SlideShare a Scribd company logo
FACULTY OF ENGINEERING
(INDUSTRIAL ELECTRONIC AND CONTROL)
Semester II
Academic Session 2016
POWER QUALITY IN INDUSTRY
(KXGK6104)
ASSIGNMENT #1:
VOLTAGE SAGS EVALUATION STUDIES
KHAIRI AHMED ELRMALI
KGK1500011
SUBMITTED TO:DR. HAZLIE BIN MOKHLIS
SUBMITTED DATE: 4TH
JUNE 2016
Given below is an IEEE test system of 14-bus network:
Based on the data system given,figure 1 and 2 below are the Y-admittance matrix and Z
impedance matrix using MATLAB software. Here are some coding to obtain these matrices;
% Program to form Admittance And Impedance Bus Formation...
% Bus bus R X B/2 distance
% fr to p.u p.u p.u
linedata=[ 1 2 0.01938 0.05917 0.0528/2 12
1 5 0.05403 0.22304 0.0492/2 35
2 3 0.04699 0.19797 0.0438/2 20
2 4 0.05811 0.17632 0.0374/2 18
2 5 0.05695 0.17388 0.034/2 23
3 4 0.06701 0.17103 0.0346/2 19
4 5 0.01335 0.04211 0.0128/2 5
4 7 0 0.20912 0 0
4 9 0 0.55618 0 0
5 6 0 0.25202 0 0
6 11 0.09498 0.1989 0 24
6 12 0.12291 0.25581 0 61
6 13 0.06615 0.13027 0 23
7 8 0 0.17615 0 0
7 9 0 0.11001 0 0
9 10 0.03181 0.0845 0 16
10 14 0.12711 0.27038 0 22
10 11 0.08205 0.19207 0 16
12 13 0.22092 0.19988 0 21
13 14 0.17093 0.34802 0 30];
%==============///### calculate voltage sag ###///======
% bus voltage angle
v_bus = [1 1.06 0
2 1.045 -4.98
3 1.01 -12.72
4 1.019 -10.33
5 1.02 -8.78
6 1.07 -14.22
7 1.062 -13.37
8 1.09 -13.36
9 1.056 -14.94
10 1.051 -15.1
11 1.057 -14.79
12 1.055 -15.07
13 1.05 -15.16
14 1.036 -16.04];
%==============### Generator data ###==========
% generator X capacity
gendata = [ 1 0.12 250
2 0.15 100
3 0.10 80
6 0.15 50
8 0.1 50 ];
base = 100;
% nl=linedata(:,1); % From bus number..
% nr=linedata(:,2); % To bus number...
% R=linedata(:,3); % Resistance, R...
% X=linedata(:,4); % Reactance, X...
nbranch=length(linedata(:,1)); % no. of branches...
nbus=max(v_bus(:,1)); % no. of buses...
Zline=R+j*X; % Z matrix...
y=ones(nbranch,1)./Zline; % To get inverse of each element...
Y=zeros(nbus,nbus); % Initialize YBus...
% Formation of the Off Diagonal Elements...
for k=1:nbranch;
Y(linedata(k,1),linedata(k,2))= -1/Zline(k);
Y(linedata(k,2),linedata(k,1))= -1/Zline(k);
end
aaa = zeros(nbus,1);
% Formation of Diagonal Elements....
for k=1:nbus
for l=1:nbranch
if((k==linedata(l,1))||(k==linedata(l,2)))
aaa(k,:)=1/(linedata(l,3)+linedata(l,4)*i+linedata(l,5)*i)+ aaa(k,:);
Y(k,k)=aaa(k,:);
end
end
end
YY = Y;
%========= To add generator sub-transient data into the Y matrix
for ia=1:nbus
for ib = 1:length(gendata)
if (ia == gendata(ib,1))
Y(ia,ia) = Y(ia,ia) + 1/(gendata(ib,2)*gendata(ib,3)/base)
end
end
end
Y; % Bus Admittance Matrix
Z = inv(Y); % Bus Impedance Matrix
Figure 1: Y-admittance matrix(data workspace)
Figure 2: Z-impedance matrix (data workspace)
Question1
1. Calculate voltage sag at bus 5 and 14 when three-phase-fault occurs at each bus in the
system.The pre-fault voltage (per unit) of all buses are given below:
Voltage sag formula:
Data for the pre-fault voltage (p.u) of
all the buses are convert into real and
imaginary form;
Figure 4 is obtain from these coding below;
% calculate angle
for ia = 1:nbus
ang = v_bus(ia,3)*3.142/180;
mag = v_bus(ia,2);
[a,b] = pol2cart(ang,mag);
v_bus_new(ia,:) = [a + b*i];
end
Figure 3: Cartesian form
Figure 4 is obtain from these coding below;
% voltage sag at 5
i_s = 5;
for i_f = 1:nbus;
V_val5(i_f,:) = v_bus_new(i_s,1) - v_bus_new(i_f,1)*Z(i_s,i_f)/Z(i_f,i_f);
end
V_val5
Figure 4 : voltage sag at 5
Figure5 is obtain from these coding below;
% voltage sag at 14
i_s = 14;
ff
fi
fii
Z
Z
VVVsag −=
for i_f = 1:nbus;
V_val14(i_f,:) = v_bus_new(i_s,1) - v_bus_new(i_f,1)*Z(i_s,i_f)/Z(i_f,i_f);
end
V_val14
Figure5: voltage sag at 14
% %% polar form
Figure 6 is obtain from these coding below;
for ia=1:nbus
[x1,y1] = cart2pol(real(V_val5(ia,1)),imag(V_val5(ia,1)));
plot_y(ia,1) = y1;
[x2,y2] = cart2pol(real(V_val14(ia,1)),imag(V_val14(ia,1)));
plot_y(ia,2) = y2;
end
%
Vsag1
4Vsag5
1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
0.5
1
1.5
voltage sag at bus 5
line bus of system
voltagesagmagnitude
1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
0.2
0.4
0.6
0.8
1
1.2
1.4
voltage sag at bus 14
line bus of system
voltagesagmagnitude
Figure 6: Bar graph for both voltage sag at bus 5 and bus 14
Question2
(a) Line 11 –10 and line 13 -14 is open.
Figure 7 and 8 are the Y-admittance and Z-impedance matrices when line 11-10 and line 13-14
are open
Figure 7: Y-admittance matrix when line 11-10 and line 13-14 is open
Figure 8: Z-impedance matrix when line 11-10 and line 13-14 is open
Figure 9 and 10 are the values of both voltage sag at bus 5 and 14 respectively when the line 11-
10 and line 13-14 are open.
Figure 9: Voltage sag at bus 5&14 when lines are open
Figure 10: bar graph of voltage sag at bus 5&14 when lines are open
1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
0.5
1
1.5
system of 14-bus network
voltagesagmagnitude
Voltage sag at bus 5 line 11-10 & line 13-14 are open
1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
0.2
0.4
0.6
0.8
1
1.2
1.4
system of 14 bus network
voltagesagmagnitude
voltage sag at 14 when line 10-11 and 13-14 are open
1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
0.2
0.4
0.6
0.8
1
1.2
1.4
system 14 bus network
voltagemagnitude
comparison between voltage sag at 14 present lines & open lines
1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
0.5
1
1.5
system of 14 bus network
voltagesagmagnitude
Comparison between valtage sag at 5 present lines & open lines
Figure 11 : comparison between voltage sag at bus 5&14

