SlideShare a Scribd company logo
Factoring Trinomials III
Factoring Trinomials III
Too factor trinomials of the form ax2 + bx + c, the shortest,
but not a reliable way, is by guessing, .i.e. we reverse the
FOIL procedure and try to guess what numbers are needed.
Factoring Trinomials III
Reversed FOIL Method
Too factor trinomials of the form ax2 + bx + c, the shortest,
but not a reliable way, is by guessing, .i.e. we reverse the
FOIL procedure and try to guess what numbers are needed.
Factoring Trinomials III
For this method, we need to find four numbers that fit certain
descriptions.
Reversed FOIL Method
Too factor trinomials of the form ax2 + bx + c, the shortest,
but not a reliable way, is by guessing, .i.e. we reverse the
FOIL procedure and try to guess what numbers are needed.
Factoring Trinomials III
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Reversed FOIL Method
Too factor trinomials of the form ax2 + bx + c, the shortest,
but not a reliable way, is by guessing, .i.e. we reverse the
FOIL procedure and try to guess what numbers are needed.
Factoring Trinomials III
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
Reversed FOIL Method
Too factor trinomials of the form ax2 + bx + c, the shortest,
but not a reliable way, is by guessing, .i.e. we reverse the
FOIL procedure and try to guess what numbers are needed.
Factoring Trinomials III
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Reversed FOIL Method
Too factor trinomials of the form ax2 + bx + c, the shortest,
but not a reliable way, is by guessing, .i.e. we reverse the
FOIL procedure and try to guess what numbers are needed.
Factoring Trinomials III
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Yes, 1* (2) + 3 * (1) = 5
Reversed FOIL Method
Too factor trinomials of the form ax2 + bx + c, the shortest,
but not a reliable way, is by guessing, .i.e. we reverse the
FOIL procedure and try to guess what numbers are needed.
Factoring Trinomials III
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Yes, 1* (2) + 3 * (1) = 5
b. 1* (± ) + 3* (± ) = –5.
Reversed FOIL Method
Too factor trinomials of the form ax2 + bx + c, the shortest,
but not a reliable way, is by guessing, .i.e. we reverse the
FOIL procedure and try to guess what numbers are needed.
Factoring Trinomials III
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Yes, 1* (2) + 3 * (1) = 5
b. 1* (± ) + 3* (± ) = –5.
Yes, 1* (1) + 3* (–2) = –5
Reversed FOIL Method
Too factor trinomials of the form ax2 + bx + c, the shortest,
but not a reliable way, is by guessing, .i.e. we reverse the
FOIL procedure and try to guess what numbers are needed.
Factoring Trinomials III
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Yes, 1* (2) + 3 * (1) = 5
b. 1* (± ) + 3* (± ) = –5.
Yes, 1* (1) + 3* (–2) = –5 or 1* (–2) + 3* (–1) = –5
Reversed FOIL Method
Too factor trinomials of the form ax2 + bx + c, the shortest,
but not a reliable way, is by guessing, .i.e. we reverse the
FOIL procedure and try to guess what numbers are needed.
Factoring Trinomials III
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Yes, 1* (2) + 3 * (1) = 5
b. 1* (± ) + 3* (± ) = –5.
Yes, 1* (1) + 3* (–2) = –5 or 1* (–2) + 3* (–1) = –5
c. 1* (± ) + 3* (± ) = 8.
Reversed FOIL Method
Too factor trinomials of the form ax2 + bx + c, the shortest,
but not a reliable way, is by guessing, .i.e. we reverse the
FOIL procedure and try to guess what numbers are needed.
Factoring Trinomials III
Too factor trinomials of the form ax2 + bx + c, the shortest,
but not a reliable way, is by guessing, .i.e. we reverse the
FOIL procedure and try to guess what numbers are needed.
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Yes, 1* (2) + 3 * (1) = 5
b. 1* (± ) + 3* (± ) = –5.
Yes, 1* (1) + 3* (–2) = –5 or 1* (–2) + 3* (–1) = –5
c. 1* (± ) + 3* (± ) = 8.
No, since the most we can obtain is 1* (1) + 3* (2) = 7.
Reversed FOIL Method
Factoring Trinomials III
(Reversed FOIL Method)
Factoring Trinomials III
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
Factoring Trinomials III
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
Factoring Trinomials III
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2
Factoring Trinomials III
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
Factoring Trinomials III
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
Factoring Trinomials III
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x,
Factoring Trinomials III
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
3(± # ) +1(± #) = 5 where the #’s are 1 and 2.
Factoring Trinomials III
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x, or that
3(± # ) +1(± #) = 5 where the #’s are 1 and 2.
Since 3(1) +1(2) = 5,
Factoring Trinomials III
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x, or that
3(± # ) +1(± #) = 5 where the #’s are 1 and 2.
Since 3(1) +1(2) = 5,
Factoring Trinomials III
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x, or that
3(± # ) +1(± #) = 5 where the #’s are 1 and 2.
Since 3(1) +1(2) = 5,
Factoring Trinomials III
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x, or that
3(± # ) +1(± #) = 5 where the #’s are 1 and 2.
Since 3(1) +1(2) = 5, we see that
3x2 + 5x + 2 = (3x + 2)(1x + 1).
Factoring Trinomials III
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x, or that
3(± # ) +1(± #) = 5 where the #’s are 1 and 2.
Since 3(1) +1(2) = 5, we see that
3x2 + 5x + 2 = (3x + 2)(1x + 1).
5x
Factoring Trinomials III
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x, or that
Factoring Trinomials III
Example C. Factor 3x2 – 7x + 2.
Factoring Trinomials III
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
Factoring Trinomials III
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s
3(± # ) + 1(± # ) = –7.
Factoring Trinomials III
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
Factoring Trinomials III
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Factoring Trinomials III
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
Factoring Trinomials III
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
We start with (3x ± #)(1x ± #).
Factoring Trinomials III
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s
Factoring Trinomials III
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = +5.
Factoring Trinomials III
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = +5.
Since c is negative, they must have opposite signs .
Factoring Trinomials III
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = +5.
It is 3(+2) + 1(–1) = +5.
Since c is negative, they must have opposite signs .
Factoring Trinomials III
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = +5.
It is 3(+2) + 1(–1) = +5.
So 3x2 + 5x + 2 = (3x –1)(1x + 2)
Since c is negative, they must have opposite signs .
Factoring Trinomials III
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
Example E. Factor 3x2 + 8x + 2.
Factoring Trinomials III
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
Factoring Trinomials III
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
Factoring Trinomials III
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible.
Factoring Trinomials III
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
Factoring Trinomials III
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
Factoring Trinomials III
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
Factoring Trinomials III
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
Factoring Trinomials III
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #).
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
Factoring Trinomials III
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
