SlideShare a Scribd company logo
William Stallings
Computer Organization
and Architecture
8th Edition


Chapter 9
Computer Arithmetic
Arithmetic & Logic Unit
• Does the calculations
• Everything else in the computer is there to
  service this unit
• Handles integers
• May handle floating point (real) numbers
• May be separate FPU (maths co-
  processor)
• May be on chip separate FPU (486DX +)
ALU Inputs and Outputs
Integer Representation
• Only have 0 & 1 to represent everything
• Positive numbers stored in binary
    —e.g. 41=00101001
•   No minus sign
•   No period
•   Sign-Magnitude
•   Two’s compliment
Sign-Magnitude
•   Left most bit is sign bit
•   0 means positive
•   1 means negative
•   +18 = 00010010
•    -18 = 10010010
•   Problems
    —Need to consider both sign and magnitude in
     arithmetic
    —Two representations of zero (+0 and -0)
Two’s Compliment
•   +3   =   00000011
•   +2   =   00000010
•   +1   =   00000001
•   +0   =   00000000
•   -1   =   11111111
•   -2   =   11111110
•   -3   =   11111101
Benefits
• One representation of zero
• Arithmetic works easily (see later)
• Negating is fairly easy
  —3 = 00000011
  —Boolean complement gives    11111100
  —Add 1 to LSB                11111101
Geometric Depiction of Twos
Complement Integers
Negation Special Case 1
•    0=             00000000
•   Bitwise not     11111111
•   Add 1 to LSB           +1
•   Result        1 00000000
•   Overflow is ignored, so:
•   -0=0√
Negation Special Case 2
•   -128 =        10000000
•   bitwise not   01111111
•   Add 1 to LSB         +1
•   Result        10000000
•   So:
•   -(-128) = -128 X
•   Monitor MSB (sign bit)
•   It should change during negation
Range of Numbers
• 8 bit 2s compliment
  —+127 = 01111111 = 27 -1
  — -128 = 10000000 = -27
• 16 bit 2s compliment
  —+32767 = 011111111 11111111 = 215 - 1
  — -32768 = 100000000 00000000 = -215
Conversion Between Lengths
•   Positive number pack with leading zeros
•   +18 =             00010010
•   +18 = 00000000 00010010
•   Negative numbers pack with leading ones
•   -18 =            10010010
•   -18 = 11111111 10010010
•   i.e. pack with MSB (sign bit)
Addition and Subtraction
• Normal binary addition
• Monitor sign bit for overflow

• Take twos compliment of substahend and
  add to minuend
  —i.e. a - b = a + (-b)


• So we only need addition and complement
  circuits
Hardware for Addition and Subtraction
Multiplication
•   Complex
•   Work out partial product for each digit
•   Take care with place value (column)
•   Add partial products
Multiplication Example
•     1011 Multiplicand (11 dec)
•   x 1101 Multiplier     (13 dec)
•     1011 Partial products
•   0000    Note: if multiplier bit is 1 copy
• 1011       multiplicand (place value)
• 1011       otherwise zero
• 10001111 Product (143 dec)
• Note: need double length result
Unsigned Binary Multiplication
Execution of Example
Flowchart for Unsigned Binary
Multiplication
Multiplying Negative Numbers
• This does not work!
• Solution 1
  —Convert to positive if required
  —Multiply as above
  —If signs were different, negate answer
• Solution 2
  —Booth’s algorithm
Booth’s Algorithm
Example of Booth’s Algorithm
Division
• More complex than multiplication
• Negative numbers are really bad!
• Based on long division
Division of Unsigned Binary Integers


                  00001101    Quotient
   Divisor   1011 10010011    Dividend
                   1011
                  001110
   Partial          1011
   Remainders
                    001111
                      1011
                               Remainder
                        100
Flowchart for Unsigned Binary Division
Real Numbers
• Numbers with fractions
• Could be done in pure binary
  —1001.1010 = 24 + 20 +2-1 + 2-3 =9.625
• Where is the binary point?
• Fixed?
  —Very limited
• Moving?
  —How do you show where it is?
Floating Point