Q2 cont....
(b) Generator at bus 6 and 8 are taken out from the system.
Figure 12 and 13 are the Y-admittance and Z-impedance when generator at bus 6 and 8 are taken
out from the system.
Figure12: Y-admittance when generator at bus 6 and bus 8 are taken out from system
Figure13: Z-impedance when generator at bus 6 and bus 8 are taken out from system
Figure 14 and 15 are the values of voltage sag at bus 5 and 14 respectively when the generator 6
and 8 are taken out from the system.
Figure 14: voltage sag at bus 5 and 14 when generator are taken out
1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
0.5
1
1.5
2
2.5
system of 14 bus network
voltagesagmagnitude
comparison between voltage sag at bus 5 present & generator taken out
1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
Comparison between voltage sag at 14 present & generator taken out
system of 14 bus network
voltagesagmagnitude
Figure 15 : comparison between voltage sag at bus 5&14
Question 3
*Short circuit
event = 5
events/100km/year
Figure 16 is obtain from these coding below;
for ia =1:nbranch
Event_data(ia,:) = [linedata(ia,:) linedata(ia,6)*5/100];
end
Event_data
eventcicuitShortc
100km
(km)Distance
frequencyVsagExpected ×=
Figure 16 :Expected V sag frequency
Estimation of voltage sag on a line can be calculated as the average of voltage sag between the
two connected busses
Figure 17 average of voltage sag between the two connected busses occurred at bus 5 & bus 14
for each lines.
is obtain from these coding below;
for ia = 1:nbranch
Vol_Event_data5(ia,1)= (V_val5(linedata(ia,1),1) + V_val5(linedata(ia,2),1))/2;
Vol_Event_data14(ia,1)= (V_val14(linedata(ia,1),1) + V_val14(linedata(ia,2),1))/2;
end
for ia = 1:nbranch
[x1,y1] = cart2pol (real(Vol_Event_data5(ia,1)),imag(Vol_Event_data5(ia,1)));
V_event5(ia,1) = y1;
[x1,y1] = cart2pol (real(Vol_Event_data14(ia,1)),imag(Vol_Event_data14(ia,1)));
V_event14(ia,1) = y1;
end
Event_val = [linedata(:,1) linedata(:,2) Event_data(:,7) V_event5(:,1) V_event14(:,1)];
Figure 17 average of voltage sag occurred at bus 5 & bus 14 for each lines.
Estimation of voltage event under 50% of the nominal 1.0 p.u a year for Bus 5: Voltage sag
< 0.5 :
To obtain from these coding below”
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,4)<0.5) %VOLTAGE AS SEEN AT BUS 5
store5(ib,:) = [Event_val(ia,1:4)];
ib = ib +1;
end
Events_under_50_bus_5 = sum(store5(:,3))
Estimation of voltage event = 0.6 + 1.75 + 0.9 + 1.15 + 0.25 = 4.6500
Events_under_50_bus_5 =
4.6500
Estimation of voltage event under 50% of the nominal 1.0 p.u a year for Bus 14: Voltage
sag < 0.5 :
To obtain from these coding below”
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,5)<0.5) %VOLTAGE AS SEEN ATBUS 14
store14(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)];
ic = ic +1;
end
end
Events_under_50_bus_14= sum(store14(:,3)) % script file
Estimation of voltage event = 1.2 + 1.15 + 0.8 + 1.1 + 0.8 + 1.5 = 6.55
Events_under_50_bus_14 = % script file
6.5500
1 2 3 4 5 6
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
voltage event under 50% for Bus 5 & Bus 14
bus network
averagevoltagesag
Estimation of voltage event under 50%
Question 4
1. Based on the analysis the number of voltage sag at bus 5 and bus 14 according to the sag
magnitude level as in the following table (% nominal 1.0 pu).
%% less than 10 percent
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,4)<0.1)
store5_10(ib,:) = [Event_val(ia,1:4)];
ib = ib +1;
end
if(Event_val(ia,5)<0.1)
store14_10(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)];
ic = ic +1;
end
end
if (ib <2)
b5_10 = 0;
else
Vsag (%) 0-10 10-20 20 - 30 30- 40 40 - 50 50- 60 60 70 70- 80 80 - 90 90- 100
Number of
sag at
bus 5
3.50 1.15 0 0 0 0 0 1.0 0.95 0
Number of
sag at
bus 14
0 1.10 1.5 1.15 2.8 4.1 0.0 4.65 0.0 1.0
b5_10 = sum(store5_10(:,3));
end
if (ic <2 )
b14_10 = 0;
else
b14_10 = sum(store14_10(:,3));
End
Q5
By analyzing from the above graph we have seen that in Figure below on the estimation of
voltage event under 50% of the nominal a year for both bus 5 and 14, given that the value
estimation for bus 5 is lower than the value estimation of bus 14 which is 4.65 and 6.55
respectively.
To place a factory manufacturing electronic components, the place at bus 5 is more suitable place
rather than at bus 14 since it gives lower voltage sags under the voltage event.
Q6
The number of voltage sags that can occur at your facility depends on where you're located, the
characteristics of your utility's distribution system (underground vs. overhead, lengths of the
distribution feeder circuits, and number of feeders), lightning level in the area, number of trees
adjacent to the power lines, and several other factors.
 For improve lines and area in proper stability, we should arrange some methods and steps
thus system will back on its stability though fault is occurred in other lines. We have
introduces capacitor bank or Super Capacitor in the transmission lines
 Magnetic synthesizers, which are 3-phase devices that take advantage of their 3-phase
magnetics to provide improved voltage sag support and regulation.
Useful link
-http://ecmweb.com/content/dealing-voltage-sags-your-facility
clear all
clc
% Program to form Admittance And Impedance Bus Formation...
% Bus bus R X B/2 distance
% fr to p.u p.u p.u
linedata = [1 2 0.01938 0.05917 0.0528/2 12
1 5 0.05403 0.22304 0.0492/2 35
2 3 0.04699 0.19797 0.0438/2 20
2 4 0.05811 0.17632 0.0374/2 18
2 5 0.05695 0.17388 0.034/2 23
3 4 0.06701 0.17103 0.0346/2 19
4 5 0.01335 0.04211 0.0128/2 5
4 7 0 0.20912 0 0
4 9 0 0.55618 0 0
5 6 0 0.25202 0 0
6 11 0.09498 0.1989 0 24
6 12 0.12291 0.25581 0 61
6 13 0.06615 0.13027 0 23
7 8 0 0.17615 0 0
7 9 0 0.11001 0 0
9 10 0.03181 0.0845 0 16
10 14 0.12711 0.27038 0 22
10 11 0.08205 0.19207 0 16
12 13 0.22092 0.19988 0 21
13 14 0.17093 0.34802 0 30];
%==============///### calculate voltage sag ###///======
% bus voltage angle
v_bus = [1 1.06 0
2 1.045 -4.98
3 1.01 -12.72
4 1.019 -10.33
5 1.02 -8.78
6 1.07 -14.22
7 1.062 -13.37
8 1.09 -13.36
9 1.056 -14.94
10 1.051 -15.1
11 1.057 -14.79
12 1.055 -15.07
13 1.05 -15.16
14 1.036 -16.04];
%==============### Generator data ###==========
% generator X capacity
gendata = [1 0.12 250
2 0.15 100
3 0.10 80
6 0.15 50
8 0.1 50];
base = 100;
% nl=linedata(:,1); % From bus number..
% nr=linedata(:,2); % To bus number...
R=linedata(:,3); % Resistance, R...
X=linedata(:,4); % Reactance, X...
nbranch=length(linedata(:,1)); % no. of branches...
nbus=max(v_bus(:,1)); % no. of buses...
Zline=R+j*X; % Z matrix...
y=ones(nbranch,1)./Zline; % To get inverse of each element...
Y=zeros(nbus,nbus); % Initialise YBus...
% Formation of the Off Diagonal Elements...
for k=1:nbranch;
Y(linedata(k,1),linedata(k,2))= -1/Zline(k);
Y(linedata(k,2),linedata(k,1))= -1/Zline(k);
end
aaa = zeros(nbus,1);
% Formation of Diagonal Elements....