3(± # ) + 1(± # ) = +11.
Factoring Trinomials III
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
we need to fill in 2&2 or 1&4 as #'s so that
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
3(± # ) + 1(± # ) = +11. It can't be 2&2.
Factoring Trinomials III
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
we need to fill in 2&2 or 1&4 as #'s so that
3(± # ) + 1(± # ) = +11.
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
3(± # ) + 1(± # ) = +11. It can't be 2&2.
Factoring Trinomials III
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
we need to fill in 2&2 or 1&4 as #'s so that
Try 1&4,
3(± # ) + 1(± # ) = +11.
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
3(± # ) + 1(± # ) = +11. It can't be 2&2.
Factoring Trinomials III
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
we need to fill in 2&2 or 1&4 as #'s so that
Try 1&4, it is
3(+4) + 1(–1) = +11.
3(± # ) + 1(± # ) = +11.
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
3(± # ) + 1(± # ) = +11. It can't be 2&2.
Factoring Trinomials III
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
we need to fill in 2&2 or 1&4 as #'s so that
Try 1&4, it is
3(+4) + 1(–1) = +11.
So 3x2 + 11x – 4 = (3x – 1)(1x + 4).
Factoring Trinomials III
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
Example G. Factor 12x2 – 5x – 3.
Factoring Trinomials III
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1),
Factoring Trinomials III
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12
Factoring Trinomials III
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
Factoring Trinomials III
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
Factoring Trinomials III
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
12 = 1(12) = 2(6) = 3(4)
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
Factoring Trinomials III
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
12 = 1(12) = 2(6) = 3(4)
1&12 and 2&6 can be quickly eliminated.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
Factoring Trinomials III
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
12 = 1(12) = 2(6) = 3(4)
1&12 and 2&6 can be quickly eliminated.
We get (3)(–3) + (4)(+1) = – 5.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
So 12x2 – 5x – 3 = (3x + 1)(4x – 3).
Factoring Trinomials III
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
12 = 1(12) = 2(6) = 3(4)
1&12 and 2&6 can be quickly eliminated.
We get (3)(–3) + (4)(+1) = – 5.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
So 12x2 – 5x – 3 = (3x + 1)(4x – 3).
Factoring Trinomials III
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
12 = 1(12) = 2(6) = 3(4)
1&12 and 2&6 can be quickly eliminated.
We get (3)(–3) + (4)(+1) = – 5.
Remark:
In the above method, finding
(#)(± #) + (#)( ± #) = b
does not guarantee that the trinomial will factor.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
So 12x2 – 5x – 3 = (3x + 1)(4x – 3).
Factoring Trinomials III
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
12 = 1(12) = 2(6) = 3(4)
1&12 and 2&6 can be quickly eliminated.
We get (3)(–3) + (4)(+1) = – 5.
Remark:
In the above method, finding
(#)(± #) + (#)( ± #) = b
does not guarantee that the trinomial will factor. We have to
match the sign of c also.
Example H. Factor 3x2 – 7x – 2 .
Factoring Trinomials III
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #).
Factoring Trinomials III
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
Factoring Trinomials III
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
Factoring Trinomials III
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
In fact this trinomial is prime.
Factoring Trinomials III
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
In fact this trinomial is prime.
Factoring Trinomials III
There might be multiple matchings for
(#)(± #) + (#)( ± #) = b
make sure you chose the correct one, if any.
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
In fact this trinomial is prime.
Factoring Trinomials III
Example I: Factor 1x2 + 5x – 6 .
There might be multiple matchings for
(#)(± #) + (#)( ± #) = b
make sure you chose the correct one, if any.
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
In fact this trinomial is prime.
Factoring Trinomials III
Example I: Factor 1x2 + 5x – 6 .
We have:
1(+3) + 1(+2) = +5
There might be multiple matchings for
(#)(± #) + (#)( ± #) = b
make sure you chose the correct one, if any.
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
In fact this trinomial is prime.
Factoring Trinomials III
Example I: Factor 1x2 + 5x – 6 .
We have:
1(+3) + 1(+2) = +5
1(+6) + 1(–1) = +5
There might be multiple matchings for
(#)(± #) + (#)( ± #) = b
make sure you chose the correct one, if any.
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
In fact this trinomial is prime.
Factoring Trinomials III
Example I: Factor 1x2 + 5x – 6 .
We have:
1(+3) + 1(+2) = +5
The one that works is x2 + 5x – 6 = (x + 6)(x – 1).
1(+6) + 1(–1) = +5
There might be multiple matchings for
(#)(± #) + (#)( ± #) = b
make sure you chose the correct one, if any.
Factoring Trinomials III
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
Factoring Trinomials III
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
Factoring Trinomials III
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
3. make sure that x2 is positive, if not, factor out the negative
sign first.
Factoring Trinomials III
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
3. make sure that x2 is positive, if not, factor out the negative
sign first.
Example J. Factor –x3 + 3x + 2x2
Factoring Trinomials III
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
3. make sure that x2 is positive, if not, factor out the negative
sign first.
Example J. Factor –x3 + 3x + 2x2
–x3 + 3x + 2x2 Arrange the terms in order
= –x3 + 2x2 + 3x
Factoring Trinomials III
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
3. make sure that x2 is positive, if not, factor out the negative
sign first.
Example J. Factor –x3 + 3x + 2x2
–x3 + 3x + 2x2 Arrange the terms in order
= –x3 + 2x2 + 3x Factor out the GCF
= – x(x2 – 2x – 3)
Factoring Trinomials III
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
3. make sure that x2 is positive, if not, factor out the negative
sign first.
Example J. Factor –x3 + 3x + 2x2
–x3 + 3x + 2x2 Arrange the terms in order
= –x3 + 2x2 + 3x Factor out the GCF
= – x(x2 – 2x – 3)
= – x(x – 3)(x + 1)
Factoring Trinomials III
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
3. make sure that x2 is positive, if not, factor out the negative
sign first.
Example J. Factor –x3 + 3x + 2x2
–x3 + 3x + 2x2 Arrange the terms in order
= –x3 + 2x2 + 3x Factor out the GCF
= – x(x2 – 2x – 3)
= – x(x – 3)(x + 1)
For factoring problems, try guessing first.
If no answer is found, use the ac-method
(or the formula) to determine if it is prime or do it by grouping,
and always check your answers.
Ex. A. Factor the following trinomials. If it’s prime, state so.
1. 3x2 – x – 2 2. 3x2 + x – 2 3. 3x2 – 2x – 1
4. 3x2 + 2x – 1 5. 2x2 – 3x + 1 6. 2x2 + 3x – 1
8. 2x2 – 3x – 27. 2x2 + 3x – 2
15. 6x2 + 5x – 6
10. 5x2 + 9x – 2
B. Factor. Factor out the GCF, the “–”, and arrange the
terms in order first.
9. 5x2 – 3x – 2
12. 3x2 – 5x – 211. 3x2 + 5x + 2
14. 6x2 – 5x – 613. 3x2 – 5x + 2
16. 6x2 – x – 2 17. 6x2 – 13x + 2 18. 6x2 – 13x + 2
19. 6x2 + 7x + 2 20. 6x2 – 7x + 2 21. 6x2 – 13x + 6
22. 6x2 + 13x + 6 23. 6x2 – 5x – 4 24. 6x2 – 13x + 8
25. 6x2 – 13x – 8
Factoring Trinomials III
25. 4x2 – 9 26. 4x2 – 49
27. 25x2 – 4 28. 4x2 + 9 29. 25x2 + 9
30. – 6x2 – 5xy + 6y2 31. – 3x2 + 2x3– 2x 32. –6x3 – x2 + 2x
33. –15x2 – 25x2 – 10x 34. 12x2y2 –14x2y2 + 4xy2

