SlideShare a Scribd company logo
TELE3113 Analogue and Digital
         Communications –
        Detection Theory (2)
                                   Wei Zhang
                               w.zhang@unsw.edu.au



              School of Electrical Engineering and Telecommunications
                         The University of New South Wales

7 Oct. 2009                          TELE3113                           1
Integrate-and-Dump detector
     Integrate-and-Dump detector




r(t)=si(t)+n(t)                          s (t ) = + A             0≤t ≤T    for 1
                              si (t ) =  1
                                        s2 (t ) = − A             0≤t ≤T    for 0
                                                          t 0 +T
                                                                                    a1 (t ) + no   for 1
     Output of the integrator:                    z (t ) = ∫ [si (t ) + n(t )]dt = 
                     t 0 +T
                                                           t0                      a2 (t ) + no    for 0
     where a1 =        ∫ Adt = AT
                      t0
                     t 0 +T

              a2 =     ∫ (− A)dt = − AT
                       t0
                     t 0 +T

              no =     ∫ n(t )dt
                       t0


7 Oct. 2009                                              TELE3113                                           2
Integrate-and-Dump detector
       no is a zero-mean Gaussian random variable.
                                 t0 +T
                                             t 0 +T
                                             
                      E{no } = E  ∫ n(t )dt  = ∫ E{n(t )}dt = 0
                                  t0
                                             t0
                                             
                                                        t 0 +T  
                                                                  2
                                                      
                                                            { }
                      σ no = Var{no } = E no = E  ∫ n(t )dt  
                        2                     2                     
                                                        t0
                                                      
                                                                  
                                                                  
                                t o +T t 0 +T

                            =     ∫ ∫ E{n(t )n(ε )}dtdε
                                 t0      t0
                                t o +T t 0 +T
                                                  η
                            =     ∫ ∫                 δ (t − ε )dtdε
                                 t0      t0
                                                  2
                                t 0 +T
                                         η              ηT
                            =     ∫
                                 t0
                                         2
                                              dε =
                                                            2

                                              1                                   1
          pdf of no: f n (α ) =
                                                            −α 2 /( 2σ no )
                                                                       2                       2
                                                        e                     =         e −α       /(ηT )
                        o
                                         2π σ no                                  πηT
7 Oct. 2009                                                 TELE3113                                        3
Integrate-and-Dump detector
                                    s1 (t ) = + A                    0≤t ≤T                  for 1
    As                   si (t ) = 
                                   s 0 (t ) = − A                    0≤t ≤T                  for 0                    s0                    s1

    We choose the decision threshold to be 0.                                                                                0
                                                                                                                     − AT                + AT
    Two cases of detection error:
    (a) +A is transmitted but (AT+no)<0                                                               no<-AT
    (b) -A is transmitted but (-AT+no)>0                                                          no>+AT
   Error probability:
  Pe = P (no < − AT | A) P ( A) + P (no > AT | A) P (− A)
                     − AT              2                        ∞           2
                             e −α          /(ηT )
                                                                     e −α       /(ηT )
     = P ( A)
                     −∞
                         ∫            πηT
                                                    dα + P (− A) ∫
                                                                AT     πηT
                                                                                         dα

         ∞           2
              e −α       /(ηT )
                                                                                                               2 A2T 
                                      dα [P( A) + P (− A)]
                                                                                                                                         ∞        2
                                                                                                                                        e −u / 2
     =   ∫        πηT
                                                                                          Thus,         Pe = Q
                                                                                                              
                                                                                                                           Q Q(x ) = ∫          du
         AT
                                                                                                                 η                 x    2π
              ∞                   2
               e −u / 2                                        2α                                              2 Eb 
     = ∫
                                                                                                                                     T
                        du                             Qu =
                  2π                                           ηT                                          = Q
                                                                                                               η 
                                                                                                                           Q Eb = ∫ A2 dt
       2 A2T η
                                                                                                                                   0
7 Oct. 2009                                                                         TELE3113                                                          4
Integrate-and-Dump detector
 Consider two signal symbols s1 and s2.

 Let Ed be the energy of the difference signal (s1- s2),
                                                                               s2             s1

                T
                                                             Ed              signal symbol energy=si2
          Ed = ∫ [s1 (t ) − s2 (t )] dt               Pe = Q    
                                   2
 i.e.                                                        2η 
                 0                                              

                                            s (t ) = + A       0≤t ≤T     for 1
        For example: If          si (t ) =  1
                                           s2 (t ) = − A       0≤t ≤T     for 0
                                           T                        T

                         Thus Ed = ∫ [s1 (t ) − s2 (t )] dt = ∫ [A − (− A)] dt = 4 A T
                                                               2                    2
                                                                                    2

                                           0                        0
                                         4 A2T                  2 A2T   
                         ⇒        Pe = Q                    = Q         
                                         2η                       η     
                                                                        

