5.2 
Proving 
Trigonometric 
Identities 
Copyright © 2011 Pearson, Inc.
What you’ll learn about 
 A Proof Strategy 
 Proving Identities 
 Disproving Non-Identities 
 Identities in Calculus 
… and why 
Proving identities gives you excellent insights into the 
was mathematical proofs are constructed. 
Copyright © 2011 Pearson, Inc. Slide 5.2 - 2
General Strategies I for Proving an 
Identity 
1. The proof begins with the expression on one 
side of the identity. 
2. The proof ends with the expression on the 
other side. 
3. The proof in between consists of showing a 
sequence of expressions, each one easily 
seen to be equivalent to its preceding 
expression. 
Copyright © 2011 Pearson, Inc. Slide 5.2 - 3
General Strategies II for Proving an 
Identity 
1. Begin with the more complicated expression 
and work toward the less complicated 
expression. 
2. If no other move suggests itself, convert the 
entire expression to one involving sines and 
cosines. 
3. Combine fractions by combining them over a 
common denominator. 
Copyright © 2011 Pearson, Inc. Slide 5.2 - 4
Example Setting up a Difference of 
Squares 
x x 
x x 
sin 1 cos 
 
Prove the identity: . 
 
1  
cos sin 
Copyright © 2011 Pearson, Inc. Slide 5.2 - 5
Example Setting up a Difference of 
Squares 
x x 
x x 
sin 1 cos 
 
Prove the identity: . 
 
1  
cos sin 
x x x 
x x x 
sin sin 1  
cos 
1 cos 1 cos 1 cos 
  
   
   
x x 
sin 1 cos 
2 
 
1 cos 
x 
 
   
x x 
sin 1  
cos 
2 
sin 
x 
x 
1 cos 
sin 
x 
 
 
 
 
Copyright © 2011 Pearson, Inc. Slide 5.2 - 6
General Strategies III for Proving an 
Identity 
1. Use the algebraic identity (a+b)(a–b) = a2–b2 
to set up applications of the Pythagorean 
identities. 
2. Always be mindful of the “target” expression, 
and favor manipulations that bring you closer 
to your goal. 
Copyright © 2011 Pearson, Inc. Slide 5.2 - 7
Identities in Calculus 
1. cos3 x  1 sin2 xcos x 
2. sec4 x  1 tan2  x sec2  x 
3. sin2 x  
1 
2 
 
1 
2 
cos2x 
4. cos2 x  
1 
2 
 
1 
2 
cos2x 
5. sin5 x  1 2cos2 x  cos4  xsin x 
6. sin2 x cos5 x  sin2  2sin4 x  sin6  xcos x 
Copyright © 2011 Pearson, Inc. Slide 5.2 - 8
Example Proving an Identity Useful 
in Calculus 
Prove the following identity: 
sin5 x cos2 x  sin x cos2  2cos4 x  cos6  x 
Copyright © 2011 Pearson, Inc. Slide 5.2 - 9
Example Proving an Identity Useful 
in Calculus 
Prove the following identity: 
sin5 x cos2 x  sin x cos2  2cos4 x  cos6  x 
sin5 x cos2 x  sin x sin4 x cos2 x 
 sin x sin2  x2 
cos2  x 
 sin x 1 cos2  x2 
cos2  x 
 sin x 1 2cos2 x  cos4  x cos2  x 
 sin x cos2  2cos4 x  cos6  x 
Copyright © 2011 Pearson, Inc. Slide 5.2 - 10
Quick Review 
Write the expression in terms of sines and cosines only. 
Express your answer as a single fraction. 
1. cot x  tan x 
2. sin xsec x  cos xsec x 
3. 
sin x 
csc x 
 
cos x 
sec x 
Copyright © 2011 Pearson, Inc. Slide 5.2 - 11
Quick Review 
Determine whether or not the equation is an identity. 
If not, find a single value of x for which the two 
expressions are not equal. 
4. ln x2  2ln x 
5. x2  x 
Copyright © 2011 Pearson, Inc. Slide 5.2 - 12
Quick Review Solutions 
Write the expression in terms of sines and cosines only. 
Express your answer as a single fraction. 
1. cot x  tan x 
cos2 x  sin2 x 
cos xsin x 
2. sin xsec x  cos xsec x 
sin x  cos x 
cos x 
3. 
sin x 
csc x 
 
cos x 
sec x 
1 
Copyright © 2011 Pearson, Inc. Slide 5.2 - 13
Quick Review Solutions 
Determine whether or not the equation is an identity. 
If not, find a single value of x for which the two 
expressions are not equal. 
4. ln x2  2ln x No 
5. x2  x No x  0 
Copyright © 2011 Pearson, Inc. Slide 5.2 - 14