More Related Content

What's hot

3 2 adding and subtracting rational numbers lesson
3 2 adding and subtracting rational numbers lesson3 2 adding and subtracting rational numbers lesson
3 2 adding and subtracting rational numbers lesson
gwilson8786
 
Lesson 2 2 Adding And Subtracting Rational Numbers
Lesson 2 2 Adding And Subtracting Rational NumbersLesson 2 2 Adding And Subtracting Rational Numbers
Lesson 2 2 Adding And Subtracting Rational Numbers
hamlet1988
 
Lesson 2 3 Multiplying Rational Numbers
Lesson 2 3 Multiplying Rational NumbersLesson 2 3 Multiplying Rational Numbers
Lesson 2 3 Multiplying Rational Numbers
hamlet1988
 
Simplifying expressions
Simplifying expressionsSimplifying expressions
Simplifying expressions
Zain Masood
 

What's hot (20)

Unit 3.5
Unit 3.5Unit 3.5
Unit 3.5
 
Chapter0
Chapter0Chapter0
Chapter0
 
48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method
 
3 2 adding and subtracting rational numbers lesson
3 2 adding and subtracting rational numbers lesson3 2 adding and subtracting rational numbers lesson
3 2 adding and subtracting rational numbers lesson
 
Lesson 2 2 Adding And Subtracting Rational Numbers
Lesson 2 2 Adding And Subtracting Rational NumbersLesson 2 2 Adding And Subtracting Rational Numbers
Lesson 2 2 Adding And Subtracting Rational Numbers
 
Lesson 2 3 Multiplying Rational Numbers
Lesson 2 3 Multiplying Rational NumbersLesson 2 3 Multiplying Rational Numbers
Lesson 2 3 Multiplying Rational Numbers
 
