This document introduces the concept of random processes and provides examples to illustrate them. It defines a random process as a probability system composed of a sample space, an ensemble of time functions, and a probability measure. Random processes extend the concept of a random variable to incorporate the time parameter. Examples given include coin tossing, throwing a die, and thermal noise voltages across resistors. A random process is said to be stationary if its joint probability distribution is invariant to time shifts. Stationary processes have the property that the probability of waveforms passing through time-shifted windows remains the same. An example of a non-stationary process is also provided.