7 Oct. 2009                                        TELE3113                                         5
Integrate-and-Dump detector
   Example: In a binary system with bipolar binary signal which is a +A volt or –A volt pulse
           during the interval (0,T), the sending of either +A or –A are equally probable.
           The value of A is 10mV. The noise power spectral density is 10-9 W/Hz. The
           transmission rate of data (bit rate) is 104 bit/s. An integrate-and-dump detector
           is used.
            (a) Find the probability of error, Pe.
              (b) If the bit rate is increased to 105 bit/s what value of A is needed to
                  attain the same Pe, as in part (a).
                        η
  Solution: (a) With         = 10 −9 , P(+A)=P(-A)=0.5 , bit interval T=10-4 seconds, A=10mV
                         2
                             2 A 2T                       −4 
                                                                        ( )
                                                       −3 2
                      Pe = Q          = Q 2(10 × 10 ) (10 )  = Q 10 = 7.8 × 10 − 4
                               η                2 × 10 −9      
                                                               
                                                                                   
                                                                                           ( )
                                                                                2
              (b) Bit interval T=10 -5 seconds, for the same P , i.e. P = Q 2 A T  = Q 10
                                                                e      e
                                                                              η 
                                                                                   
                         2 A 2T
                                  = 10   →     A=
                                                        (
                                                  10 2 × 10 −9      )
                                                               = 31.62mV
                             η                      2 10 −5 (   )
7 Oct. 2009                                  TELE3113                                       6
Optimal Detection Threshold



              Pe = P (detect s 2 | s1 ) P( s1 ) + P (detect s1 | s 2 ) P( s 2 )
                           λ                          ∞
                 = P ( s1 ) ∫ f (r | s1 )dr + P( s 2 ) ∫ f (r | s 2 )dr
                           −∞                         λ
                           λ
                                                        λ                   
                 = P ( s1 ) ∫ f (r | s1 )dr + P( s 2 ) 1 − ∫ f (r | s 2 )dr 
                           −∞                           −∞                  
                                λ
                 = P( s 2 ) +   ∫ [P(s ) f (r | s ) − P(s
                                −∞
                                      1          1          2   ) f (r | s 2 )]dr


7 Oct. 2009                            TELE3113                                     7
Optimal Detection Threshold
      To find a threshold λo which minimizes Pe, we set dPe = 0
                                                        dλ
      gives
                                                                                 Taking ln(.) on both sides, then
   P( s1 ) f (λo | s1 ) = P ( s 2 ) f (λo | s 2 )
                                                                                λo (s1 − s2 ) s12 − s2
                                                                                                     2
                                                                                                           P(s )
          f (λo | s1 ) P ( s 2 )                                                             −         = ln 2
                       =                                                            σn 2
                                                                                               2σ n2
                                                                                                           P(s1 )
          f (λo | s 2 ) P( s1 )
                                                                                      o            o


                                                                                              s +s   σn     2
                                                                                                            P(s )
                                      − ( λo − s1 ) 2 /( 2σ no )
                                                            2                             λo − 1 2 = o ln 2
         f (λo | s1 ) e                           P( s 2 )                                      2   s1 − s2 P(s1 )
                       = −( λ − s ) 2 /( 2σ 2 ) =
                                                                                                       s1 + s2 σ no
                                                                                                                    2
         f (λ o | s 2 ) e o 2               no    P( s1 )                                         λo =        +
                                                                                                                         P(s )
                                                                                                                       ln 2
                                                                                                          2     s1 − s2 P(s1 )
                                 2       2     2         2
              λo ( s1 − s2 ) / σ no − ( s1 − s 2 ) /( 2σ no )        P( s 2 )
          e                                                        =                If P ( s1 ) = P ( s 2 ) ⇒ λo =
                                                                                                                        s1 + s 2
                                                                     P ( s1 )                                              2
7 Oct. 2009                                                         TELE3113                                               8
Correlator Receiver
                                                                           r      r    2
     Recall ML decision criterion: minimize r − si
               r   r
                           = ∫ [r (t ) − si (t )] dt = ∫ r 2 (t )dt +              ∫                     − 2 ∫ r (t ) si (t )dt
                       2
     With r − si
                                              2
                                                                                     si2 (t )dt
                             T                         T                           T                           T
                                                       1 24
                                                         4 3                       1 24
                                                                                     4 3
                                                        constant               energy of i - th signal

                       r r
                                                                       ∫ si2 (t )dt − 2 ∫ r (t ) si (t )dt
                                2
     minimize          r − si                 minimize
                                                                       T                     T

     Let      ξ i denotes the energy of si(t).
     ML decision criterion becomes
                                                                                                                                  Detected
     Find i to maximize                                                                                                             signal

               ∫ r (t ) si (t )dt − 1 ∫ si2 (t )dt                                                                                 symbol
                                    2
               T                      T
                                      1 24
                                        4 3
                                               ξi
     Or simply: Find i to maximize                     ∫ r (t )s (t )dt
                                                       T
                                                                   i


     if all signal symbols have the same energy

                                                                                           Correlation Receiver
7 Oct. 2009                                            TELE3113                                                                   9
Matched Filter
       The multiplying and integrating in correlation receiver can be reduced
       to a linear filtering.
       Consider the received signal r(t) passes through a filter hi(t):
       i.e. r (t ) ∗ hi (t ) = ∫ r (τ )hi (t − τ )dτ
                               T