for k=1:nbus
for l=1:nbranch
if((k==linedata(l,1))||(k==linedata(l,2)))
aaa(k,:)=1/(linedata(l,3)+linedata(l,4)*i+linedata(l,5)*i)+ aaa(k,:);
Y(k,k)=aaa(k,:);
end
end
end
YY = Y;
%========= To add generator sub-transient data into the Y matrix
for ia=1:nbus
for ib = 1:length(gendata)
if (ia == gendata(ib,1))
Y(ia,ia) = Y(ia,ia) + 1/(gendata(ib,2)*gendata(ib,3)/base);
end
end
end
Y; % Bus Admittance Matrix
Z = inv(Y); % Bus Impedance Matrix
% calculate angle
for ia = 1:nbus
ang = v_bus(ia,3)*3.142/180;
mag = v_bus(ia,2);
[a,b] = pol2cart(ang,mag);
v_bus_new(ia,:) = [a + b*i];
end
%% Q 1 /// voltage sag calculation for faulted bus ////
% voltage sag at 5 and 14
i_s = 5;
for i_f = 1:nbus;
%V_val5(i_f,:) = v_bus(i_s,2) - v_bus(i_f,2)*Z(i_s,i_f)/Z(i_f,i_f);
V_val5(i_f,:) = v_bus_new(i_s,1) - v_bus_new(i_f,1)*Z(i_s,i_f)/Z(i_f,i_f);
end
V_val5;
i_s = 14;
for i_f = 1:nbus;
%V_val10(i_f,:) = v_bus(i_s,2) - v_bus(i_f,2)*Z(i_s,i_f)/Z(i_f,i_f);
V_val14(i_f,:) = v_bus_new(i_s,1) - v_bus_new(i_f,1)*Z(i_s,i_f)/Z(i_f,i_f);
end
V_val14;
%
% %% polar form
for ia=1:nbus
[x1,y1] = cart2pol(real(V_val5(ia,1)),imag(V_val5(ia,1)));
plot_y(ia,1) = y1;
[x2,y2] = cart2pol(real(V_val14(ia,1)),imag(V_val14(ia,1)));
plot_y(ia,2) = y2;
end
%
%% Question 3
for ia =1:nbranch
Event_data(ia,:) = [linedata(ia,:) linedata(ia,6)*5/100];
end
Event_data
for ia = 1:nbranch
Vol_Event_data5(ia,1)= (V_val5(linedata(ia,1),1) + V_val5(linedata(ia,2),1))/2;
Vol_Event_data14(ia,1)= (V_val14(linedata(ia,1),1) + V_val14(linedata(ia,2),1))/2;
end
for ia = 1:nbranch
[x1,y1] = cart2pol (real(Vol_Event_data5(ia,1)),imag(Vol_Event_data5(ia,1)));
V_event5(ia,1) = y1;
[x1,y1] = cart2pol (real(Vol_Event_data14(ia,1)),imag(Vol_Event_data14(ia,1)));
V_event14(ia,1) = y1;
end
Event_val = [linedata(:,1) linedata(:,2) Event_data(:,7) V_event5(:,1) V_event14(:,1)];
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,4)<0.5) %VOLTAGE AS SEEN AT BUS 5
store5(ib,:) = [Event_val(ia,1:4)];
ib = ib +1;
end
if(Event_val(ia,5)<0.5) %VOLTAGE AS SEEN AT BUS 14
store14(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)];
ic = ic +1;
end
end
Events_under_50_bus_5 = sum(store5(:,3))
Events_under_50_bus_14= sum(store14(:,3))
%
% %%Question 4
%% less than 10 percent
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,4)<0.1)
store5_10(ib,:) = [Event_val(ia,1:4)];
ib = ib +1;
end
if(Event_val(ia,5)<0.1)
store14_10(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)];
ic = ic +1;
end
end
if (ib <2)
b5_10 = 0;
else
b5_10 = sum(store5_10(:,3));
end
if (ic <2 )
b14_10 = 0;
else
b14_10 = sum(store14_10(:,3));
end
%% between 10 - 20 percent
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,4)>0.1 && Event_val(ia,4)<0.2)
store5_20(ib,:) = [Event_val(ia,1:4)];
ib = ib +1;
end
if(Event_val(ia,5)>0.1 && Event_val(ia,5)<0.2)
store14_20(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)];
ic = ic +1;
end
end
if (ib <2)
b5_20 = 0;
else
b5_20 = sum(store5_20(:,3));
end
if (ic <2 )
b14_20 = 0;
else
b14_20 = sum(store14_20(:,3));
end
%% between 20 - 30 percent
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,4)>0.2 && Event_val(ia,4)<0.3)
store5_30(ib,:) = [Event_val(ia,1:4)];
ib = ib +1;
end
if(Event_val(ia,5)>0.2 && Event_val(ia,5)<0.3)
store14_30(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)];
ic = ic +1;
end
end
if (ib <2)
b5_30 = 0;
else
b5_30 = sum(store5_30(:,3));
end
if (ic <2 )
b14_30 = 0;
else
b14_30 = sum(store14_30(:,3));
end
%% between 30 - 40 percent
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,4)>0.3 && Event_val(ia,4)<0.4)
store5_40(ib,:) = [Event_val(ia,1:4)];
ib = ib +1;
end
if(Event_val(ia,5)>0.3 && Event_val(ia,5)<0.4)
store14_40(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)];
ic = ic +1;
end
end
if (ib <2)
b5_40 = 0;
else
b5_40 = sum(store5_40(:,3));
end
if (ic <2 )
b14_40 = 0;
else
b14_40 = sum(store14_40(:,3));
end
%% between 40 - 50 percent
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,4)>0.4 && Event_val(ia,4)<0.5)
store5_50(ib,:) = [Event_val(ia,1:4)];
ib = ib +1;
end
if(Event_val(ia,5)>0.4 && Event_val(ia,5)<0.5)
store14_50(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)];
ic = ic +1;
end
end
if (ib <2)
b5_50 = 0;
else
b5_50 = sum(store5_50(:,3));
end
if (ic <2 )
b14_50 = 0;
else
b14_50 = sum(store14_50(:,3));
end
%% between 50 - 60 percent
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,4)>0.5 && Event_val(ia,4)<0.6)
store5_60(ib,:) = [Event_val(ia,1:4)];
ib = ib +1;
end
if(Event_val(ia,5)>0.5 && Event_val(ia,5)<0.6)
store14_60(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)];
ic = ic +1;
end
end
if (ib <2)
b5_60 = 0;
else
b5_60 = sum(store5_60(:,3));
end
if (ic <2 )
b14_60 = 0;
else
b14_60 = sum(store14_60(:,3));
end
%% between 60 - 70 percent
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,4)>0.6 && Event_val(ia,4)<0.7)
store5_70(ib,:) = [Event_val(ia,1:4)];
ib = ib +1;
end
if(Event_val(ia,5)>0.6 && Event_val(ia,5)<0.7)
store14_70(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)];
ic = ic +1;
end
end
if (ib <2)
b5_70 = 0;
else
b5_70 = sum(store5_70(:,3));
end
if (ic <2 )
b14_70 = 0;
else
b14_70 = sum(store14_70(:,3));
end
%% between 70 - 80 percent
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,4)>0.7 && Event_val(ia,4)<0.8)
store5_80(ib,:) = [Event_val(ia,1:4)];
ib = ib +1;
end
if(Event_val(ia,5)>0.7 && Event_val(ia,5)<0.8)
store14_80(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)];
ic = ic +1;
end
end
if (ib <2)
b5_80 = 0;
else
b5_80 = sum(store5_80(:,3));
end
if (ic <2 )
b14_80 = 0;
else
b14_80 = sum(store14_80(:,3));
end
%% between 80 - 90 percent
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,4)>0.8 && Event_val(ia,4)<0.9)
store5_90(ib,:) = [Event_val(ia,1:4)];
ib = ib +1;
end
if(Event_val(ia,5)>0.8 && Event_val(ia,5)<0.9)
store14_90(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)];
ic = ic +1;
end
end
if (ib <2)
b5_90 = 0;
else
b5_90 = sum(store5_90(:,3));
end
if (ic <2 )
b14_90 = 0;
else
b14_90 = sum(store14_90(:,3));
end
%% between 90 - 100 percent
ib=1;
ic=1;
for ia=1:nbranch
if(Event_val(ia,4)>0.9 && Event_val(ia,4)<1)
store5_100(ib,:) = [Event_val(ia,1:4)];
ib = ib +1;
end
if(Event_val(ia,5)>0.9 && Event_val(ia,5)<1)
store14_100(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)];
ic = ic +1;
end
end
if (ib <2)
b5_100 = 0;
else
b5_100 = sum(store5_100(:,3));
end
if (ic <2 )
b14_100 = 0;
else
b14_100 = sum(store14_100(:,3));
end
bus_5_sags = [b5_10 b5_20 b5_30 b5_40 b5_50 b5_60 b5_70 b5_80 b5_90 b5_100]
bus_14_sags = [b14_10 b14_20 b14_30 b14_40 b14_50 b14_60 b14_70 b14_80 b14_90
b14_100]
%% display for question 4
fprintf ('| Bus number | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100
|n')
fprintf ('| Bus_5 | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f
|n',bus_5_sags)
fprintf ('| Bus_14 | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f
|n',bus_14_sags)

