fm  fc  fm  fm fc  fm fc fc  fm  f 0 𝐴c 2 𝐽 β 0 𝐴c 2 𝐽 β 1 𝐴c 2 𝐽 β –1 𝐴c 2 𝐽 β 0 𝐴c 2 𝐽 β 1 𝐴c 2 𝐽–1 β
  • 36. Observations from Bessel function analysis • Unlike AM, the amplitude of the carrier component varies with β. The average power of the FM signal can be determined as  n c  P  J 2 n () A 1 2 2 2 1 2 c A P  fc  fm  fc  fm  fm fc  fm fc fc  fm  f 0 𝐴c 2 𝐽 β 0 𝐴c 2 𝐽 β 1 𝐴c 2 𝐽 β –1 𝐴c 2 𝐽 β 0 𝐴c 2 𝐽 β 1 𝐴c 2 𝐽–1 β
  • 37. Observations from Bessel function analysis • Unlike AM, the amplitude of the carrier component varies with β. The average power of the FM signal can be determined as  n c  P  J 2 n () A 1 2 2 2 1 2 c A P  Sideband power, 𝑃SB = 2 2 2 2 2 𝐽1 β + ⋯ + 𝐽n β + 𝐽–1 β + ⋯ + 𝐽–n β = 2 𝐴C 2 2 2 𝐽1 β 2 + ⋯ + 𝐽n β = 𝐴C 2 𝐽1 2 β 2 + ⋯ + 𝐽n β 𝐴C 2 Total modulated power, 𝑃T = 𝑃C + 𝑃SB