       Let hi (τ ) = si (T − τ ) ⇒                       ∫ r (τ )h (t − τ )dτ = ∫ r (τ )s (t − T + τ )dτ
                                                                 i                              i                     for 0 ≤ t ≤ T
                                                         T                              T
       Then we sample the filter output at t=T,
       thus    ∫ r (τ )h (t − τ )dτ
               T
                        i                      = ∫ r (τ ) si (t − T + τ )dτ
                                                 T
                                                                                        = ∫ r (τ ) si (τ )dτ
                                                                                            T
                                                                                                               (correlation)
                                        t =T                                     t =T


       ML decision criterion:
                                         ∫ r (t ) s (t )dt − ∫ s
                                                                1      2
       Find i to maximize                            i          2      i(t )dt
                                         T                           T
                                                                     1 24
                                                                       4 3
       becomes Find i to maximize                                       ξi
                                                                                                                               Detected
                                                                                                                                 signal
                                                                                                                                symbol




       ∫ r (τ )h (t − τ )dτ
       T
                i                    − 1 ∫ si2 (t )dt
                                       2
                                         T
                              t =T       1 24
                                           4 3
                                                ξi
7 Oct. 2009                                                   TELE3113                                                         10
                                                                                   Matched-Filter Receiver
Matched Filter
     Consider the matched filter hi (t ) = si (T − t )
                                          si(-t)




                                 t                           t                            t
        si(t)                                      si(-t)            hi(t)




            0            T   t       -T                 0        t           0   T   t

   Equivalence of matched filter and correlator:
   Matched filter receiver
                                                       ≤ ≤




   Correlator receiver

7 Oct. 2009                                  TELE3113                                    11
Detection of PAM
       Detection of M-ary PAM (one-dimension)
symbol s1         s2             sM/2-1 sM/2 sM/2+1 sM/2+2                  sM-1     sM
                           …                                            …
amplitude                      −3 E − E 0          E        3 E                    ( M − 1) E
                                                                                       2
Let si = E Ai           where i = 1,2 ,...,M and Ai = (2i − 1 − M ) , energy of si is si

For equally probable signals, i.e. P( si ) = 1 / M
                                          for i = 1,2,...,M
                     1 M 2 E M 2 E M                      E M (M 2 − 1)  M 2 − 1 
average energy ε av = ∑ si = ∑ Ai = ∑ (2i − 1 − M ) =                  =
                                                                         3 E
                                                     2

                     M i =1 M i =1 M i =1                 M     3                 
                                                                                 
Received signal r = si + n = E Ai + n              where n = 0, σ n = η 2
                                                                  2



  Average Prob(symbol error) Pe =
                                       M −1
                                        M
                                               (
                                            P r − si > E            )
                                                  ∞
                                       M −1 2
                                             πη ∫E
                                                         2
                                     =              e − x η dx
                                        M
                                                                         2( M − 1)  2 E 
                                                        ∞
                        x 2            M −1 2
                                                        ∫                         Q     
                                                                2
              let y =                =                    e − y 2 dy =              η 
                          η             M   2π         2 E /η
                                                                            M           
7 Oct. 2009                                 TELE3113                                            12
Detection of QAM




                                                                                                      …
    Detection of M-ary QAM (two-dimension) : M=2k                                             2E

    For one-dimension M -ary PAM:
                                                                         2E
    Average Prob(symbol error) Pe (          M − PAM ,1D )
                                                                              …                            …
      2( M − 1)  2 E 
    =          Q
                 η 
                      
         M           
    For two-dimension M-ary QAM:
    Average Prob(correct decision) Pc ( M −QAM , 2 D ) = 1 − Pe (    (                        )   2




                                                                                                      …
                                                                              M − PAM ,1D )

    Average Prob(symbol error) Pe ( M −QAM , 2 D ) = 1 − Pc ( M −QAM , 2 D )

                                   2E 
                                                                     (
                                                             = 1 − 1 − Pe (   M − PAM ,1D )
                                                                                              )
                                                                                              2


   For M=4, Pe ( 4 − PAM ,1D ) = Q
                                   η 
                                           
                                          
   Average Prob(symbol error) Pe ( 4−QAM , 2 D ) = 1 − 1 − Pe (  (        4 − PAM ,1D )
                                                                                          )
                                                                                          2


                                                                                      2
                                                                   2 E       2E         2 E 
                                                       = 1 − 1 − Q
                                                                    η 
                                                                           = Q
                                                                                 η 
                                                                                       2 − Q
                                                                                               η 
                                                                                                    
                                                             
                                                                                          
