TELE3113 Analogue and Digital
         Communications –
        Detection Theory (2)
                                   Wei Zhang
                               w.zhang@unsw.edu.au



              School of Electrical Engineering and Telecommunications
                         The University of New South Wales

7 Oct. 2009                          TELE3113                           1
Integrate-and-Dump detector
     Integrate-and-Dump detector




r(t)=si(t)+n(t)                          s (t ) = + A             0≤t ≤T    for 1
                              si (t ) =  1
                                        s2 (t ) = − A             0≤t ≤T    for 0
                                                          t 0 +T
                                                                                    a1 (t ) + no   for 1
     Output of the integrator:                    z (t ) = ∫ [si (t ) + n(t )]dt = 
                     t 0 +T
                                                           t0                      a2 (t ) + no    for 0
     where a1 =        ∫ Adt = AT
                      t0
                     t 0 +T

              a2 =     ∫ (− A)dt = − AT
                       t0
                     t 0 +T

              no =     ∫ n(t )dt
                       t0


7 Oct. 2009                                              TELE3113                                           2
Integrate-and-Dump detector
       no is a zero-mean Gaussian random variable.
                                 t0 +T
                                             t 0 +T
                                             
                      E{no } = E  ∫ n(t )dt  = ∫ E{n(t )}dt = 0
                                  t0
                                             t0
                                             
                                                        t 0 +T  
                                                                  2
                                                      
                                                            { }
                      σ no = Var{no } = E no = E  ∫ n(t )dt  
                        2                     2                     
                                                        t0
                                                      
                                                                  
                                                                  
                                t o +T t 0 +T

                            =     ∫ ∫ E{n(t )n(ε )}dtdε
                                 t0      t0
                                t o +T t 0 +T
                                                  η
                            =     ∫ ∫                 δ (t − ε )dtdε
                                 t0      t0
                                                  2
                                t 0 +T
                                         η              ηT
                            =     ∫
                                 t0
                                         2
                                              dε =
                                                            2

                                              1                                   1
          pdf of no: f n (α ) =
                                                            −α 2 /( 2σ no )
                                                                       2                       2
                                                        e                     =         e −α       /(ηT )
                        o
                                         2π σ no                                  πηT
7 Oct. 2009                                                 TELE3113                                        3
Integrate-and-Dump detector
                                    s1 (t ) = + A                    0≤t ≤T                  for 1
    As                   si (t ) = 
                                   s 0 (t ) = − A                    0≤t ≤T                  for 0                    s0                    s1

    We choose the decision threshold to be 0.                                                                                0
                                                                                                                     − AT                + AT
    Two cases of detection error:
    (a) +A is transmitted but (AT+no)<0                                                               no<-AT
    (b) -A is transmitted but (-AT+no)>0                                                          no>+AT
   Error probability:
  Pe = P (no < − AT | A) P ( A) + P (no > AT | A) P (− A)
                     − AT              2                        ∞           2
                             e −α          /(ηT )
                                                                     e −α       /(ηT )
     = P ( A)
                     −∞
                         ∫            πηT
                                                    dα + P (− A) ∫
                                                                AT     πηT
                                                                                         dα

         ∞           2
              e −α       /(ηT )
                                                                                                               2 A2T 
                                      dα [P( A) + P (− A)]
                                                                                                                                         ∞        2
                                                                                                                                        e −u / 2
     =   ∫        πηT
                                                                                          Thus,         Pe = Q
                                                                                                              
                                                                                                                           Q Q(x ) = ∫          du
         AT
                                                                                                                 η                 x    2π
              ∞                   2
               e −u / 2                                        2α                                              2 Eb 
     = ∫
                                                                                                                                     T
                        du                             Qu =
                  2π                                           ηT                                          = Q
                                                                                                               η 
                                                                                                                           Q Eb = ∫ A2 dt
       2 A2T η
                                                                                                                                   0
7 Oct. 2009                                                                         TELE3113                                                          4
Integrate-and-Dump detector
 Consider two signal symbols s1 and s2.

 Let Ed be the energy of the difference signal (s1- s2),
                                                                               s2             s1

                T
                                                             Ed              signal symbol energy=si2
          Ed = ∫ [s1 (t ) − s2 (t )] dt               Pe = Q    
                                   2
 i.e.                                                        2η 
                 0                                              

                                            s (t ) = + A       0≤t ≤T     for 1
        For example: If          si (t ) =  1
                                           s2 (t ) = − A       0≤t ≤T     for 0
                                           T                        T

                         Thus Ed = ∫ [s1 (t ) − s2 (t )] dt = ∫ [A − (− A)] dt = 4 A T
                                                               2                    2
                                                                                    2

                                           0                        0
                                         4 A2T                  2 A2T   
                         ⇒        Pe = Q                    = Q         
                                         2η                       η     
                                                                        