More Related Content

What's hot

PLASTIC SHREDDING MACHINE
PLASTIC SHREDDING MACHINEPLASTIC SHREDDING MACHINE
PLASTIC SHREDDING MACHINE
Akshay Deshpande
 
Design optimization of excavator bucket using Finite Element Method
Design optimization of excavator bucket using Finite Element MethodDesign optimization of excavator bucket using Finite Element Method
Design optimization of excavator bucket using Finite Element Method
Ijripublishers Ijri
 
Gorakhpur mechanical workshop summer training report
Gorakhpur mechanical workshop summer training reportGorakhpur mechanical workshop summer training report
Gorakhpur mechanical workshop summer training report
GALGOTIAS UNIVERSITY
 
A presentation on mechanical workshop norh east railway
A presentation on mechanical workshop norh east railwayA presentation on mechanical workshop norh east railway
A presentation on mechanical workshop norh east railway
GALGOTIAS UNIVERSITY
 
Training report on railways (all workshop)
Training report on railways (all workshop)Training report on railways (all workshop)
Training report on railways (all workshop)
anand prasad
 
N.E RAILWAY GORAKHPUR, PPT
N.E RAILWAY GORAKHPUR, PPTN.E RAILWAY GORAKHPUR, PPT
N.E RAILWAY GORAKHPUR, PPT
ANAND kumar
 
357502268-C-clamp-ppt.pptx
357502268-C-clamp-ppt.pptx357502268-C-clamp-ppt.pptx
357502268-C-clamp-ppt.pptx
RajeshJavali2
 