7 Oct. 2009                                       TELE3113                                                13

More Related Content

What's hot

Chapter 9(laplace transform)
Chapter 9(laplace transform)Chapter 9(laplace transform)
Chapter 9(laplace transform)
Eko Wijayanto
 
signal and system solution Quiz2
signal and system solution Quiz2signal and system solution Quiz2
signal and system solution Quiz2
iqbal ahmad
 
Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : Fourier
Gabriel Peyré
 
Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009
Sean Meyn
 
Cash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap FuturesCash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap Futures
Clarus Financial Technology
 
Fourier series example
Fourier series exampleFourier series example
Fourier series exampleAbi finni
 
Chapter 2 signals and spectra,
Chapter 2   signals and spectra,Chapter 2   signals and spectra,
Chapter 2 signals and spectra,nahrain university
 
Kinematika rotasi
Kinematika rotasiKinematika rotasi
Kinematika rotasirymmanz86
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)asghar123456
 
Modulation & d emodul tion
Modulation & d emodul tionModulation & d emodul tion
Modulation & d emodul tionMurali Krishna
 
Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsArvind Devaraj
 
Es400 fall 2012_lecuture_2_transformation_of_continuous_time_signal.pptx
Es400 fall 2012_lecuture_2_transformation_of_continuous_time_signal.pptxEs400 fall 2012_lecuture_2_transformation_of_continuous_time_signal.pptx
Es400 fall 2012_lecuture_2_transformation_of_continuous_time_signal.pptx
umavijay
 

What's hot (18)

Solved problems
Solved problemsSolved problems
Solved problems
 
Chapter4 tf
Chapter4 tfChapter4 tf
Chapter4 tf
 
Rousseau
RousseauRousseau
Rousseau
 
L02 acous
L02 acousL02 acous
L02 acous
 
Chapter 9(laplace transform)
Chapter 9(laplace transform)Chapter 9(laplace transform)
Chapter 9(laplace transform)
 
signal and system solution Quiz2
signal and system solution Quiz2signal and system solution Quiz2
signal and system solution Quiz2
 
Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : Fourier
 
Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009
 
Cash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap FuturesCash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap Futures
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
 
Chapter 2 signals and spectra,
Chapter 2   signals and spectra,Chapter 2   signals and spectra,
Chapter 2 signals and spectra,
 
Kinematika rotasi
Kinematika rotasiKinematika rotasi
Kinematika rotasi
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)
 
Modulation & d emodul tion
Modulation & d emodul tionModulation & d emodul tion
Modulation & d emodul tion
 
Cheat Sheet
Cheat SheetCheat Sheet
Cheat Sheet
 
Lecture123
Lecture123Lecture123
Lecture123
 
Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier Transforms
 
Es400 fall 2012_lecuture_2_transformation_of_continuous_time_signal.pptx
Es400 fall 2012_lecuture_2_transformation_of_continuous_time_signal.pptxEs400 fall 2012_lecuture_2_transformation_of_continuous_time_signal.pptx
Es400 fall 2012_lecuture_2_transformation_of_continuous_time_signal.pptx
 

Viewers also liked

Digital data transmission
Digital data transmissionDigital data transmission
Digital data transmission
BZU lahore
 
Tele3113 tut6
Tele3113 tut6Tele3113 tut6
Tele3113 tut6Vin Voro
 
Tele3113 wk11tue
Tele3113 wk11tueTele3113 wk11tue
Tele3113 wk11tueVin Voro
 
12 elec3114
12 elec311412 elec3114
12 elec3114Vin Voro
 
11 elec3114
11 elec311411 elec3114
11 elec3114Vin Voro
 
09 elec3114
09 elec311409 elec3114
09 elec3114Vin Voro
 
06,07 elec3114
06,07 elec311406,07 elec3114
06,07 elec3114Vin Voro
 
05 elec3114
05 elec311405 elec3114
05 elec3114Vin Voro
 
Tele3113 wk10tue
Tele3113 wk10tueTele3113 wk10tue
Tele3113 wk10tueVin Voro
 
02 elec3114
02 elec311402 elec3114
02 elec3114Vin Voro
 
10 elec3114
10 elec311410 elec3114
10 elec3114Vin Voro
 
04 elec3114
04 elec311404 elec3114
04 elec3114Vin Voro
 
03 elec3114
03 elec311403 elec3114
03 elec3114Vin Voro
 
08 elec3114
08 elec311408 elec3114
08 elec3114Vin Voro
 
Tele3113 wk10wed
Tele3113 wk10wedTele3113 wk10wed
Tele3113 wk10wedVin Voro
 
01 elec3114
01 elec311401 elec3114
01 elec3114Vin Voro
 
Aircraft system integration
Aircraft system integrationAircraft system integration
Aircraft system integration
johan112
 
Aircraft System Integration
Aircraft System IntegrationAircraft System Integration
Aircraft System Integration
geneautry87
 
RF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by AnarenRF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by Anaren
Anaren, Inc.
 