• +/- .significand x 2exponent
• Misnomer
• Point is actually fixed between sign bit and body
  of mantissa
• Exponent indicates place value (point position)
Floating Point Examples
Signs for Floating Point
• Mantissa is stored in 2s compliment
• Exponent is in excess or biased notation
  —e.g. Excess (bias) 128 means
  —8 bit exponent field
  —Pure value range 0-255
  —Subtract 128 to get correct value
  —Range -128 to +127
Normalization
• FP numbers are usually normalized
• i.e. exponent is adjusted so that leading
  bit (MSB) of mantissa is 1
• Since it is always 1 there is no need to
  store it
• (c.f. Scientific notation where numbers are
  normalized to give a single digit before
  the decimal point
• e.g. 3.123 x 103)
FP Ranges
• For a 32 bit number
  —8 bit exponent
  —+/- 2256 ≈ 1.5 x 1077
• Accuracy
  —The effect of changing lsb of mantissa
  —23 bit mantissa 2-23 ≈ 1.2 x 10-7
  —About 6 decimal places
Expressible Numbers
Density of Floating Point Numbers
IEEE 754
•   Standard for floating point storage
•   32 and 64 bit standards
•   8 and 11 bit exponent respectively
•   Extended formats (both mantissa and
    exponent) for intermediate results
IEEE 754 Formats
FP Arithmetic +/-
•   Check for zeros
•   Align significands (adjusting exponents)
•   Add or subtract significands
•   Normalize result
FP Addition & Subtraction Flowchart
FP Arithmetic x/÷
•   Check for zero
•   Add/subtract exponents
•   Multiply/divide significands (watch sign)
•   Normalize
•   Round
•   All intermediate results should be in
    double length storage
Floating Point Multiplication
Floating Point Division
Required Reading
• Stallings Chapter 9
• IEEE 754 on IEEE Web site

More Related Content

What's hot

Alu1
Alu1Alu1
06 floating point
06 floating point06 floating point
06 floating point
Piyush Rochwani
 
Quick tutorial on IEEE 754 FLOATING POINT representation
Quick tutorial on IEEE 754 FLOATING POINT representationQuick tutorial on IEEE 754 FLOATING POINT representation
Quick tutorial on IEEE 754 FLOATING POINT representation
Ritu Ranjan Shrivastwa
 
Floating point representation
Floating point representationFloating point representation
Floating point representation
missstevenson01
 
Integer Representation
Integer RepresentationInteger Representation
Integer Representation
gavhays
 
Floating point arithmetic operations (1)
Floating point arithmetic operations (1)Floating point arithmetic operations (1)
Floating point arithmetic operations (1)
cs19club
 
Number system conversion
Number system conversionNumber system conversion
Number system conversion
Kawsar Hamid Sumon
 
Chapter 07 Digital Alrithmetic and Arithmetic Circuits
Chapter 07 Digital Alrithmetic and Arithmetic CircuitsChapter 07 Digital Alrithmetic and Arithmetic Circuits
Chapter 07 Digital Alrithmetic and Arithmetic Circuits
SSE_AndyLi
 
Number systems
Number systemsNumber systems
Number systems
thechamp3
 
Number system
Number systemNumber system
Number system
Mantra VLSI
 
Number System
Number SystemNumber System
Number System
Zahid Rajeel
 
Digital Electronics- Number systems & codes
Digital Electronics- Number systems & codes Digital Electronics- Number systems & codes
Digital Electronics- Number systems & codes
VandanaPagar1
 
Fixed point and floating-point numbers
Fixed point and  floating-point numbersFixed point and  floating-point numbers
Fixed point and floating-point numbers
MOHAN MOHAN
 
Number systems r002
Number systems  r002Number systems  r002
Number systems r002
arunachalamr16
 
Basic of number system
Basic of number systemBasic of number system
Basic of number system
Akhilesh Maithani
 
Number system utm notes
Number system utm notesNumber system utm notes
Number system utm notes
Kurenai Ryu
 
Representation of Integers
Representation of IntegersRepresentation of Integers
Representation of Integers
Susantha Herath
 