11 applications of factoring
11 applications of factoring11 applications of factoring
11 applications of factoring
 
Unit 2.3
Unit 2.3Unit 2.3
Unit 2.3
 
Unit 7.3
Unit 7.3Unit 7.3
Unit 7.3
 
P
PP
P
 
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbersMIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
 
Lesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbersLesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbers
 
Unit 3.4
Unit 3.4Unit 3.4
Unit 3.4
 
Unit 2.5
Unit 2.5Unit 2.5
Unit 2.5
 
55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions 55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions
 
Simplifying expressions
Simplifying expressionsSimplifying expressions
Simplifying expressions
 
Real Numbers
Real NumbersReal Numbers
Real Numbers
 
Unit 2.7
Unit 2.7Unit 2.7
Unit 2.7
 
Lesson 1.9 the set of rational numbers
Lesson 1.9   the set of rational numbersLesson 1.9   the set of rational numbers
Lesson 1.9 the set of rational numbers
 
Unit .6
Unit .6Unit .6
Unit .6
 

Similar to 5 5factoring trinomial iii

1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1
math265
 
Powers, Pemdas, Properties
Powers, Pemdas, PropertiesPowers, Pemdas, Properties
Powers, Pemdas, Properties
kliegey524
 
1.7 multiplication ii w
1.7 multiplication ii w1.7 multiplication ii w
1.7 multiplication ii w
Tzenma
 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
jennytuazon01630
 

Similar to 5 5factoring trinomial iii (20)

Algebra factoring
Algebra factoringAlgebra factoring
Algebra factoring
 
123a ppt-all-2
123a ppt-all-2123a ppt-all-2
123a ppt-all-2
 
factoring trinomials the ac method and making lists
factoring trinomials  the ac method and making listsfactoring trinomials  the ac method and making lists
factoring trinomials the ac method and making lists
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1
 
Powers, Pemdas, Properties
Powers, Pemdas, PropertiesPowers, Pemdas, Properties
Powers, Pemdas, Properties
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Alg complex numbers
Alg complex numbersAlg complex numbers
Alg complex numbers
 
P6 factoring
P6 factoringP6 factoring
P6 factoring
 
P6 factoring
P6 factoringP6 factoring
P6 factoring
 
Teacher Lecture
Teacher LectureTeacher Lecture
Teacher Lecture
 
Integer Chips
Integer ChipsInteger Chips
Integer Chips
 
College algebra -REAL Numbers
College algebra -REAL NumbersCollege algebra -REAL Numbers
College algebra -REAL Numbers
 
Math 116 pres. 1
Math 116 pres. 1Math 116 pres. 1
Math 116 pres. 1
 
1.7 multiplication ii w
1.7 multiplication ii w1.7 multiplication ii w
1.7 multiplication ii w
 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
 
Chapter p 5
Chapter p 5Chapter p 5
Chapter p 5
 
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
3.complex numbers  Further Mathematics Zimbabwe Zimsec Cambridge3.complex numbers  Further Mathematics Zimbabwe Zimsec Cambridge
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
 
Em01 ba
Em01 baEm01 ba
Em01 ba
 
An introdcution to complex numbers jcw
An introdcution to complex numbers jcwAn introdcution to complex numbers jcw
An introdcution to complex numbers jcw
 
Geo chapter01power point
Geo chapter01power pointGeo chapter01power point
Geo chapter01power point
 

More from math123a (20)

1 numbers and factors eq
1 numbers and factors eq1 numbers and factors eq
1 numbers and factors eq
 
38 equations of lines-x
38 equations of lines-x38 equations of lines-x
38 equations of lines-x
 
37 more on slopes-x
37 more on slopes-x37 more on slopes-x
37 more on slopes-x
 
36 slopes of lines-x
36 slopes of lines-x36 slopes of lines-x
36 slopes of lines-x
 
7 inequalities ii exp
7 inequalities ii exp7 inequalities ii exp
7 inequalities ii exp
 
115 ans-ii
115 ans-ii115 ans-ii
115 ans-ii
 
14 2nd degree-equation word problems
14 2nd degree-equation word problems14 2nd degree-equation word problems
14 2nd degree-equation word problems
 
Soluiton i
Soluiton iSoluiton i
Soluiton i
 
123a test4-sample
123a test4-sample123a test4-sample
123a test4-sample
 
Sample fin
Sample finSample fin
Sample fin
 
12 4- sample
12 4- sample12 4- sample
12 4- sample
 
F12 2 -ans
F12 2 -ansF12 2 -ans
F12 2 -ans
 
F12 1-ans-jpg
F12 1-ans-jpgF12 1-ans-jpg
F12 1-ans-jpg
 
Sample1 v2-jpg-form
Sample1 v2-jpg-formSample1 v2-jpg-form
Sample1 v2-jpg-form
 
1exponents
1exponents1exponents
1exponents
 
3 6 introduction to sets-optional
3 6 introduction to sets-optional3 6 introduction to sets-optional
3 6 introduction to sets-optional
 
1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions
 
1 f4 lcm and lcd
1 f4 lcm and lcd1 f4 lcm and lcd
1 f4 lcm and lcd
 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractions
 
1 f7 on cross-multiplication
1 f7 on cross-multiplication1 f7 on cross-multiplication
1 f7 on cross-multiplication
 

Recently uploaded

PD ARRAY THEORY FOR INTERMEDIATE (1).pdf
PD ARRAY THEORY FOR INTERMEDIATE (1).pdfPD ARRAY THEORY FOR INTERMEDIATE (1).pdf
PD ARRAY THEORY FOR INTERMEDIATE (1).pdf
JerrySMaliki
 