Basic electronics vocabulary
Basic electronics vocabularyBasic electronics vocabulary
Basic electronics vocabulary
Vijendrasingh Rathor
 

Viewers also liked (20)

Digital data transmission
Digital data transmissionDigital data transmission
Digital data transmission
 
Tele3113 tut6
Tele3113 tut6Tele3113 tut6
Tele3113 tut6
 
Tele3113 wk11tue
Tele3113 wk11tueTele3113 wk11tue
Tele3113 wk11tue
 
12 elec3114
12 elec311412 elec3114
12 elec3114
 
11 elec3114
11 elec311411 elec3114
11 elec3114
 
09 elec3114
09 elec311409 elec3114
09 elec3114
 
06,07 elec3114
06,07 elec311406,07 elec3114
06,07 elec3114
 
05 elec3114
05 elec311405 elec3114
05 elec3114
 
Tele3113 wk10tue
Tele3113 wk10tueTele3113 wk10tue
Tele3113 wk10tue
 
02 elec3114
02 elec311402 elec3114
02 elec3114
 
10 elec3114
10 elec311410 elec3114
10 elec3114
 
04 elec3114
04 elec311404 elec3114
04 elec3114
 
03 elec3114
03 elec311403 elec3114
03 elec3114
 
08 elec3114
08 elec311408 elec3114
08 elec3114
 
Tele3113 wk10wed
Tele3113 wk10wedTele3113 wk10wed
Tele3113 wk10wed
 
01 elec3114
01 elec311401 elec3114
01 elec3114
 
Aircraft system integration
Aircraft system integrationAircraft system integration
Aircraft system integration
 
Aircraft System Integration
Aircraft System IntegrationAircraft System Integration
Aircraft System Integration
 
RF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by AnarenRF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by Anaren
 
Basic electronics vocabulary
Basic electronics vocabularyBasic electronics vocabulary
Basic electronics vocabulary
 

Similar to Tele3113 wk11wed

C slides 11
C slides 11C slides 11
C slides 11
Denis Gillet
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
Matthew Leingang
 
Final Present Pap1on relibility
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibility
ketan gajjar
 
Laplace table
Laplace tableLaplace table
Laplace table
noori734
 
Laplace table
Laplace tableLaplace table
Laplace tableprathsel
 
Case Study (All)
Case Study (All)Case Study (All)
Case Study (All)gudeyi
 
Introduction to modern time series analysis
Introduction to modern time series analysisIntroduction to modern time series analysis
Introduction to modern time series analysisSpringer
 
7076 chapter5 slides
7076 chapter5 slides7076 chapter5 slides
7076 chapter5 slides
Nguyen Mina
 
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...Alexander Decker
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
Edhole.com
 
Stirling theorem
Stirling theoremStirling theorem
Stirling theorem
Arshad Ibrahimi
 
Second-Order Transient Circuits
Second-Order Transient CircuitsSecond-Order Transient Circuits
Second-Order Transient Circuits
Chadwick Barclay
 
501 lecture8
501 lecture8501 lecture8
501 lecture8
Vladmir Tavares
 
Contemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manualContemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manual
to2001
 

Similar to Tele3113 wk11wed (20)

Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Chapter3 laplace
 
Midsem sol 2013
Midsem sol 2013Midsem sol 2013
Midsem sol 2013
 
C slides 11
C slides 11C slides 11
C slides 11
 
Chapter6 sampling
Chapter6 samplingChapter6 sampling
Chapter6 sampling
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
Final Present Pap1on relibility
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibility
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Case Study (All)
Case Study (All)Case Study (All)
Case Study (All)
 
Introduction to modern time series analysis
Introduction to modern time series analysisIntroduction to modern time series analysis
Introduction to modern time series analysis
 
Future CMB Experiments
Future CMB ExperimentsFuture CMB Experiments
Future CMB Experiments
 
7076 chapter5 slides
7076 chapter5 slides7076 chapter5 slides
7076 chapter5 slides
 
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
 
Stirling theorem
Stirling theoremStirling theorem
Stirling theorem
 
Lecture 14
Lecture 14Lecture 14
Lecture 14
 
Second-Order Transient Circuits
Second-Order Transient CircuitsSecond-Order Transient Circuits
Second-Order Transient Circuits
 
501 lecture8
501 lecture8501 lecture8
501 lecture8
 
Contemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manualContemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manual
 