Smart Manufacturing Presentation
Smart Manufacturing PresentationSmart Manufacturing Presentation
Smart Manufacturing Presentation
Merve Nur Taş
 
DESIGN MODIFICATION OF DISC BRAKE AND PERFORMANCE ANALYSIS OF IT BY VARYING T...
DESIGN MODIFICATION OF DISC BRAKE AND PERFORMANCE ANALYSIS OF IT BY VARYING T...DESIGN MODIFICATION OF DISC BRAKE AND PERFORMANCE ANALYSIS OF IT BY VARYING T...
DESIGN MODIFICATION OF DISC BRAKE AND PERFORMANCE ANALYSIS OF IT BY VARYING T...
ijsrd.com
 
WALKING E-BIKE
WALKING E-BIKEWALKING E-BIKE
WALKING E-BIKE
AM Publications
 
Air springs of indian railway coaches
Air springs of indian railway coachesAir springs of indian railway coaches
Air springs of indian railway coaches
SrinivasaRao Guduru
 
Design, modeling and analysis of excavator arm
Design, modeling and analysis of excavator armDesign, modeling and analysis of excavator arm
Design, modeling and analysis of excavator arm
IAEME Publication
 
Presentation on Air Powered Vehicle
Presentation on Air Powered VehiclePresentation on Air Powered Vehicle
Presentation on Air Powered Vehicle
Vishal Srivastava
 
Manufacturing Processes - Tyre
Manufacturing Processes - TyreManufacturing Processes - Tyre
Manufacturing Processes - Tyre
Sateesh Kumar
 
Design of Hydraulic Scissor lift.pdf
Design of Hydraulic Scissor lift.pdfDesign of Hydraulic Scissor lift.pdf
Design of Hydraulic Scissor lift.pdf
meet kalola
 
Structural analysis of a brake disc.pptm
Structural analysis of a brake disc.pptmStructural analysis of a brake disc.pptm
Structural analysis of a brake disc.pptm
Vedprakash Arya
 
STUDY OF ICF BOGIE
STUDY OF ICF BOGIESTUDY OF ICF BOGIE
STUDY OF ICF BOGIE
pavan kotra
 
Industry 4.0 and Smart Factory
Industry 4.0 and Smart FactoryIndustry 4.0 and Smart Factory
Industry 4.0 and Smart Factory
Alaa Khamis, PhD, SMIEEE
 
Smart Manufacturing
Smart ManufacturingSmart Manufacturing
Smart Manufacturing
CSA Group
 
Product Design & Development
Product Design & DevelopmentProduct Design & Development
Product Design & Development
QRCE
 

What's hot (20)

PLASTIC SHREDDING MACHINE
PLASTIC SHREDDING MACHINEPLASTIC SHREDDING MACHINE
PLASTIC SHREDDING MACHINE
 
Design optimization of excavator bucket using Finite Element Method
Design optimization of excavator bucket using Finite Element MethodDesign optimization of excavator bucket using Finite Element Method
Design optimization of excavator bucket using Finite Element Method
 
Gorakhpur mechanical workshop summer training report
Gorakhpur mechanical workshop summer training reportGorakhpur mechanical workshop summer training report
Gorakhpur mechanical workshop summer training report
 
A presentation on mechanical workshop norh east railway
A presentation on mechanical workshop norh east railwayA presentation on mechanical workshop norh east railway
A presentation on mechanical workshop norh east railway
 
Training report on railways (all workshop)
Training report on railways (all workshop)Training report on railways (all workshop)
Training report on railways (all workshop)
 
N.E RAILWAY GORAKHPUR, PPT
N.E RAILWAY GORAKHPUR, PPTN.E RAILWAY GORAKHPUR, PPT
N.E RAILWAY GORAKHPUR, PPT
 
357502268-C-clamp-ppt.pptx
357502268-C-clamp-ppt.pptx357502268-C-clamp-ppt.pptx
357502268-C-clamp-ppt.pptx
 
Smart Manufacturing Presentation
Smart Manufacturing PresentationSmart Manufacturing Presentation
Smart Manufacturing Presentation
 
DESIGN MODIFICATION OF DISC BRAKE AND PERFORMANCE ANALYSIS OF IT BY VARYING T...
DESIGN MODIFICATION OF DISC BRAKE AND PERFORMANCE ANALYSIS OF IT BY VARYING T...DESIGN MODIFICATION OF DISC BRAKE AND PERFORMANCE ANALYSIS OF IT BY VARYING T...
DESIGN MODIFICATION OF DISC BRAKE AND PERFORMANCE ANALYSIS OF IT BY VARYING T...
 
WALKING E-BIKE
WALKING E-BIKEWALKING E-BIKE
WALKING E-BIKE
 
Air springs of indian railway coaches
Air springs of indian railway coachesAir springs of indian railway coaches
Air springs of indian railway coaches
 
Design, modeling and analysis of excavator arm
Design, modeling and analysis of excavator armDesign, modeling and analysis of excavator arm
Design, modeling and analysis of excavator arm
 
Presentation on Air Powered Vehicle
Presentation on Air Powered VehiclePresentation on Air Powered Vehicle
Presentation on Air Powered Vehicle
 
Manufacturing Processes - Tyre
Manufacturing Processes - TyreManufacturing Processes - Tyre
Manufacturing Processes - Tyre
 
Design of Hydraulic Scissor lift.pdf
Design of Hydraulic Scissor lift.pdfDesign of Hydraulic Scissor lift.pdf
Design of Hydraulic Scissor lift.pdf
 
Structural analysis of a brake disc.pptm
Structural analysis of a brake disc.pptmStructural analysis of a brake disc.pptm
Structural analysis of a brake disc.pptm
 
STUDY OF ICF BOGIE
STUDY OF ICF BOGIESTUDY OF ICF BOGIE
STUDY OF ICF BOGIE
 
Industry 4.0 and Smart Factory
Industry 4.0 and Smart FactoryIndustry 4.0 and Smart Factory
Industry 4.0 and Smart Factory
 
Smart Manufacturing
Smart ManufacturingSmart Manufacturing
Smart Manufacturing
 
Product Design & Development
Product Design & DevelopmentProduct Design & Development
Product Design & Development
 

Similar to Voltage sags evaluation studies

Distance Algorithm for Transmission Line with Mid-Point Connected STATCOM
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOMDistance Algorithm for Transmission Line with Mid-Point Connected STATCOM
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOM
IRJET Journal
 
Ee2404.set2
Ee2404.set2Ee2404.set2
Multi phase Star Rectifier
Multi phase Star Rectifier Multi phase Star Rectifier
Multi phase Star Rectifier
ZunAib Ali
 
Gate ee 2008 with solutions
Gate ee 2008 with solutionsGate ee 2008 with solutions
Gate ee 2008 with solutions
khemraj298
 
Electrical Engineering Assignment Help
Electrical Engineering Assignment HelpElectrical Engineering Assignment Help
Electrical Engineering Assignment Help
Edu Assignment Help
 
Errors analysis in distance relay readings with presence of facts devices
Errors analysis in distance relay readings with presence of facts devicesErrors analysis in distance relay readings with presence of facts devices
Errors analysis in distance relay readings with presence of facts devices
Alexander Decker
 
Uv CBPSD lab
Uv CBPSD labUv CBPSD lab
Uv CBPSD lab
Yuvraj Singh
 
Report_AKbar_PDF
Report_AKbar_PDFReport_AKbar_PDF
Report_AKbar_PDF
Akbar Pamungkas Sukasdi
 
Final Project
Final ProjectFinal Project
Final Project
Mohnish Puri Goswami
 
Fault Analysis using Z Bus..pdf
Fault Analysis using Z Bus..pdfFault Analysis using Z Bus..pdf
Fault Analysis using Z Bus..pdf
Saravanan A
 
FAULT DETECTION ON OVERHEAD TRANSMISSION LINE USING ARTIFICIAL NEURAL NET...
 FAULT DETECTION ON OVERHEAD TRANSMISSION LINE  USING ARTIFICIAL NEURAL NET... FAULT DETECTION ON OVERHEAD TRANSMISSION LINE  USING ARTIFICIAL NEURAL NET...
FAULT DETECTION ON OVERHEAD TRANSMISSION LINE USING ARTIFICIAL NEURAL NET...
Politeknik Negeri Ujung Pandang
 
A New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation AmplifierA New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation Amplifier
IJECEIAES
 
A New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation AmplifierA New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation Amplifier
Yayah Zakaria
 