IEEE Floating Point
IEEE Floating PointIEEE Floating Point
IEEE Floating Point
Jason Ricardo Thomas
 
Number systems ppt
Number systems pptNumber systems ppt
Number systems ppt
sudarmani rajagopal
 
Code conversion r006
Code conversion r006Code conversion r006
Code conversion r006
arunachalamr16
 

What's hot (20)

Alu1
Alu1Alu1
Alu1
 
06 floating point
06 floating point06 floating point
06 floating point
 
Quick tutorial on IEEE 754 FLOATING POINT representation
Quick tutorial on IEEE 754 FLOATING POINT representationQuick tutorial on IEEE 754 FLOATING POINT representation
Quick tutorial on IEEE 754 FLOATING POINT representation
 
Floating point representation
Floating point representationFloating point representation
Floating point representation
 
Integer Representation
Integer RepresentationInteger Representation
Integer Representation
 
Floating point arithmetic operations (1)
Floating point arithmetic operations (1)Floating point arithmetic operations (1)
Floating point arithmetic operations (1)
 
Number system conversion
Number system conversionNumber system conversion
Number system conversion
 
Chapter 07 Digital Alrithmetic and Arithmetic Circuits
Chapter 07 Digital Alrithmetic and Arithmetic CircuitsChapter 07 Digital Alrithmetic and Arithmetic Circuits
Chapter 07 Digital Alrithmetic and Arithmetic Circuits
 
Number systems
Number systemsNumber systems
Number systems
 
Number system
Number systemNumber system
Number system
 
Number System
Number SystemNumber System
Number System
 
Digital Electronics- Number systems & codes
Digital Electronics- Number systems & codes Digital Electronics- Number systems & codes
Digital Electronics- Number systems & codes
 
Fixed point and floating-point numbers
Fixed point and  floating-point numbersFixed point and  floating-point numbers
Fixed point and floating-point numbers
 
Number systems r002
Number systems  r002Number systems  r002
Number systems r002
 
Basic of number system
Basic of number systemBasic of number system
Basic of number system
 
Number system utm notes
Number system utm notesNumber system utm notes
Number system utm notes
 
Representation of Integers
Representation of IntegersRepresentation of Integers
Representation of Integers
 
IEEE Floating Point
IEEE Floating PointIEEE Floating Point
IEEE Floating Point
 
Number systems ppt
Number systems pptNumber systems ppt
Number systems ppt
 
Code conversion r006
Code conversion r006Code conversion r006
Code conversion r006
 

Similar to 09 arithmetic 2

Arithmetic unit.ppt
Arithmetic unit.pptArithmetic unit.ppt
Arithmetic unit.ppt
MSMinuSanjudharan
 
CA UNIT II.pptx
CA UNIT II.pptxCA UNIT II.pptx
CA UNIT II.pptx
ssuser9dbd7e
 
Floating_point_representation.pdf
Floating_point_representation.pdfFloating_point_representation.pdf
Floating_point_representation.pdf
RameshK531901
 
BOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etc
BOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etcBOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etc
BOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etc
Abhishek Rajpoot
 
Digital Electronics – Unit I.pdf
Digital Electronics – Unit I.pdfDigital Electronics – Unit I.pdf
Digital Electronics – Unit I.pdf
Kannan Kanagaraj
 
UNIT - I.pptx
UNIT - I.pptxUNIT - I.pptx
UNIT - I.pptx
amudhak10
 
UNIT - I.pptx
UNIT - I.pptxUNIT - I.pptx
UNIT - I.pptx
amudhak10
 
digitalelectronics.ppt
digitalelectronics.pptdigitalelectronics.ppt
digitalelectronics.ppt
HarshalVaidya11
 
Chapter 2_Number system (EEEg4302).pdf
Chapter 2_Number system (EEEg4302).pdfChapter 2_Number system (EEEg4302).pdf
Chapter 2_Number system (EEEg4302).pdf
TamiratDejene1
 
Arithmetic.ppt
Arithmetic.pptArithmetic.ppt
Arithmetic.ppt
MarlonMagtibay2
 
Computer Architecture
Computer ArchitectureComputer Architecture
Computer Architecture
Ravi Kumar
 