Sect2 1
Sect2 1Sect2 1
Sect2 1
 

More from Vin Voro

Tele3113 tut5
Tele3113 tut5Tele3113 tut5
Tele3113 tut5Vin Voro
 
Tele3113 tut4
Tele3113 tut4Tele3113 tut4
Tele3113 tut4Vin Voro
 
Tele3113 tut1
Tele3113 tut1Tele3113 tut1
Tele3113 tut1Vin Voro
 
Tele3113 tut3
Tele3113 tut3Tele3113 tut3
Tele3113 tut3Vin Voro
 
Tele3113 tut2
Tele3113 tut2Tele3113 tut2
Tele3113 tut2Vin Voro
 
Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wedVin Voro
 
Tele3113 wk9tue
Tele3113 wk9tueTele3113 wk9tue
Tele3113 wk9tueVin Voro
 
Tele3113 wk8wed
Tele3113 wk8wedTele3113 wk8wed
Tele3113 wk8wedVin Voro
 
Tele3113 wk9wed
Tele3113 wk9wedTele3113 wk9wed
Tele3113 wk9wedVin Voro
 
Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wedVin Voro
 
Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wedVin Voro
 
Tele3113 wk7tue
Tele3113 wk7tueTele3113 wk7tue
Tele3113 wk7tueVin Voro
 
Tele3113 wk6wed
Tele3113 wk6wedTele3113 wk6wed
Tele3113 wk6wedVin Voro
 
Tele3113 wk6tue
Tele3113 wk6tueTele3113 wk6tue
Tele3113 wk6tueVin Voro
 
Tele3113 wk5tue
Tele3113 wk5tueTele3113 wk5tue
Tele3113 wk5tueVin Voro
 
Tele3113 wk4wed
Tele3113 wk4wedTele3113 wk4wed
Tele3113 wk4wedVin Voro
 
Tele3113 wk4tue
Tele3113 wk4tueTele3113 wk4tue
Tele3113 wk4tueVin Voro
 
Tele3113 wk5wed
Tele3113 wk5wedTele3113 wk5wed
Tele3113 wk5wedVin Voro
 
Tele3113 wk2tue
Tele3113 wk2tueTele3113 wk2tue
Tele3113 wk2tueVin Voro
 
Tele3113 wk2tue
Tele3113 wk2tueTele3113 wk2tue
Tele3113 wk2tueVin Voro
 

More from Vin Voro (20)

Tele3113 tut5
Tele3113 tut5Tele3113 tut5
Tele3113 tut5
 
Tele3113 tut4
Tele3113 tut4Tele3113 tut4
Tele3113 tut4
 
Tele3113 tut1
Tele3113 tut1Tele3113 tut1
Tele3113 tut1
 
Tele3113 tut3
Tele3113 tut3Tele3113 tut3
Tele3113 tut3
 
Tele3113 tut2
Tele3113 tut2Tele3113 tut2
Tele3113 tut2
 
Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wed
 
Tele3113 wk9tue
Tele3113 wk9tueTele3113 wk9tue
Tele3113 wk9tue
 
Tele3113 wk8wed
Tele3113 wk8wedTele3113 wk8wed
Tele3113 wk8wed
 
Tele3113 wk9wed
Tele3113 wk9wedTele3113 wk9wed
Tele3113 wk9wed
 
Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wed
 
Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wed
 
Tele3113 wk7tue
Tele3113 wk7tueTele3113 wk7tue
Tele3113 wk7tue
 
Tele3113 wk6wed
Tele3113 wk6wedTele3113 wk6wed
Tele3113 wk6wed
 
Tele3113 wk6tue
Tele3113 wk6tueTele3113 wk6tue
Tele3113 wk6tue
 
Tele3113 wk5tue
Tele3113 wk5tueTele3113 wk5tue
Tele3113 wk5tue
 
Tele3113 wk4wed
Tele3113 wk4wedTele3113 wk4wed
Tele3113 wk4wed
 
Tele3113 wk4tue
Tele3113 wk4tueTele3113 wk4tue
Tele3113 wk4tue
 
Tele3113 wk5wed
Tele3113 wk5wedTele3113 wk5wed
Tele3113 wk5wed
 
Tele3113 wk2tue
Tele3113 wk2tueTele3113 wk2tue
Tele3113 wk2tue
 
Tele3113 wk2tue
Tele3113 wk2tueTele3113 wk2tue
Tele3113 wk2tue
 

Recently uploaded

Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
Mohammed Sikander
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
goswamiyash170123
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
JEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questionsJEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questions
ShivajiThube2
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
chanes7
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
kimdan468
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
DhatriParmar
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
deeptiverma2406
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 

Recently uploaded (20)

Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
JEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questionsJEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questions
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 