Design And Simulation Of Distributed Statcom Controller For Power Factor Impr...
Design And Simulation Of Distributed Statcom Controller For Power Factor Impr...Design And Simulation Of Distributed Statcom Controller For Power Factor Impr...
Design And Simulation Of Distributed Statcom Controller For Power Factor Impr...
IJERA Editor
 
Fq3510001006
Fq3510001006Fq3510001006
Fq3510001006
IJERA Editor
 
D0372027037
D0372027037D0372027037
D0372027037
theijes
 
Fault modeling and parametric fault detection in analog VLSI circuits using d...
Fault modeling and parametric fault detection in analog VLSI circuits using d...Fault modeling and parametric fault detection in analog VLSI circuits using d...
Fault modeling and parametric fault detection in analog VLSI circuits using d...
IJECEIAES
 
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Alexander Litvinenko
 
BS LAB Manual (1).pdf
BS LAB Manual  (1).pdfBS LAB Manual  (1).pdf
BS LAB Manual (1).pdf
ssuser476810
 
Gate ee 2005 with solutions
Gate ee 2005 with solutionsGate ee 2005 with solutions
Gate ee 2005 with solutions
khemraj298
 

Similar to Voltage sags evaluation studies (20)

Distance Algorithm for Transmission Line with Mid-Point Connected STATCOM
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOMDistance Algorithm for Transmission Line with Mid-Point Connected STATCOM
Distance Algorithm for Transmission Line with Mid-Point Connected STATCOM
 
Ee2404.set2
Ee2404.set2Ee2404.set2
Ee2404.set2
 
Multi phase Star Rectifier
Multi phase Star Rectifier Multi phase Star Rectifier
Multi phase Star Rectifier
 
Gate ee 2008 with solutions
Gate ee 2008 with solutionsGate ee 2008 with solutions
Gate ee 2008 with solutions
 
Electrical Engineering Assignment Help
Electrical Engineering Assignment HelpElectrical Engineering Assignment Help
Electrical Engineering Assignment Help
 
Errors analysis in distance relay readings with presence of facts devices
Errors analysis in distance relay readings with presence of facts devicesErrors analysis in distance relay readings with presence of facts devices
Errors analysis in distance relay readings with presence of facts devices
 
Uv CBPSD lab
Uv CBPSD labUv CBPSD lab
Uv CBPSD lab
 
Report_AKbar_PDF
Report_AKbar_PDFReport_AKbar_PDF
Report_AKbar_PDF
 
Final Project
Final ProjectFinal Project
Final Project
 
Fault Analysis using Z Bus..pdf
Fault Analysis using Z Bus..pdfFault Analysis using Z Bus..pdf
Fault Analysis using Z Bus..pdf
 
FAULT DETECTION ON OVERHEAD TRANSMISSION LINE USING ARTIFICIAL NEURAL NET...
 FAULT DETECTION ON OVERHEAD TRANSMISSION LINE  USING ARTIFICIAL NEURAL NET... FAULT DETECTION ON OVERHEAD TRANSMISSION LINE  USING ARTIFICIAL NEURAL NET...
FAULT DETECTION ON OVERHEAD TRANSMISSION LINE USING ARTIFICIAL NEURAL NET...
 
A New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation AmplifierA New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation Amplifier
 
A New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation AmplifierA New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation Amplifier
 
Design And Simulation Of Distributed Statcom Controller For Power Factor Impr...
Design And Simulation Of Distributed Statcom Controller For Power Factor Impr...Design And Simulation Of Distributed Statcom Controller For Power Factor Impr...
Design And Simulation Of Distributed Statcom Controller For Power Factor Impr...
 
Fq3510001006
Fq3510001006Fq3510001006
Fq3510001006
 
D0372027037
D0372027037D0372027037
D0372027037
 
Fault modeling and parametric fault detection in analog VLSI circuits using d...
Fault modeling and parametric fault detection in analog VLSI circuits using d...Fault modeling and parametric fault detection in analog VLSI circuits using d...
Fault modeling and parametric fault detection in analog VLSI circuits using d...
 
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
 
BS LAB Manual (1).pdf
BS LAB Manual  (1).pdfBS LAB Manual  (1).pdf
BS LAB Manual (1).pdf
 
Gate ee 2005 with solutions
Gate ee 2005 with solutionsGate ee 2005 with solutions
Gate ee 2005 with solutions
 

More from Web Design & Development

Basic PLC Ladder Programming
Basic PLC Ladder ProgrammingBasic PLC Ladder Programming
Basic PLC Ladder Programming
Web Design & Development
 
Emi emc-pdf
Emi emc-pdfEmi emc-pdf
Unipolar pulse width modulation inverter
Unipolar pulse width modulation inverterUnipolar pulse width modulation inverter
Unipolar pulse width modulation inverter
Web Design & Development
 
mosfet scaling_
mosfet scaling_mosfet scaling_
mosfet scaling_
Web Design & Development
 
Estimating parameters of IM
Estimating parameters of IM Estimating parameters of IM
Estimating parameters of IM
Web Design & Development
 
power electronic computer simulation and analysis
power electronic computer simulation and analysispower electronic computer simulation and analysis
power electronic computer simulation and analysis
Web Design & Development
 
How to calculate β
How to calculate βHow to calculate β
How to calculate β
Web Design & Development
 
Opertional amplifier khiri elrmali libya
Opertional amplifier khiri elrmali  libyaOpertional amplifier khiri elrmali  libya
Opertional amplifier khiri elrmali libya
Web Design & Development
 
DC servo motor
DC servo motorDC servo motor
DC servo motor
Web Design & Development
 
Cantilever1
Cantilever1Cantilever1
Selecting efficiency and estimating savings
Selecting efficiency and estimating savingsSelecting efficiency and estimating savings
Selecting efficiency and estimating savings
Web Design & Development
 
ceiling fan
 ceiling fan  ceiling fan
Capacitive cmos sensors for cell viability testing
Capacitive cmos sensors for cell viability testingCapacitive cmos sensors for cell viability testing
Capacitive cmos sensors for cell viability testing
Web Design & Development
 
Presentation1
Presentation1Presentation1
design and simulation of valveless piezoelectric micropumppresentation
design and simulation of valveless piezoelectric micropumppresentationdesign and simulation of valveless piezoelectric micropumppresentation
design and simulation of valveless piezoelectric micropumppresentation
Web Design & Development
 
emc
emcemc
Electromagnetic pollution and its health effects on the organism
Electromagnetic pollution and its  health effects on the organismElectromagnetic pollution and its  health effects on the organism
Electromagnetic pollution and its health effects on the organism
Web Design & Development
 
Dc motor speed controller by pwm technique
Dc motor speed controller by pwm techniqueDc motor speed controller by pwm technique
Dc motor speed controller by pwm technique
Web Design & Development
 

More from Web Design & Development (18)

Basic PLC Ladder Programming
Basic PLC Ladder ProgrammingBasic PLC Ladder Programming
Basic PLC Ladder Programming
 
Emi emc-pdf
Emi emc-pdfEmi emc-pdf
Emi emc-pdf
 
Unipolar pulse width modulation inverter
Unipolar pulse width modulation inverterUnipolar pulse width modulation inverter
Unipolar pulse width modulation inverter
 
mosfet scaling_
mosfet scaling_mosfet scaling_
mosfet scaling_
 
Estimating parameters of IM
Estimating parameters of IM Estimating parameters of IM
Estimating parameters of IM
 
power electronic computer simulation and analysis
power electronic computer simulation and analysispower electronic computer simulation and analysis
power electronic computer simulation and analysis
 
How to calculate β
How to calculate βHow to calculate β
How to calculate β
 
Opertional amplifier khiri elrmali libya
Opertional amplifier khiri elrmali  libyaOpertional amplifier khiri elrmali  libya
Opertional amplifier khiri elrmali libya
 
DC servo motor
DC servo motorDC servo motor
DC servo motor
 
Cantilever1
Cantilever1Cantilever1
Cantilever1
 
Selecting efficiency and estimating savings
Selecting efficiency and estimating savingsSelecting efficiency and estimating savings
Selecting efficiency and estimating savings
 
ceiling fan
 ceiling fan  ceiling fan
ceiling fan
 
Capacitive cmos sensors for cell viability testing
Capacitive cmos sensors for cell viability testingCapacitive cmos sensors for cell viability testing
Capacitive cmos sensors for cell viability testing
 
Presentation1
Presentation1Presentation1
Presentation1
 
design and simulation of valveless piezoelectric micropumppresentation
design and simulation of valveless piezoelectric micropumppresentationdesign and simulation of valveless piezoelectric micropumppresentation
design and simulation of valveless piezoelectric micropumppresentation
 
emc
emcemc
emc
 
Electromagnetic pollution and its health effects on the organism
Electromagnetic pollution and its  health effects on the organismElectromagnetic pollution and its  health effects on the organism
Electromagnetic pollution and its health effects on the organism
 