一比一原版UO毕业证渥太华大学毕业证成绩单如何办理
一比一原版UO毕业证渥太华大学毕业证成绩单如何办理一比一原版UO毕业证渥太华大学毕业证成绩单如何办理
一比一原版UO毕业证渥太华大学毕业证成绩单如何办理
yonemuk
 
Latino Buying Power - May 2024 Presentation for Latino Caucus
Latino Buying Power - May 2024 Presentation for Latino CaucusLatino Buying Power - May 2024 Presentation for Latino Caucus
Latino Buying Power - May 2024 Presentation for Latino Caucus
Danay Escanaverino
 
what is the future of Pi Network currency.
what is the future of Pi Network currency.what is the future of Pi Network currency.
what is the future of Pi Network currency.
DOT TECH
 
一比一原版Birmingham毕业证伯明翰大学|学院毕业证成绩单如何办理
一比一原版Birmingham毕业证伯明翰大学|学院毕业证成绩单如何办理一比一原版Birmingham毕业证伯明翰大学|学院毕业证成绩单如何办理
一比一原版Birmingham毕业证伯明翰大学|学院毕业证成绩单如何办理
betoozp
 

Recently uploaded (20)

what is a pi whale and how to access one.
what is a pi whale and how to access one.what is a pi whale and how to access one.
what is a pi whale and how to access one.
 
Webinar Exploring DORA for Fintechs - Simont Braun
Webinar Exploring DORA for Fintechs - Simont BraunWebinar Exploring DORA for Fintechs - Simont Braun
Webinar Exploring DORA for Fintechs - Simont Braun
 
how can I sell my locked pi coins safety.
how can I sell my locked pi coins safety.how can I sell my locked pi coins safety.
how can I sell my locked pi coins safety.
 
Summary of financial results for 1Q2024
Summary of financial  results for 1Q2024Summary of financial  results for 1Q2024
Summary of financial results for 1Q2024
 
PD ARRAY THEORY FOR INTERMEDIATE (1).pdf
PD ARRAY THEORY FOR INTERMEDIATE (1).pdfPD ARRAY THEORY FOR INTERMEDIATE (1).pdf
PD ARRAY THEORY FOR INTERMEDIATE (1).pdf
 
how to sell pi coins in Canada, Uk and Australia
how to sell pi coins in Canada, Uk and Australiahow to sell pi coins in Canada, Uk and Australia
how to sell pi coins in Canada, Uk and Australia
 
how can I transfer pi coins to someone in a different country.
how can I transfer pi coins to someone in a different country.how can I transfer pi coins to someone in a different country.
how can I transfer pi coins to someone in a different country.
 
how to sell pi coins on Binance exchange
how to sell pi coins on Binance exchangehow to sell pi coins on Binance exchange
how to sell pi coins on Binance exchange
 
is it possible to sell pi network coin in 2024.
is it possible to sell pi network coin in 2024.is it possible to sell pi network coin in 2024.
is it possible to sell pi network coin in 2024.
 
how can I sell my pi coins for cash in a pi APP
how can I sell my pi coins for cash in a pi APPhow can I sell my pi coins for cash in a pi APP
how can I sell my pi coins for cash in a pi APP
 
Greek trade a pillar of dynamic economic growth - European Business Review
Greek trade a pillar of dynamic economic growth - European Business ReviewGreek trade a pillar of dynamic economic growth - European Business Review
Greek trade a pillar of dynamic economic growth - European Business Review
 
how can I sell/buy bulk pi coins securely
how can I sell/buy bulk pi coins securelyhow can I sell/buy bulk pi coins securely
how can I sell/buy bulk pi coins securely
 
How can I sell my pi coins in Indonesia?
How can I  sell my pi coins in Indonesia?How can I  sell my pi coins in Indonesia?
How can I sell my pi coins in Indonesia?
 
一比一原版UO毕业证渥太华大学毕业证成绩单如何办理
一比一原版UO毕业证渥太华大学毕业证成绩单如何办理一比一原版UO毕业证渥太华大学毕业证成绩单如何办理
一比一原版UO毕业证渥太华大学毕业证成绩单如何办理
 
Latino Buying Power - May 2024 Presentation for Latino Caucus
Latino Buying Power - May 2024 Presentation for Latino CaucusLatino Buying Power - May 2024 Presentation for Latino Caucus
Latino Buying Power - May 2024 Presentation for Latino Caucus
 
9th issue of our inhouse magazine Ingenious May 2024.pdf
9th issue of our inhouse magazine Ingenious May 2024.pdf9th issue of our inhouse magazine Ingenious May 2024.pdf
9th issue of our inhouse magazine Ingenious May 2024.pdf
 
what is the future of Pi Network currency.
what is the future of Pi Network currency.what is the future of Pi Network currency.
what is the future of Pi Network currency.
 
一比一原版Birmingham毕业证伯明翰大学|学院毕业证成绩单如何办理
一比一原版Birmingham毕业证伯明翰大学|学院毕业证成绩单如何办理一比一原版Birmingham毕业证伯明翰大学|学院毕业证成绩单如何办理
一比一原版Birmingham毕业证伯明翰大学|学院毕业证成绩单如何办理
 
Isios-2024-Professional-Independent-Trustee-Survey.pdf
Isios-2024-Professional-Independent-Trustee-Survey.pdfIsios-2024-Professional-Independent-Trustee-Survey.pdf
Isios-2024-Professional-Independent-Trustee-Survey.pdf
 
how to sell pi coins in all Africa Countries.
how to sell pi coins in all Africa Countries.how to sell pi coins in all Africa Countries.
how to sell pi coins in all Africa Countries.
 