Tele3113 wk11wed

  • 1. TELE3113 Analogue and Digital Communications – Detection Theory (2) Wei Zhang w.zhang@unsw.edu.au School of Electrical Engineering and Telecommunications The University of New South Wales 7 Oct. 2009 TELE3113 1
  • 2. Integrate-and-Dump detector Integrate-and-Dump detector r(t)=si(t)+n(t)  s (t ) = + A 0≤t ≤T for 1 si (t ) =  1 s2 (t ) = − A 0≤t ≤T for 0 t 0 +T  a1 (t ) + no for 1 Output of the integrator: z (t ) = ∫ [si (t ) + n(t )]dt =  t 0 +T t0 a2 (t ) + no for 0 where a1 = ∫ Adt = AT t0 t 0 +T a2 = ∫ (− A)dt = − AT t0 t 0 +T no = ∫ n(t )dt t0 7 Oct. 2009 TELE3113 2
  • 3. Integrate-and-Dump detector no is a zero-mean Gaussian random variable. t0 +T   t 0 +T  E{no } = E  ∫ n(t )dt  = ∫ E{n(t )}dt = 0  t0   t0    t 0 +T   2  { } σ no = Var{no } = E no = E  ∫ n(t )dt   2 2    t0      t o +T t 0 +T = ∫ ∫ E{n(t )n(ε )}dtdε t0 t0 t o +T t 0 +T η = ∫ ∫ δ (t − ε )dtdε t0 t0 2 t 0 +T η ηT = ∫ t0 2 dε = 2 1 1 pdf of no: f n (α ) = −α 2 /( 2σ no ) 2 2 e = e −α /(ηT ) o 2π σ no πηT 7 Oct. 2009 TELE3113 3
  • 4. Integrate-and-Dump detector  s1 (t ) = + A 0≤t ≤T for 1 As si (t ) =  s 0 (t ) = − A 0≤t ≤T for 0 s0 s1 We choose the decision threshold to be 0. 0 − AT + AT Two cases of detection error: (a) +A is transmitted but (AT+no)<0 no<-AT (b) -A is transmitted but (-AT+no)>0 no>+AT Error probability: Pe = P (no < − AT | A) P ( A) + P (no > AT | A) P (− A) − AT 2 ∞ 2 e −α /(ηT ) e −α /(ηT ) = P ( A) −∞ ∫ πηT dα + P (− A) ∫ AT πηT dα ∞ 2 e −α /(ηT )  2 A2T  dα [P( A) + P (− A)] ∞ 2 e −u / 2 = ∫ πηT Thus, Pe = Q   Q Q(x ) = ∫ du AT  η   x 2π ∞ 2 e −u / 2 2α  2 Eb  = ∫ T du Qu = 2π ηT = Q  η   Q Eb = ∫ A2 dt 2 A2T η   0 7 Oct. 2009 TELE3113 4
  • 5. Integrate-and-Dump detector Consider two signal symbols s1 and s2. Let Ed be the energy of the difference signal (s1- s2), s2 s1 T  Ed  signal symbol energy=si2 Ed = ∫ [s1 (t ) − s2 (t )] dt Pe = Q  2 i.e.  2η  0    s (t ) = + A 0≤t ≤T for 1 For example: If si (t ) =  1 s2 (t ) = − A 0≤t ≤T for 0 T T Thus Ed = ∫ [s1 (t ) − s2 (t )] dt = ∫ [A − (− A)] dt = 4 A T 2 2 2 0 0  4 A2T   2 A2T  ⇒ Pe = Q  = Q   2η   η      7 Oct. 2009 TELE3113 5
  • 6. Integrate-and-Dump detector Example: In a binary system with bipolar binary signal which is a +A volt or –A volt pulse during the interval (0,T), the sending of either +A or –A are equally probable. The value of A is 10mV. The noise power spectral density is 10-9 W/Hz. The transmission rate of data (bit rate) is 104 bit/s. An integrate-and-dump detector is used. (a) Find the probability of error, Pe. (b) If the bit rate is increased to 105 bit/s what value of A is needed to attain the same Pe, as in part (a). η Solution: (a) With = 10 −9 , P(+A)=P(-A)=0.5 , bit interval T=10-4 seconds, A=10mV 2  2 A 2T   −4  ( ) −3 2 Pe = Q  = Q 2(10 × 10 ) (10 )  = Q 10 = 7.8 × 10 − 4  η   2 × 10 −9        ( ) 2 (b) Bit interval T=10 -5 seconds, for the same P , i.e. P = Q 2 A T  = Q 10 e e  η    2 A 2T = 10 → A= ( 10 2 × 10 −9 ) = 31.62mV η 2 10 −5 ( ) 7 Oct. 2009 TELE3113 6
  • 7. Optimal Detection Threshold Pe = P (detect s 2 | s1 ) P( s1 ) + P (detect s1 | s 2 ) P( s 2 ) λ ∞ = P ( s1 ) ∫ f (r | s1 )dr + P( s 2 ) ∫ f (r | s 2 )dr −∞ λ λ  λ  = P ( s1 ) ∫ f (r | s1 )dr + P( s 2 ) 1 − ∫ f (r | s 2 )dr  −∞  −∞  λ = P( s 2 ) + ∫ [P(s ) f (r | s ) − P(s −∞ 1 1 2 ) f (r | s 2 )]dr 7 Oct. 2009 TELE3113 7