Dc motor speed controller by pwm technique
Dc motor speed controller by pwm techniqueDc motor speed controller by pwm technique
Dc motor speed controller by pwm technique
 

Recently uploaded

Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
Roger Rozario
 
gray level transformation unit 3(image processing))
gray level transformation unit 3(image processing))gray level transformation unit 3(image processing))
gray level transformation unit 3(image processing))
shivani5543
 
NATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENT
NATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENTNATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENT
NATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENT
Addu25809
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
bijceesjournal
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
Nada Hikmah
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
MDSABBIROJJAMANPAYEL
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
Las Vegas Warehouse
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
zubairahmad848137
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 

Recently uploaded (20)

Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
 
gray level transformation unit 3(image processing))
gray level transformation unit 3(image processing))gray level transformation unit 3(image processing))
gray level transformation unit 3(image processing))
 
NATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENT
NATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENTNATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENT
NATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENT
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 

Voltage sags evaluation studies

  • 1. FACULTY OF ENGINEERING (INDUSTRIAL ELECTRONIC AND CONTROL) Semester II Academic Session 2016 POWER QUALITY IN INDUSTRY (KXGK6104) ASSIGNMENT #1: VOLTAGE SAGS EVALUATION STUDIES KHAIRI AHMED ELRMALI KGK1500011 SUBMITTED TO:DR. HAZLIE BIN MOKHLIS SUBMITTED DATE: 4TH JUNE 2016
  • 2. Given below is an IEEE test system of 14-bus network: Based on the data system given,figure 1 and 2 below are the Y-admittance matrix and Z impedance matrix using MATLAB software. Here are some coding to obtain these matrices; % Program to form Admittance And Impedance Bus Formation... % Bus bus R X B/2 distance % fr to p.u p.u p.u linedata=[ 1 2 0.01938 0.05917 0.0528/2 12 1 5 0.05403 0.22304 0.0492/2 35 2 3 0.04699 0.19797 0.0438/2 20 2 4 0.05811 0.17632 0.0374/2 18 2 5 0.05695 0.17388 0.034/2 23 3 4 0.06701 0.17103 0.0346/2 19 4 5 0.01335 0.04211 0.0128/2 5 4 7 0 0.20912 0 0 4 9 0 0.55618 0 0 5 6 0 0.25202 0 0
  • 3. 6 11 0.09498 0.1989 0 24 6 12 0.12291 0.25581 0 61 6 13 0.06615 0.13027 0 23 7 8 0 0.17615 0 0 7 9 0 0.11001 0 0 9 10 0.03181 0.0845 0 16 10 14 0.12711 0.27038 0 22 10 11 0.08205 0.19207 0 16 12 13 0.22092 0.19988 0 21 13 14 0.17093 0.34802 0 30]; %==============///### calculate voltage sag ###///====== % bus voltage angle v_bus = [1 1.06 0 2 1.045 -4.98 3 1.01 -12.72 4 1.019 -10.33 5 1.02 -8.78 6 1.07 -14.22 7 1.062 -13.37 8 1.09 -13.36 9 1.056 -14.94 10 1.051 -15.1 11 1.057 -14.79 12 1.055 -15.07 13 1.05 -15.16 14 1.036 -16.04]; %==============### Generator data ###========== % generator X capacity gendata = [ 1 0.12 250 2 0.15 100 3 0.10 80 6 0.15 50 8 0.1 50 ]; base = 100; % nl=linedata(:,1); % From bus number.. % nr=linedata(:,2); % To bus number... % R=linedata(:,3); % Resistance, R... % X=linedata(:,4); % Reactance, X... nbranch=length(linedata(:,1)); % no. of branches... nbus=max(v_bus(:,1)); % no. of buses... Zline=R+j*X; % Z matrix...
  • 4. y=ones(nbranch,1)./Zline; % To get inverse of each element... Y=zeros(nbus,nbus); % Initialize YBus... % Formation of the Off Diagonal Elements... for k=1:nbranch; Y(linedata(k,1),linedata(k,2))= -1/Zline(k); Y(linedata(k,2),linedata(k,1))= -1/Zline(k); end aaa = zeros(nbus,1); % Formation of Diagonal Elements.... for k=1:nbus for l=1:nbranch if((k==linedata(l,1))||(k==linedata(l,2))) aaa(k,:)=1/(linedata(l,3)+linedata(l,4)*i+linedata(l,5)*i)+ aaa(k,:); Y(k,k)=aaa(k,:); end end end YY = Y; %========= To add generator sub-transient data into the Y matrix for ia=1:nbus for ib = 1:length(gendata) if (ia == gendata(ib,1)) Y(ia,ia) = Y(ia,ia) + 1/(gendata(ib,2)*gendata(ib,3)/base) end end end Y; % Bus Admittance Matrix Z = inv(Y); % Bus Impedance Matrix
  • 5. Figure 1: Y-admittance matrix(data workspace)
  • 6. Figure 2: Z-impedance matrix (data workspace) Question1 1. Calculate voltage sag at bus 5 and 14 when three-phase-fault occurs at each bus in the system.The pre-fault voltage (per unit) of all buses are given below:
  • 7. Voltage sag formula: Data for the pre-fault voltage (p.u) of all the buses are convert into real and imaginary form; Figure 4 is obtain from these coding below; % calculate angle for ia = 1:nbus ang = v_bus(ia,3)*3.142/180; mag = v_bus(ia,2); [a,b] = pol2cart(ang,mag); v_bus_new(ia,:) = [a + b*i]; end Figure 3: Cartesian form Figure 4 is obtain from these coding below; % voltage sag at 5 i_s = 5; for i_f = 1:nbus; V_val5(i_f,:) = v_bus_new(i_s,1) - v_bus_new(i_f,1)*Z(i_s,i_f)/Z(i_f,i_f); end V_val5 Figure 4 : voltage sag at 5 Figure5 is obtain from these coding below; % voltage sag at 14 i_s = 14; ff fi fii Z Z VVVsag −=
  • 8. for i_f = 1:nbus; V_val14(i_f,:) = v_bus_new(i_s,1) - v_bus_new(i_f,1)*Z(i_s,i_f)/Z(i_f,i_f); end V_val14 Figure5: voltage sag at 14 % %% polar form Figure 6 is obtain from these coding below; for ia=1:nbus [x1,y1] = cart2pol(real(V_val5(ia,1)),imag(V_val5(ia,1))); plot_y(ia,1) = y1; [x2,y2] = cart2pol(real(V_val14(ia,1)),imag(V_val14(ia,1))); plot_y(ia,2) = y2; end % Vsag1 4Vsag5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0.5 1 1.5 voltage sag at bus 5 line bus of system voltagesagmagnitude 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0.2 0.4 0.6 0.8 1 1.2 1.4 voltage sag at bus 14 line bus of system voltagesagmagnitude
  • 9. Figure 6: Bar graph for both voltage sag at bus 5 and bus 14 Question2 (a) Line 11 –10 and line 13 -14 is open. Figure 7 and 8 are the Y-admittance and Z-impedance matrices when line 11-10 and line 13-14 are open
  • 10. Figure 7: Y-admittance matrix when line 11-10 and line 13-14 is open Figure 8: Z-impedance matrix when line 11-10 and line 13-14 is open Figure 9 and 10 are the values of both voltage sag at bus 5 and 14 respectively when the line 11- 10 and line 13-14 are open.
  • 11. Figure 9: Voltage sag at bus 5&14 when lines are open Figure 10: bar graph of voltage sag at bus 5&14 when lines are open 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0.5 1 1.5 system of 14-bus network voltagesagmagnitude Voltage sag at bus 5 line 11-10 & line 13-14 are open 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0.2 0.4 0.6 0.8 1 1.2 1.4 system of 14 bus network voltagesagmagnitude voltage sag at 14 when line 10-11 and 13-14 are open 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0.2 0.4 0.6 0.8 1 1.2 1.4 system 14 bus network voltagemagnitude comparison between voltage sag at 14 present lines & open lines 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0.5 1 1.5 system of 14 bus network voltagesagmagnitude Comparison between valtage sag at 5 present lines & open lines
  • 12. Figure 11 : comparison between voltage sag at bus 5&14 Q2 cont.... (b) Generator at bus 6 and 8 are taken out from the system. Figure 12 and 13 are the Y-admittance and Z-impedance when generator at bus 6 and 8 are taken out from the system.
  • 13. Figure12: Y-admittance when generator at bus 6 and bus 8 are taken out from system
  • 14. Figure13: Z-impedance when generator at bus 6 and bus 8 are taken out from system Figure 14 and 15 are the values of voltage sag at bus 5 and 14 respectively when the generator 6 and 8 are taken out from the system. Figure 14: voltage sag at bus 5 and 14 when generator are taken out 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0.5 1 1.5 2 2.5 system of 14 bus network voltagesagmagnitude comparison between voltage sag at bus 5 present & generator taken out 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Comparison between voltage sag at 14 present & generator taken out system of 14 bus network voltagesagmagnitude
  • 15. Figure 15 : comparison between voltage sag at bus 5&14 Question 3 *Short circuit event = 5 events/100km/year Figure 16 is obtain from these coding below; for ia =1:nbranch Event_data(ia,:) = [linedata(ia,:) linedata(ia,6)*5/100]; end Event_data eventcicuitShortc 100km (km)Distance frequencyVsagExpected ×=
  • 16. Figure 16 :Expected V sag frequency Estimation of voltage sag on a line can be calculated as the average of voltage sag between the two connected busses Figure 17 average of voltage sag between the two connected busses occurred at bus 5 & bus 14 for each lines. is obtain from these coding below; for ia = 1:nbranch Vol_Event_data5(ia,1)= (V_val5(linedata(ia,1),1) + V_val5(linedata(ia,2),1))/2; Vol_Event_data14(ia,1)= (V_val14(linedata(ia,1),1) + V_val14(linedata(ia,2),1))/2; end for ia = 1:nbranch
  • 17. [x1,y1] = cart2pol (real(Vol_Event_data5(ia,1)),imag(Vol_Event_data5(ia,1))); V_event5(ia,1) = y1; [x1,y1] = cart2pol (real(Vol_Event_data14(ia,1)),imag(Vol_Event_data14(ia,1))); V_event14(ia,1) = y1; end Event_val = [linedata(:,1) linedata(:,2) Event_data(:,7) V_event5(:,1) V_event14(:,1)]; Figure 17 average of voltage sag occurred at bus 5 & bus 14 for each lines. Estimation of voltage event under 50% of the nominal 1.0 p.u a year for Bus 5: Voltage sag < 0.5 : To obtain from these coding below” ib=1; ic=1; for ia=1:nbranch if(Event_val(ia,4)<0.5) %VOLTAGE AS SEEN AT BUS 5 store5(ib,:) = [Event_val(ia,1:4)];
  • 18. ib = ib +1; end Events_under_50_bus_5 = sum(store5(:,3)) Estimation of voltage event = 0.6 + 1.75 + 0.9 + 1.15 + 0.25 = 4.6500 Events_under_50_bus_5 = 4.6500 Estimation of voltage event under 50% of the nominal 1.0 p.u a year for Bus 14: Voltage sag < 0.5 : To obtain from these coding below” ib=1; ic=1; for ia=1:nbranch if(Event_val(ia,5)<0.5) %VOLTAGE AS SEEN ATBUS 14 store14(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)]; ic = ic +1; end end Events_under_50_bus_14= sum(store14(:,3)) % script file Estimation of voltage event = 1.2 + 1.15 + 0.8 + 1.1 + 0.8 + 1.5 = 6.55 Events_under_50_bus_14 = % script file 6.5500 1 2 3 4 5 6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 voltage event under 50% for Bus 5 & Bus 14 bus network averagevoltagesag