Computer Architecture
Computer ArchitectureComputer Architecture
Computer Architecture
Ravi Kumar
 
L3 ARITHMETIC OPERATIONS.pptx
L3 ARITHMETIC OPERATIONS.pptxL3 ARITHMETIC OPERATIONS.pptx
L3 ARITHMETIC OPERATIONS.pptx
Harish257692
 
Number Systems.ppt
Number Systems.pptNumber Systems.ppt
Number Systems.ppt
GnanaDeepikaMeduri
 
Unit-1 Digital Design and Binary Numbers:
Unit-1 Digital Design and Binary Numbers:Unit-1 Digital Design and Binary Numbers:
Unit-1 Digital Design and Binary Numbers:
Asif Iqbal
 
L 2.10
L 2.10L 2.10
09 binary number systems
09   binary number systems09   binary number systems
09 binary number systems
Lee Chadwick
 
Chapter 6
Chapter 6Chapter 6
Digital fundamendals r001a
Digital fundamendals r001aDigital fundamendals r001a
Digital fundamendals r001a
arunachalamr16
 
number system.ppt
number system.pptnumber system.ppt
number system.ppt
ShrutiSharma485933
 

Similar to 09 arithmetic 2 (20)

Arithmetic unit.ppt
Arithmetic unit.pptArithmetic unit.ppt
Arithmetic unit.ppt
 
CA UNIT II.pptx
CA UNIT II.pptxCA UNIT II.pptx
CA UNIT II.pptx
 
Floating_point_representation.pdf
Floating_point_representation.pdfFloating_point_representation.pdf
Floating_point_representation.pdf
 
BOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etc
BOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etcBOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etc
BOOTH ALGO, DIVISION(RESTORING _ NON RESTORING) etc etc
 
Digital Electronics – Unit I.pdf
Digital Electronics – Unit I.pdfDigital Electronics – Unit I.pdf
Digital Electronics – Unit I.pdf
 
UNIT - I.pptx
UNIT - I.pptxUNIT - I.pptx
UNIT - I.pptx
 
UNIT - I.pptx
UNIT - I.pptxUNIT - I.pptx
UNIT - I.pptx
 
digitalelectronics.ppt
digitalelectronics.pptdigitalelectronics.ppt
digitalelectronics.ppt
 
Chapter 2_Number system (EEEg4302).pdf
Chapter 2_Number system (EEEg4302).pdfChapter 2_Number system (EEEg4302).pdf
Chapter 2_Number system (EEEg4302).pdf
 
Arithmetic.ppt
Arithmetic.pptArithmetic.ppt
Arithmetic.ppt
 
Computer Architecture
Computer ArchitectureComputer Architecture
Computer Architecture
 
Computer Architecture
Computer ArchitectureComputer Architecture
Computer Architecture
 
L3 ARITHMETIC OPERATIONS.pptx
L3 ARITHMETIC OPERATIONS.pptxL3 ARITHMETIC OPERATIONS.pptx
L3 ARITHMETIC OPERATIONS.pptx
 
Number Systems.ppt
Number Systems.pptNumber Systems.ppt
Number Systems.ppt
 
Unit-1 Digital Design and Binary Numbers:
Unit-1 Digital Design and Binary Numbers:Unit-1 Digital Design and Binary Numbers:
Unit-1 Digital Design and Binary Numbers:
 
L 2.10
L 2.10L 2.10
L 2.10
 
09 binary number systems
09   binary number systems09   binary number systems
09 binary number systems
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Digital fundamendals r001a
Digital fundamendals r001aDigital fundamendals r001a
Digital fundamendals r001a
 
number system.ppt
number system.pptnumber system.ppt
number system.ppt
 

More from Sher Shah Merkhel

13 risc
13 risc13 risc
12 processor structure and function
12 processor structure and function12 processor structure and function
12 processor structure and function
Sher Shah Merkhel
 
11 instruction sets addressing modes
11  instruction sets addressing modes 11  instruction sets addressing modes
11 instruction sets addressing modes
Sher Shah Merkhel
 