Unit 5.2

  • 1.
    5.2 Proving Trigonometric Identities Copyright © 2011 Pearson, Inc.
  • 2.
    What you’ll learnabout  A Proof Strategy  Proving Identities  Disproving Non-Identities  Identities in Calculus … and why Proving identities gives you excellent insights into the was mathematical proofs are constructed. Copyright © 2011 Pearson, Inc. Slide 5.2 - 2
  • 3.
    General Strategies Ifor Proving an Identity 1. The proof begins with the expression on one side of the identity. 2. The proof ends with the expression on the other side. 3. The proof in between consists of showing a sequence of expressions, each one easily seen to be equivalent to its preceding expression. Copyright © 2011 Pearson, Inc. Slide 5.2 - 3
  • 4.
    General Strategies IIfor Proving an Identity 1. Begin with the more complicated expression and work toward the less complicated expression. 2. If no other move suggests itself, convert the entire expression to one involving sines and cosines. 3. Combine fractions by combining them over a common denominator. Copyright © 2011 Pearson, Inc. Slide 5.2 - 4
  • 5.
    Example Setting upa Difference of Squares x x x x sin 1 cos  Prove the identity: .  1  cos sin Copyright © 2011 Pearson, Inc. Slide 5.2 - 5
  • 6.
    Example Setting upa Difference of Squares x x x x sin 1 cos  Prove the identity: .  1  cos sin x x x x x x sin sin 1  cos 1 cos 1 cos 1 cos         x x sin 1 cos 2  1 cos x     x x sin 1  cos 2 sin x x 1 cos sin x     Copyright © 2011 Pearson, Inc. Slide 5.2 - 6
  • 7.
    General Strategies IIIfor Proving an Identity 1. Use the algebraic identity (a+b)(a–b) = a2–b2 to set up applications of the Pythagorean identities. 2. Always be mindful of the “target” expression, and favor manipulations that bring you closer to your goal. Copyright © 2011 Pearson, Inc. Slide 5.2 - 7
  • 8.
    Identities in Calculus 1. cos3 x  1 sin2 xcos x 2. sec4 x  1 tan2  x sec2  x 3. sin2 x  1 2  1 2 cos2x 4. cos2 x  1 2  1 2 cos2x 5. sin5 x  1 2cos2 x  cos4  xsin x 6. sin2 x cos5 x  sin2  2sin4 x  sin6  xcos x Copyright © 2011 Pearson, Inc. Slide 5.2 - 8
  • 9.
    Example Proving anIdentity Useful in Calculus Prove the following identity: sin5 x cos2 x  sin x cos2  2cos4 x  cos6  x Copyright © 2011 Pearson, Inc. Slide 5.2 - 9
  • 10.
    Example Proving anIdentity Useful in Calculus Prove the following identity: sin5 x cos2 x  sin x cos2  2cos4 x  cos6  x sin5 x cos2 x  sin x sin4 x cos2 x  sin x sin2  x2 cos2  x  sin x 1 cos2  x2 cos2  x  sin x 1 2cos2 x  cos4  x cos2  x  sin x cos2  2cos4 x  cos6  x Copyright © 2011 Pearson, Inc. Slide 5.2 - 10
  • 11.
    Quick Review Writethe expression in terms of sines and cosines only. Express your answer as a single fraction. 1. cot x  tan x 2. sin xsec x  cos xsec x 3. sin x csc x  cos x sec x Copyright © 2011 Pearson, Inc. Slide 5.2 - 11
  • 12.
    Quick Review Determinewhether or not the equation is an identity. If not, find a single value of x for which the two expressions are not equal. 4. ln x2  2ln x 5. x2  x Copyright © 2011 Pearson, Inc. Slide 5.2 - 12
  • 13.
    Quick Review Solutions Write the expression in terms of sines and cosines only. Express your answer as a single fraction. 1. cot x  tan x cos2 x  sin2 x cos xsin x 2. sin xsec x  cos xsec x sin x  cos x cos x 3. sin x csc x  cos x sec x 1 Copyright © 2011 Pearson, Inc. Slide 5.2 - 13
  • 14.
    Quick Review Solutions Determine whether or not the equation is an identity. If not, find a single value of x for which the two expressions are not equal. 4. ln x2  2ln x No 5. x2  x No x  0 Copyright © 2011 Pearson, Inc. Slide 5.2 - 14