5 5factoring trinomial iii

  • 2. Factoring Trinomials III Too factor trinomials of the form ax2 + bx + c, the shortest, but not a reliable way, is by guessing, .i.e. we reverse the FOIL procedure and try to guess what numbers are needed.
  • 3. Factoring Trinomials III Reversed FOIL Method Too factor trinomials of the form ax2 + bx + c, the shortest, but not a reliable way, is by guessing, .i.e. we reverse the FOIL procedure and try to guess what numbers are needed.
  • 4. Factoring Trinomials III For this method, we need to find four numbers that fit certain descriptions. Reversed FOIL Method Too factor trinomials of the form ax2 + bx + c, the shortest, but not a reliable way, is by guessing, .i.e. we reverse the FOIL procedure and try to guess what numbers are needed.
  • 5. Factoring Trinomials III For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Reversed FOIL Method Too factor trinomials of the form ax2 + bx + c, the shortest, but not a reliable way, is by guessing, .i.e. we reverse the FOIL procedure and try to guess what numbers are needed.
  • 6. Factoring Trinomials III For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? Reversed FOIL Method Too factor trinomials of the form ax2 + bx + c, the shortest, but not a reliable way, is by guessing, .i.e. we reverse the FOIL procedure and try to guess what numbers are needed.
  • 7. Factoring Trinomials III For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Reversed FOIL Method Too factor trinomials of the form ax2 + bx + c, the shortest, but not a reliable way, is by guessing, .i.e. we reverse the FOIL procedure and try to guess what numbers are needed.
  • 8. Factoring Trinomials III For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Yes, 1* (2) + 3 * (1) = 5 Reversed FOIL Method Too factor trinomials of the form ax2 + bx + c, the shortest, but not a reliable way, is by guessing, .i.e. we reverse the FOIL procedure and try to guess what numbers are needed.
  • 9. Factoring Trinomials III For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Yes, 1* (2) + 3 * (1) = 5 b. 1* (± ) + 3* (± ) = –5. Reversed FOIL Method Too factor trinomials of the form ax2 + bx + c, the shortest, but not a reliable way, is by guessing, .i.e. we reverse the FOIL procedure and try to guess what numbers are needed.
  • 10. Factoring Trinomials III For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Yes, 1* (2) + 3 * (1) = 5 b. 1* (± ) + 3* (± ) = –5. Yes, 1* (1) + 3* (–2) = –5 Reversed FOIL Method Too factor trinomials of the form ax2 + bx + c, the shortest, but not a reliable way, is by guessing, .i.e. we reverse the FOIL procedure and try to guess what numbers are needed.
  • 11. Factoring Trinomials III For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Yes, 1* (2) + 3 * (1) = 5 b. 1* (± ) + 3* (± ) = –5. Yes, 1* (1) + 3* (–2) = –5 or 1* (–2) + 3* (–1) = –5 Reversed FOIL Method Too factor trinomials of the form ax2 + bx + c, the shortest, but not a reliable way, is by guessing, .i.e. we reverse the FOIL procedure and try to guess what numbers are needed.
  • 12. Factoring Trinomials III For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Yes, 1* (2) + 3 * (1) = 5 b. 1* (± ) + 3* (± ) = –5. Yes, 1* (1) + 3* (–2) = –5 or 1* (–2) + 3* (–1) = –5 c. 1* (± ) + 3* (± ) = 8. Reversed FOIL Method Too factor trinomials of the form ax2 + bx + c, the shortest, but not a reliable way, is by guessing, .i.e. we reverse the FOIL procedure and try to guess what numbers are needed.
  • 13. Factoring Trinomials III Too factor trinomials of the form ax2 + bx + c, the shortest, but not a reliable way, is by guessing, .i.e. we reverse the FOIL procedure and try to guess what numbers are needed. For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Yes, 1* (2) + 3 * (1) = 5 b. 1* (± ) + 3* (± ) = –5. Yes, 1* (1) + 3* (–2) = –5 or 1* (–2) + 3* (–1) = –5 c. 1* (± ) + 3* (± ) = 8. No, since the most we can obtain is 1* (1) + 3* (2) = 7. Reversed FOIL Method
  • 15. Factoring Trinomials III (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 16. Example B. Factor 3x2 + 5x + 2. Factoring Trinomials III (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 17. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). Factoring Trinomials III (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 18. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 Factoring Trinomials III (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 19. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. Factoring Trinomials III (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 20. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. Factoring Trinomials III (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 21. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, Factoring Trinomials III (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 22. 3(± # ) +1(± #) = 5 where the #’s are 1 and 2. Factoring Trinomials III (Reversed FOIL Method) Let’s see how the above examples are related to factoring. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, or that
  • 23. 3(± # ) +1(± #) = 5 where the #’s are 1 and 2. Since 3(1) +1(2) = 5, Factoring Trinomials III (Reversed FOIL Method) Let’s see how the above examples are related to factoring. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, or that
  • 24. 3(± # ) +1(± #) = 5 where the #’s are 1 and 2. Since 3(1) +1(2) = 5, Factoring Trinomials III (Reversed FOIL Method) Let’s see how the above examples are related to factoring. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, or that
  • 25. 3(± # ) +1(± #) = 5 where the #’s are 1 and 2. Since 3(1) +1(2) = 5, Factoring Trinomials III (Reversed FOIL Method) Let’s see how the above examples are related to factoring. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, or that