10 instruction sets characteristics
10 instruction sets characteristics10 instruction sets characteristics
10 instruction sets characteristics
Sher Shah Merkhel
 
08 operating system support
08 operating system support08 operating system support
08 operating system support
Sher Shah Merkhel
 
07 input output
07 input output07 input output
07 input output
Sher Shah Merkhel
 
06 external memory
06 external memory06 external memory
06 external memory
Sher Shah Merkhel
 
04 cache memory
04 cache memory04 cache memory
04 cache memory
Sher Shah Merkhel
 
03 top level view of computer function and interconnection
03 top level view of computer function and interconnection03 top level view of computer function and interconnection
03 top level view of computer function and interconnection
Sher Shah Merkhel
 
02 computer evolution and performance
02 computer evolution and performance02 computer evolution and performance
02 computer evolution and performance
Sher Shah Merkhel
 
01 introduction
01 introduction01 introduction
01 introduction
Sher Shah Merkhel
 
chap 18 multicore computers
chap 18 multicore computers chap 18 multicore computers
chap 18 multicore computers
Sher Shah Merkhel
 

More from Sher Shah Merkhel (12)

13 risc
13 risc13 risc
13 risc
 
12 processor structure and function
12 processor structure and function12 processor structure and function
12 processor structure and function
 
11 instruction sets addressing modes
11  instruction sets addressing modes 11  instruction sets addressing modes
11 instruction sets addressing modes
 
10 instruction sets characteristics
10 instruction sets characteristics10 instruction sets characteristics
10 instruction sets characteristics
 
08 operating system support
08 operating system support08 operating system support
08 operating system support
 
07 input output
07 input output07 input output
07 input output
 
06 external memory
06 external memory06 external memory
06 external memory
 
04 cache memory
04 cache memory04 cache memory
04 cache memory
 
03 top level view of computer function and interconnection
03 top level view of computer function and interconnection03 top level view of computer function and interconnection
03 top level view of computer function and interconnection
 
02 computer evolution and performance
02 computer evolution and performance02 computer evolution and performance
02 computer evolution and performance
 
01 introduction
01 introduction01 introduction
01 introduction
 
chap 18 multicore computers
chap 18 multicore computers chap 18 multicore computers
chap 18 multicore computers
 

Recently uploaded

Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
Types of Herbal Cosmetics its standardization.
Types of Herbal Cosmetics its standardization.Types of Herbal Cosmetics its standardization.
Types of Herbal Cosmetics its standardization.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
heathfieldcps1
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
adhitya5119
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
RitikBhardwaj56
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
Priyankaranawat4
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
taiba qazi
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 

Recently uploaded (20)

Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
Types of Herbal Cosmetics its standardization.
Types of Herbal Cosmetics its standardization.Types of Herbal Cosmetics its standardization.
Types of Herbal Cosmetics its standardization.
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 