  • 19. Estimation of voltage event under 50% Question 4 1. Based on the analysis the number of voltage sag at bus 5 and bus 14 according to the sag magnitude level as in the following table (% nominal 1.0 pu). %% less than 10 percent ib=1; ic=1; for ia=1:nbranch if(Event_val(ia,4)<0.1) store5_10(ib,:) = [Event_val(ia,1:4)]; ib = ib +1; end if(Event_val(ia,5)<0.1) store14_10(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)]; ic = ic +1; end end if (ib <2) b5_10 = 0; else Vsag (%) 0-10 10-20 20 - 30 30- 40 40 - 50 50- 60 60 70 70- 80 80 - 90 90- 100 Number of sag at bus 5 3.50 1.15 0 0 0 0 0 1.0 0.95 0 Number of sag at bus 14 0 1.10 1.5 1.15 2.8 4.1 0.0 4.65 0.0 1.0
  • 20. b5_10 = sum(store5_10(:,3)); end if (ic <2 ) b14_10 = 0; else b14_10 = sum(store14_10(:,3)); End Q5 By analyzing from the above graph we have seen that in Figure below on the estimation of voltage event under 50% of the nominal a year for both bus 5 and 14, given that the value estimation for bus 5 is lower than the value estimation of bus 14 which is 4.65 and 6.55 respectively. To place a factory manufacturing electronic components, the place at bus 5 is more suitable place rather than at bus 14 since it gives lower voltage sags under the voltage event.
  • 21. Q6 The number of voltage sags that can occur at your facility depends on where you're located, the characteristics of your utility's distribution system (underground vs. overhead, lengths of the distribution feeder circuits, and number of feeders), lightning level in the area, number of trees adjacent to the power lines, and several other factors.  For improve lines and area in proper stability, we should arrange some methods and steps thus system will back on its stability though fault is occurred in other lines. We have introduces capacitor bank or Super Capacitor in the transmission lines  Magnetic synthesizers, which are 3-phase devices that take advantage of their 3-phase magnetics to provide improved voltage sag support and regulation. Useful link -http://ecmweb.com/content/dealing-voltage-sags-your-facility
  • 22. clear all clc % Program to form Admittance And Impedance Bus Formation... % Bus bus R X B/2 distance % fr to p.u p.u p.u linedata = [1 2 0.01938 0.05917 0.0528/2 12 1 5 0.05403 0.22304 0.0492/2 35 2 3 0.04699 0.19797 0.0438/2 20 2 4 0.05811 0.17632 0.0374/2 18 2 5 0.05695 0.17388 0.034/2 23 3 4 0.06701 0.17103 0.0346/2 19 4 5 0.01335 0.04211 0.0128/2 5 4 7 0 0.20912 0 0 4 9 0 0.55618 0 0 5 6 0 0.25202 0 0 6 11 0.09498 0.1989 0 24 6 12 0.12291 0.25581 0 61 6 13 0.06615 0.13027 0 23 7 8 0 0.17615 0 0 7 9 0 0.11001 0 0 9 10 0.03181 0.0845 0 16 10 14 0.12711 0.27038 0 22 10 11 0.08205 0.19207 0 16 12 13 0.22092 0.19988 0 21 13 14 0.17093 0.34802 0 30];
  • 23. %==============///### calculate voltage sag ###///====== % bus voltage angle v_bus = [1 1.06 0 2 1.045 -4.98 3 1.01 -12.72 4 1.019 -10.33 5 1.02 -8.78 6 1.07 -14.22 7 1.062 -13.37 8 1.09 -13.36 9 1.056 -14.94 10 1.051 -15.1 11 1.057 -14.79 12 1.055 -15.07 13 1.05 -15.16 14 1.036 -16.04]; %==============### Generator data ###========== % generator X capacity gendata = [1 0.12 250 2 0.15 100 3 0.10 80 6 0.15 50 8 0.1 50]; base = 100; % nl=linedata(:,1); % From bus number.. % nr=linedata(:,2); % To bus number... R=linedata(:,3); % Resistance, R... X=linedata(:,4); % Reactance, X... nbranch=length(linedata(:,1)); % no. of branches... nbus=max(v_bus(:,1)); % no. of buses... Zline=R+j*X; % Z matrix... y=ones(nbranch,1)./Zline; % To get inverse of each element... Y=zeros(nbus,nbus); % Initialise YBus... % Formation of the Off Diagonal Elements... for k=1:nbranch; Y(linedata(k,1),linedata(k,2))= -1/Zline(k); Y(linedata(k,2),linedata(k,1))= -1/Zline(k); end aaa = zeros(nbus,1);
  • 24. % Formation of Diagonal Elements.... for k=1:nbus for l=1:nbranch if((k==linedata(l,1))||(k==linedata(l,2))) aaa(k,:)=1/(linedata(l,3)+linedata(l,4)*i+linedata(l,5)*i)+ aaa(k,:); Y(k,k)=aaa(k,:); end end end YY = Y; %========= To add generator sub-transient data into the Y matrix for ia=1:nbus for ib = 1:length(gendata) if (ia == gendata(ib,1)) Y(ia,ia) = Y(ia,ia) + 1/(gendata(ib,2)*gendata(ib,3)/base); end end end Y; % Bus Admittance Matrix Z = inv(Y); % Bus Impedance Matrix % calculate angle for ia = 1:nbus ang = v_bus(ia,3)*3.142/180; mag = v_bus(ia,2); [a,b] = pol2cart(ang,mag); v_bus_new(ia,:) = [a + b*i]; end %% Q 1 /// voltage sag calculation for faulted bus //// % voltage sag at 5 and 14
  • 25. i_s = 5; for i_f = 1:nbus; %V_val5(i_f,:) = v_bus(i_s,2) - v_bus(i_f,2)*Z(i_s,i_f)/Z(i_f,i_f); V_val5(i_f,:) = v_bus_new(i_s,1) - v_bus_new(i_f,1)*Z(i_s,i_f)/Z(i_f,i_f); end V_val5; i_s = 14; for i_f = 1:nbus; %V_val10(i_f,:) = v_bus(i_s,2) - v_bus(i_f,2)*Z(i_s,i_f)/Z(i_f,i_f); V_val14(i_f,:) = v_bus_new(i_s,1) - v_bus_new(i_f,1)*Z(i_s,i_f)/Z(i_f,i_f); end V_val14; % % %% polar form for ia=1:nbus [x1,y1] = cart2pol(real(V_val5(ia,1)),imag(V_val5(ia,1))); plot_y(ia,1) = y1; [x2,y2] = cart2pol(real(V_val14(ia,1)),imag(V_val14(ia,1))); plot_y(ia,2) = y2; end % %% Question 3 for ia =1:nbranch Event_data(ia,:) = [linedata(ia,:) linedata(ia,6)*5/100]; end Event_data for ia = 1:nbranch Vol_Event_data5(ia,1)= (V_val5(linedata(ia,1),1) + V_val5(linedata(ia,2),1))/2; Vol_Event_data14(ia,1)= (V_val14(linedata(ia,1),1) + V_val14(linedata(ia,2),1))/2; end for ia = 1:nbranch [x1,y1] = cart2pol (real(Vol_Event_data5(ia,1)),imag(Vol_Event_data5(ia,1))); V_event5(ia,1) = y1; [x1,y1] = cart2pol (real(Vol_Event_data14(ia,1)),imag(Vol_Event_data14(ia,1))); V_event14(ia,1) = y1;
  • 26. end Event_val = [linedata(:,1) linedata(:,2) Event_data(:,7) V_event5(:,1) V_event14(:,1)]; ib=1; ic=1; for ia=1:nbranch if(Event_val(ia,4)<0.5) %VOLTAGE AS SEEN AT BUS 5 store5(ib,:) = [Event_val(ia,1:4)]; ib = ib +1; end if(Event_val(ia,5)<0.5) %VOLTAGE AS SEEN AT BUS 14 store14(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)]; ic = ic +1; end end Events_under_50_bus_5 = sum(store5(:,3)) Events_under_50_bus_14= sum(store14(:,3)) % % %%Question 4 %% less than 10 percent ib=1; ic=1; for ia=1:nbranch if(Event_val(ia,4)<0.1) store5_10(ib,:) = [Event_val(ia,1:4)]; ib = ib +1; end if(Event_val(ia,5)<0.1) store14_10(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)]; ic = ic +1; end end if (ib <2) b5_10 = 0; else
  • 27. b5_10 = sum(store5_10(:,3)); end if (ic <2 ) b14_10 = 0; else b14_10 = sum(store14_10(:,3)); end %% between 10 - 20 percent ib=1; ic=1; for ia=1:nbranch if(Event_val(ia,4)>0.1 && Event_val(ia,4)<0.2) store5_20(ib,:) = [Event_val(ia,1:4)]; ib = ib +1; end if(Event_val(ia,5)>0.1 && Event_val(ia,5)<0.2) store14_20(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)]; ic = ic +1; end end if (ib <2) b5_20 = 0; else b5_20 = sum(store5_20(:,3)); end if (ic <2 ) b14_20 = 0; else b14_20 = sum(store14_20(:,3)); end %% between 20 - 30 percent ib=1; ic=1; for ia=1:nbranch if(Event_val(ia,4)>0.2 && Event_val(ia,4)<0.3) store5_30(ib,:) = [Event_val(ia,1:4)];
  • 28. ib = ib +1; end if(Event_val(ia,5)>0.2 && Event_val(ia,5)<0.3) store14_30(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)]; ic = ic +1; end end if (ib <2) b5_30 = 0; else b5_30 = sum(store5_30(:,3)); end if (ic <2 ) b14_30 = 0; else b14_30 = sum(store14_30(:,3)); end %% between 30 - 40 percent ib=1; ic=1; for ia=1:nbranch if(Event_val(ia,4)>0.3 && Event_val(ia,4)<0.4) store5_40(ib,:) = [Event_val(ia,1:4)]; ib = ib +1; end if(Event_val(ia,5)>0.3 && Event_val(ia,5)<0.4) store14_40(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)]; ic = ic +1; end end if (ib <2) b5_40 = 0; else b5_40 = sum(store5_40(:,3)); end if (ic <2 )
  • 29. b14_40 = 0; else b14_40 = sum(store14_40(:,3)); end %% between 40 - 50 percent ib=1; ic=1; for ia=1:nbranch if(Event_val(ia,4)>0.4 && Event_val(ia,4)<0.5) store5_50(ib,:) = [Event_val(ia,1:4)]; ib = ib +1; end if(Event_val(ia,5)>0.4 && Event_val(ia,5)<0.5) store14_50(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)]; ic = ic +1; end end if (ib <2) b5_50 = 0; else b5_50 = sum(store5_50(:,3)); end if (ic <2 ) b14_50 = 0; else b14_50 = sum(store14_50(:,3)); end %% between 50 - 60 percent ib=1; ic=1; for ia=1:nbranch if(Event_val(ia,4)>0.5 && Event_val(ia,4)<0.6) store5_60(ib,:) = [Event_val(ia,1:4)]; ib = ib +1; end if(Event_val(ia,5)>0.5 && Event_val(ia,5)<0.6) store14_60(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)]; ic = ic +1; end end
  • 30. if (ib <2) b5_60 = 0; else b5_60 = sum(store5_60(:,3)); end if (ic <2 ) b14_60 = 0; else b14_60 = sum(store14_60(:,3)); end %% between 60 - 70 percent ib=1; ic=1; for ia=1:nbranch if(Event_val(ia,4)>0.6 && Event_val(ia,4)<0.7) store5_70(ib,:) = [Event_val(ia,1:4)]; ib = ib +1; end if(Event_val(ia,5)>0.6 && Event_val(ia,5)<0.7) store14_70(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)]; ic = ic +1; end end if (ib <2) b5_70 = 0; else b5_70 = sum(store5_70(:,3)); end if (ic <2 ) b14_70 = 0; else b14_70 = sum(store14_70(:,3)); end %% between 70 - 80 percent ib=1; ic=1; for ia=1:nbranch
  • 31. if(Event_val(ia,4)>0.7 && Event_val(ia,4)<0.8) store5_80(ib,:) = [Event_val(ia,1:4)]; ib = ib +1; end if(Event_val(ia,5)>0.7 && Event_val(ia,5)<0.8) store14_80(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)]; ic = ic +1; end end if (ib <2) b5_80 = 0; else b5_80 = sum(store5_80(:,3)); end if (ic <2 ) b14_80 = 0; else b14_80 = sum(store14_80(:,3)); end %% between 80 - 90 percent ib=1; ic=1; for ia=1:nbranch if(Event_val(ia,4)>0.8 && Event_val(ia,4)<0.9) store5_90(ib,:) = [Event_val(ia,1:4)]; ib = ib +1; end if(Event_val(ia,5)>0.8 && Event_val(ia,5)<0.9) store14_90(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)]; ic = ic +1; end end if (ib <2) b5_90 = 0; else b5_90 = sum(store5_90(:,3)); end
  • 32. if (ic <2 ) b14_90 = 0; else b14_90 = sum(store14_90(:,3)); end %% between 90 - 100 percent ib=1; ic=1; for ia=1:nbranch if(Event_val(ia,4)>0.9 && Event_val(ia,4)<1) store5_100(ib,:) = [Event_val(ia,1:4)]; ib = ib +1; end if(Event_val(ia,5)>0.9 && Event_val(ia,5)<1) store14_100(ic,:) = [Event_val(ia,1:3) Event_val(ia,5)]; ic = ic +1; end end if (ib <2) b5_100 = 0; else b5_100 = sum(store5_100(:,3)); end if (ic <2 ) b14_100 = 0; else b14_100 = sum(store14_100(:,3)); end bus_5_sags = [b5_10 b5_20 b5_30 b5_40 b5_50 b5_60 b5_70 b5_80 b5_90 b5_100] bus_14_sags = [b14_10 b14_20 b14_30 b14_40 b14_50 b14_60 b14_70 b14_80 b14_90 b14_100] %% display for question 4 fprintf ('| Bus number | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |n') fprintf ('| Bus_5 | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f |n',bus_5_sags) fprintf ('| Bus_14 | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f | %.3f