  • 26. 3(± # ) +1(± #) = 5 where the #’s are 1 and 2. Since 3(1) +1(2) = 5, we see that 3x2 + 5x + 2 = (3x + 2)(1x + 1). Factoring Trinomials III (Reversed FOIL Method) Let’s see how the above examples are related to factoring. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, or that
  • 27. 3(± # ) +1(± #) = 5 where the #’s are 1 and 2. Since 3(1) +1(2) = 5, we see that 3x2 + 5x + 2 = (3x + 2)(1x + 1). 5x Factoring Trinomials III (Reversed FOIL Method) Let’s see how the above examples are related to factoring. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, or that
  • 28. Factoring Trinomials III Example C. Factor 3x2 – 7x + 2.
  • 29. Factoring Trinomials III Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #).
  • 30. Factoring Trinomials III Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s
  • 31. 3(± # ) + 1(± # ) = –7. Factoring Trinomials III Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 32. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. Factoring Trinomials III Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 33. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Factoring Trinomials III Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 34. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. Factoring Trinomials III Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 35. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. We start with (3x ± #)(1x ± #). Factoring Trinomials III Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 36. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s Factoring Trinomials III Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 37. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that 3(± # ) + 1(± # ) = +5. Factoring Trinomials III Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 38. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that 3(± # ) + 1(± # ) = +5. Since c is negative, they must have opposite signs . Factoring Trinomials III Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 39. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that 3(± # ) + 1(± # ) = +5. It is 3(+2) + 1(–1) = +5. Since c is negative, they must have opposite signs . Factoring Trinomials III Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 40. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that 3(± # ) + 1(± # ) = +5. It is 3(+2) + 1(–1) = +5. So 3x2 + 5x + 2 = (3x –1)(1x + 2) Since c is negative, they must have opposite signs . Factoring Trinomials III Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 41. Example E. Factor 3x2 + 8x + 2. Factoring Trinomials III
  • 42. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). Factoring Trinomials III
  • 43. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. Factoring Trinomials III
  • 44. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Factoring Trinomials III
  • 45. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. Factoring Trinomials III
  • 46. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. Factoring Trinomials III If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check.
  • 47. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. Factoring Trinomials III If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4.
  • 48. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. Factoring Trinomials III If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #).
  • 49. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. Factoring Trinomials III If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
  • 50. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. 3(± # ) + 1(± # ) = +11. Factoring Trinomials III If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4), we need to fill in 2&2 or 1&4 as #'s so that
  • 51. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. 3(± # ) + 1(± # ) = +11. It can't be 2&2. Factoring Trinomials III If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4), we need to fill in 2&2 or 1&4 as #'s so that 3(± # ) + 1(± # ) = +11.
  • 52. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. 3(± # ) + 1(± # ) = +11. It can't be 2&2. Factoring Trinomials III If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4), we need to fill in 2&2 or 1&4 as #'s so that Try 1&4, 3(± # ) + 1(± # ) = +11.
  • 53. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. 3(± # ) + 1(± # ) = +11. It can't be 2&2. Factoring Trinomials III If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4), we need to fill in 2&2 or 1&4 as #'s so that Try 1&4, it is 3(+4) + 1(–1) = +11. 3(± # ) + 1(± # ) = +11.
  • 54. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. 3(± # ) + 1(± # ) = +11. It can't be 2&2. Factoring Trinomials III If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4), we need to fill in 2&2 or 1&4 as #'s so that Try 1&4, it is 3(+4) + 1(–1) = +11. So 3x2 + 11x – 4 = (3x – 1)(1x + 4).
  • 55. Factoring Trinomials III It's not necessary to always start with ax2. If c is a prime number, we start with c.
  • 56. Example G. Factor 12x2 – 5x – 3. Factoring Trinomials III It's not necessary to always start with ax2. If c is a prime number, we start with c.
  • 57. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), Factoring Trinomials III It's not necessary to always start with ax2. If c is a prime number, we start with c.
  • 58. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 Factoring Trinomials III It's not necessary to always start with ax2. If c is a prime number, we start with c.
  • 59. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that Factoring Trinomials III It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5.
  • 60. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that Factoring Trinomials III It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5. 12 = 1(12) = 2(6) = 3(4)
  • 61. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that Factoring Trinomials III It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5. 12 = 1(12) = 2(6) = 3(4) 1&12 and 2&6 can be quickly eliminated.