09 arithmetic 2

  • 1. William Stallings Computer Organization and Architecture 8th Edition Chapter 9 Computer Arithmetic
  • 2. Arithmetic & Logic Unit • Does the calculations • Everything else in the computer is there to service this unit • Handles integers • May handle floating point (real) numbers • May be separate FPU (maths co- processor) • May be on chip separate FPU (486DX +)
  • 3. ALU Inputs and Outputs
  • 4. Integer Representation • Only have 0 & 1 to represent everything • Positive numbers stored in binary —e.g. 41=00101001 • No minus sign • No period • Sign-Magnitude • Two’s compliment
  • 5. Sign-Magnitude • Left most bit is sign bit • 0 means positive • 1 means negative • +18 = 00010010 • -18 = 10010010 • Problems —Need to consider both sign and magnitude in arithmetic —Two representations of zero (+0 and -0)
  • 6. Two’s Compliment • +3 = 00000011 • +2 = 00000010 • +1 = 00000001 • +0 = 00000000 • -1 = 11111111 • -2 = 11111110 • -3 = 11111101
  • 7. Benefits • One representation of zero • Arithmetic works easily (see later) • Negating is fairly easy —3 = 00000011 —Boolean complement gives 11111100 —Add 1 to LSB 11111101
  • 8. Geometric Depiction of Twos Complement Integers
  • 9. Negation Special Case 1 • 0= 00000000 • Bitwise not 11111111 • Add 1 to LSB +1 • Result 1 00000000 • Overflow is ignored, so: • -0=0√
  • 10. Negation Special Case 2 • -128 = 10000000 • bitwise not 01111111 • Add 1 to LSB +1 • Result 10000000 • So: • -(-128) = -128 X • Monitor MSB (sign bit) • It should change during negation
  • 11. Range of Numbers • 8 bit 2s compliment —+127 = 01111111 = 27 -1 — -128 = 10000000 = -27 • 16 bit 2s compliment —+32767 = 011111111 11111111 = 215 - 1 — -32768 = 100000000 00000000 = -215
  • 12. Conversion Between Lengths • Positive number pack with leading zeros • +18 = 00010010 • +18 = 00000000 00010010 • Negative numbers pack with leading ones • -18 = 10010010 • -18 = 11111111 10010010 • i.e. pack with MSB (sign bit)
  • 13. Addition and Subtraction • Normal binary addition • Monitor sign bit for overflow • Take twos compliment of substahend and add to minuend —i.e. a - b = a + (-b) • So we only need addition and complement circuits
  • 14. Hardware for Addition and Subtraction
  • 15. Multiplication • Complex • Work out partial product for each digit • Take care with place value (column) • Add partial products
  • 16. Multiplication Example • 1011 Multiplicand (11 dec) • x 1101 Multiplier (13 dec) • 1011 Partial products • 0000 Note: if multiplier bit is 1 copy • 1011 multiplicand (place value) • 1011 otherwise zero • 10001111 Product (143 dec) • Note: need double length result
  • 19. Flowchart for Unsigned Binary Multiplication
  • 20. Multiplying Negative Numbers • This does not work! • Solution 1 —Convert to positive if required —Multiply as above —If signs were different, negate answer • Solution 2 —Booth’s algorithm
  • 22. Example of Booth’s Algorithm
  • 23. Division • More complex than multiplication • Negative numbers are really bad! • Based on long division
  • 24. Division of Unsigned Binary Integers 00001101 Quotient Divisor 1011 10010011 Dividend 1011 001110 Partial 1011 Remainders 001111 1011 Remainder 100
  • 25. Flowchart for Unsigned Binary Division
  • 26. Real Numbers • Numbers with fractions • Could be done in pure binary —1001.1010 = 24 + 20 +2-1 + 2-3 =9.625 • Where is the binary point? • Fixed? —Very limited • Moving? —How do you show where it is?
  • 27. Floating Point • +/- .significand x 2exponent • Misnomer • Point is actually fixed between sign bit and body of mantissa • Exponent indicates place value (point position)
  • 29. Signs for Floating Point • Mantissa is stored in 2s compliment • Exponent is in excess or biased notation —e.g. Excess (bias) 128 means —8 bit exponent field —Pure value range 0-255 —Subtract 128 to get correct value —Range -128 to +127
  • 30. Normalization • FP numbers are usually normalized • i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1 • Since it is always 1 there is no need to store it • (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point • e.g. 3.123 x 103)
  • 31. FP Ranges • For a 32 bit number —8 bit exponent —+/- 2256 ≈ 1.5 x 1077 • Accuracy —The effect of changing lsb of mantissa —23 bit mantissa 2-23 ≈ 1.2 x 10-7 —About 6 decimal places
  • 33. Density of Floating Point Numbers
  • 34. IEEE 754 • Standard for floating point storage • 32 and 64 bit standards • 8 and 11 bit exponent respectively • Extended formats (both mantissa and exponent) for intermediate results
  • 36. FP Arithmetic +/- • Check for zeros • Align significands (adjusting exponents) • Add or subtract significands • Normalize result
  • 37. FP Addition & Subtraction Flowchart
  • 38. FP Arithmetic x/÷ • Check for zero • Add/subtract exponents • Multiply/divide significands (watch sign) • Normalize • Round • All intermediate results should be in double length storage
  • 41. Required Reading • Stallings Chapter 9 • IEEE 754 on IEEE Web site