  • 8. Optimal Detection Threshold To find a threshold λo which minimizes Pe, we set dPe = 0 dλ gives Taking ln(.) on both sides, then P( s1 ) f (λo | s1 ) = P ( s 2 ) f (λo | s 2 ) λo (s1 − s2 ) s12 − s2 2 P(s ) f (λo | s1 ) P ( s 2 ) − = ln 2 = σn 2 2σ n2 P(s1 ) f (λo | s 2 ) P( s1 ) o o s +s σn 2 P(s ) − ( λo − s1 ) 2 /( 2σ no ) 2 λo − 1 2 = o ln 2 f (λo | s1 ) e P( s 2 ) 2 s1 − s2 P(s1 ) = −( λ − s ) 2 /( 2σ 2 ) = s1 + s2 σ no 2 f (λ o | s 2 ) e o 2 no P( s1 ) λo = + P(s ) ln 2 2 s1 − s2 P(s1 ) 2 2 2 2 λo ( s1 − s2 ) / σ no − ( s1 − s 2 ) /( 2σ no ) P( s 2 ) e = If P ( s1 ) = P ( s 2 ) ⇒ λo = s1 + s 2 P ( s1 ) 2 7 Oct. 2009 TELE3113 8
  • 9. Correlator Receiver r r 2 Recall ML decision criterion: minimize r − si r r = ∫ [r (t ) − si (t )] dt = ∫ r 2 (t )dt + ∫ − 2 ∫ r (t ) si (t )dt 2 With r − si 2 si2 (t )dt T T T T 1 24 4 3 1 24 4 3 constant energy of i - th signal r r ∫ si2 (t )dt − 2 ∫ r (t ) si (t )dt 2 minimize r − si minimize T T Let ξ i denotes the energy of si(t). ML decision criterion becomes Detected Find i to maximize signal ∫ r (t ) si (t )dt − 1 ∫ si2 (t )dt symbol 2 T T 1 24 4 3 ξi Or simply: Find i to maximize ∫ r (t )s (t )dt T i if all signal symbols have the same energy Correlation Receiver 7 Oct. 2009 TELE3113 9
  • 10. Matched Filter The multiplying and integrating in correlation receiver can be reduced to a linear filtering. Consider the received signal r(t) passes through a filter hi(t): i.e. r (t ) ∗ hi (t ) = ∫ r (τ )hi (t − τ )dτ T Let hi (τ ) = si (T − τ ) ⇒ ∫ r (τ )h (t − τ )dτ = ∫ r (τ )s (t − T + τ )dτ i i for 0 ≤ t ≤ T T T Then we sample the filter output at t=T, thus ∫ r (τ )h (t − τ )dτ T i = ∫ r (τ ) si (t − T + τ )dτ T = ∫ r (τ ) si (τ )dτ T (correlation) t =T t =T ML decision criterion: ∫ r (t ) s (t )dt − ∫ s 1 2 Find i to maximize i 2 i(t )dt T T 1 24 4 3 becomes Find i to maximize ξi Detected signal symbol ∫ r (τ )h (t − τ )dτ T i − 1 ∫ si2 (t )dt 2 T t =T 1 24 4 3 ξi 7 Oct. 2009 TELE3113 10 Matched-Filter Receiver
  • 11. Matched Filter Consider the matched filter hi (t ) = si (T − t ) si(-t) t t t si(t) si(-t) hi(t) 0 T t -T 0 t 0 T t Equivalence of matched filter and correlator: Matched filter receiver ≤ ≤ Correlator receiver 7 Oct. 2009 TELE3113 11
  • 12. Detection of PAM Detection of M-ary PAM (one-dimension) symbol s1 s2 sM/2-1 sM/2 sM/2+1 sM/2+2 sM-1 sM … … amplitude −3 E − E 0 E 3 E ( M − 1) E 2 Let si = E Ai where i = 1,2 ,...,M and Ai = (2i − 1 − M ) , energy of si is si For equally probable signals, i.e. P( si ) = 1 / M for i = 1,2,...,M 1 M 2 E M 2 E M E M (M 2 − 1)  M 2 − 1  average energy ε av = ∑ si = ∑ Ai = ∑ (2i − 1 − M ) = =  3 E 2 M i =1 M i =1 M i =1 M 3    Received signal r = si + n = E Ai + n where n = 0, σ n = η 2 2 Average Prob(symbol error) Pe = M −1 M ( P r − si > E ) ∞ M −1 2 πη ∫E 2 = e − x η dx M 2( M − 1)  2 E  ∞ x 2 M −1 2 ∫ Q  2 let y = = e − y 2 dy =  η  η M 2π 2 E /η M   7 Oct. 2009 TELE3113 12
  • 13. Detection of QAM … Detection of M-ary QAM (two-dimension) : M=2k 2E For one-dimension M -ary PAM: 2E Average Prob(symbol error) Pe ( M − PAM ,1D ) … … 2( M − 1)  2 E  = Q  η   M   For two-dimension M-ary QAM: Average Prob(correct decision) Pc ( M −QAM , 2 D ) = 1 − Pe ( ( ) 2 … M − PAM ,1D ) Average Prob(symbol error) Pe ( M −QAM , 2 D ) = 1 − Pc ( M −QAM , 2 D )  2E  ( = 1 − 1 − Pe ( M − PAM ,1D ) ) 2 For M=4, Pe ( 4 − PAM ,1D ) = Q  η     Average Prob(symbol error) Pe ( 4−QAM , 2 D ) = 1 − 1 − Pe ( ( 4 − PAM ,1D ) ) 2 2   2 E   2E   2 E  = 1 − 1 − Q  η    = Q  η    2 − Q  η           7 Oct. 2009 TELE3113 13