  • 62. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that Factoring Trinomials III It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5. 12 = 1(12) = 2(6) = 3(4) 1&12 and 2&6 can be quickly eliminated. We get (3)(–3) + (4)(+1) = – 5.
  • 63. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that So 12x2 – 5x – 3 = (3x + 1)(4x – 3). Factoring Trinomials III It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5. 12 = 1(12) = 2(6) = 3(4) 1&12 and 2&6 can be quickly eliminated. We get (3)(–3) + (4)(+1) = – 5.
  • 64. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that So 12x2 – 5x – 3 = (3x + 1)(4x – 3). Factoring Trinomials III It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5. 12 = 1(12) = 2(6) = 3(4) 1&12 and 2&6 can be quickly eliminated. We get (3)(–3) + (4)(+1) = – 5. Remark: In the above method, finding (#)(± #) + (#)( ± #) = b does not guarantee that the trinomial will factor.
  • 65. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that So 12x2 – 5x – 3 = (3x + 1)(4x – 3). Factoring Trinomials III It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5. 12 = 1(12) = 2(6) = 3(4) 1&12 and 2&6 can be quickly eliminated. We get (3)(–3) + (4)(+1) = – 5. Remark: In the above method, finding (#)(± #) + (#)( ± #) = b does not guarantee that the trinomial will factor. We have to match the sign of c also.
  • 66. Example H. Factor 3x2 – 7x – 2 . Factoring Trinomials III
  • 67. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). Factoring Trinomials III
  • 68. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. Factoring Trinomials III
  • 69. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. Factoring Trinomials III
  • 70. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. In fact this trinomial is prime. Factoring Trinomials III
  • 71. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. In fact this trinomial is prime. Factoring Trinomials III There might be multiple matchings for (#)(± #) + (#)( ± #) = b make sure you chose the correct one, if any.
  • 72. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. In fact this trinomial is prime. Factoring Trinomials III Example I: Factor 1x2 + 5x – 6 . There might be multiple matchings for (#)(± #) + (#)( ± #) = b make sure you chose the correct one, if any.
  • 73. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. In fact this trinomial is prime. Factoring Trinomials III Example I: Factor 1x2 + 5x – 6 . We have: 1(+3) + 1(+2) = +5 There might be multiple matchings for (#)(± #) + (#)( ± #) = b make sure you chose the correct one, if any.
  • 74. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. In fact this trinomial is prime. Factoring Trinomials III Example I: Factor 1x2 + 5x – 6 . We have: 1(+3) + 1(+2) = +5 1(+6) + 1(–1) = +5 There might be multiple matchings for (#)(± #) + (#)( ± #) = b make sure you chose the correct one, if any.
  • 75. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. In fact this trinomial is prime. Factoring Trinomials III Example I: Factor 1x2 + 5x – 6 . We have: 1(+3) + 1(+2) = +5 The one that works is x2 + 5x – 6 = (x + 6)(x – 1). 1(+6) + 1(–1) = +5 There might be multiple matchings for (#)(± #) + (#)( ± #) = b make sure you chose the correct one, if any.
  • 76. Factoring Trinomials III Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order.
  • 77. Factoring Trinomials III Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first.
  • 78. Factoring Trinomials III Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first. 3. make sure that x2 is positive, if not, factor out the negative sign first.
  • 79. Factoring Trinomials III Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first. 3. make sure that x2 is positive, if not, factor out the negative sign first. Example J. Factor –x3 + 3x + 2x2
  • 80. Factoring Trinomials III Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first. 3. make sure that x2 is positive, if not, factor out the negative sign first. Example J. Factor –x3 + 3x + 2x2 –x3 + 3x + 2x2 Arrange the terms in order = –x3 + 2x2 + 3x
  • 81. Factoring Trinomials III Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first. 3. make sure that x2 is positive, if not, factor out the negative sign first. Example J. Factor –x3 + 3x + 2x2 –x3 + 3x + 2x2 Arrange the terms in order = –x3 + 2x2 + 3x Factor out the GCF = – x(x2 – 2x – 3)
  • 82. Factoring Trinomials III Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first. 3. make sure that x2 is positive, if not, factor out the negative sign first. Example J. Factor –x3 + 3x + 2x2 –x3 + 3x + 2x2 Arrange the terms in order = –x3 + 2x2 + 3x Factor out the GCF = – x(x2 – 2x – 3) = – x(x – 3)(x + 1)
  • 83. Factoring Trinomials III Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first. 3. make sure that x2 is positive, if not, factor out the negative sign first. Example J. Factor –x3 + 3x + 2x2 –x3 + 3x + 2x2 Arrange the terms in order = –x3 + 2x2 + 3x Factor out the GCF = – x(x2 – 2x – 3) = – x(x – 3)(x + 1) For factoring problems, try guessing first. If no answer is found, use the ac-method (or the formula) to determine if it is prime or do it by grouping, and always check your answers.
  • 84. Ex. A. Factor the following trinomials. If it’s prime, state so. 1. 3x2 – x – 2 2. 3x2 + x – 2 3. 3x2 – 2x – 1 4. 3x2 + 2x – 1 5. 2x2 – 3x + 1 6. 2x2 + 3x – 1 8. 2x2 – 3x – 27. 2x2 + 3x – 2 15. 6x2 + 5x – 6 10. 5x2 + 9x – 2 B. Factor. Factor out the GCF, the “–”, and arrange the terms in order first. 9. 5x2 – 3x – 2 12. 3x2 – 5x – 211. 3x2 + 5x + 2 14. 6x2 – 5x – 613. 3x2 – 5x + 2 16. 6x2 – x – 2 17. 6x2 – 13x + 2 18. 6x2 – 13x + 2 19. 6x2 + 7x + 2 20. 6x2 – 7x + 2 21. 6x2 – 13x + 6 22. 6x2 + 13x + 6 23. 6x2 – 5x – 4 24. 6x2 – 13x + 8 25. 6x2 – 13x – 8 Factoring Trinomials III 25. 4x2 – 9 26. 4x2 – 49 27. 25x2 – 4 28. 4x2 + 9 29. 25x2 + 9 30. – 6x2 – 5xy + 6y2 31. – 3x2 + 2x3– 2x 32. –6x3 – x2 + 2x 33. –15x2 – 25x2 – 10x 34. 12x2y2 –14x2y2 + 4xy2