7 Oct. 2009                                        TELE3113                                         5
Integrate-and-Dump detector
   Example: In a binary system with bipolar binary signal which is a +A volt or –A volt pulse
           during the interval (0,T), the sending of either +A or –A are equally probable.
           The value of A is 10mV. The noise power spectral density is 10-9 W/Hz. The
           transmission rate of data (bit rate) is 104 bit/s. An integrate-and-dump detector
           is used.
            (a) Find the probability of error, Pe.
              (b) If the bit rate is increased to 105 bit/s what value of A is needed to
                  attain the same Pe, as in part (a).
                        η
  Solution: (a) With         = 10 −9 , P(+A)=P(-A)=0.5 , bit interval T=10-4 seconds, A=10mV
                         2
                             2 A 2T                       −4 
                                                                        ( )
                                                       −3 2
                      Pe = Q          = Q 2(10 × 10 ) (10 )  = Q 10 = 7.8 × 10 − 4
                               η                2 × 10 −9      
                                                               
                                                                                   
                                                                                           ( )
                                                                                2
              (b) Bit interval T=10 -5 seconds, for the same P , i.e. P = Q 2 A T  = Q 10
                                                                e      e
                                                                              η 
                                                                                   
                         2 A 2T
                                  = 10   →     A=
                                                        (
                                                  10 2 × 10 −9      )
                                                               = 31.62mV
                             η                      2 10 −5 (   )
7 Oct. 2009                                  TELE3113                                       6
Optimal Detection Threshold



              Pe = P (detect s 2 | s1 ) P( s1 ) + P (detect s1 | s 2 ) P( s 2 )
                           λ                          ∞
                 = P ( s1 ) ∫ f (r | s1 )dr + P( s 2 ) ∫ f (r | s 2 )dr
                           −∞                         λ
                           λ
                                                        λ                   
                 = P ( s1 ) ∫ f (r | s1 )dr + P( s 2 ) 1 − ∫ f (r | s 2 )dr 
                           −∞                           −∞                  
                                λ
                 = P( s 2 ) +   ∫ [P(s ) f (r | s ) − P(s
                                −∞
                                      1          1          2   ) f (r | s 2 )]dr


7 Oct. 2009                            TELE3113                                     7
Optimal Detection Threshold
      To find a threshold λo which minimizes Pe, we set dPe = 0
                                                        dλ
      gives
                                                                                 Taking ln(.) on both sides, then
   P( s1 ) f (λo | s1 ) = P ( s 2 ) f (λo | s 2 )
                                                                                λo (s1 − s2 ) s12 − s2
                                                                                                     2
                                                                                                           P(s )
          f (λo | s1 ) P ( s 2 )                                                             −         = ln 2
                       =                                                            σn 2
                                                                                               2σ n2
                                                                                                           P(s1 )
          f (λo | s 2 ) P( s1 )
                                                                                      o            o


                                                                                              s +s   σn     2
                                                                                                            P(s )
                                      − ( λo − s1 ) 2 /( 2σ no )
                                                            2                             λo − 1 2 = o ln 2
         f (λo | s1 ) e                           P( s 2 )                                      2   s1 − s2 P(s1 )
                       = −( λ − s ) 2 /( 2σ 2 ) =
                                                                                                       s1 + s2 σ no
                                                                                                                    2
         f (λ o | s 2 ) e o 2               no    P( s1 )                                         λo =        +
                                                                                                                         P(s )
                                                                                                                       ln 2
                                                                                                          2     s1 − s2 P(s1 )
                                 2       2     2         2
              λo ( s1 − s2 ) / σ no − ( s1 − s 2 ) /( 2σ no )        P( s 2 )
          e                                                        =                If P ( s1 ) = P ( s 2 ) ⇒ λo =
                                                                                                                        s1 + s 2
                                                                     P ( s1 )                                              2
7 Oct. 2009                                                         TELE3113                                               8
Correlator Receiver
                                                                           r      r    2
     Recall ML decision criterion: minimize r − si
               r   r
                           = ∫ [r (t ) − si (t )] dt = ∫ r 2 (t )dt +              ∫                     − 2 ∫ r (t ) si (t )dt
                       2
     With r − si
                                              2
                                                                                     si2 (t )dt
                             T                         T                           T                           T
                                                       1 24
                                                         4 3                       1 24
                                                                                     4 3
                                                        constant               energy of i - th signal

                       r r
                                                                       ∫ si2 (t )dt − 2 ∫ r (t ) si (t )dt
                                2
     minimize          r − si                 minimize
                                                                       T                     T

     Let      ξ i denotes the energy of si(t).
     ML decision criterion becomes
                                                                                                                                  Detected
     Find i to maximize                                                                                                             signal

               ∫ r (t ) si (t )dt − 1 ∫ si2 (t )dt                                                                                 symbol
                                    2
               T                      T
                                      1 24
                                        4 3
                                               ξi
     Or simply: Find i to maximize                     ∫ r (t )s (t )dt
                                                       T
                                                                   i


     if all signal symbols have the same energy

                                                                                           Correlation Receiver
7 Oct. 2009                                            TELE3113                                                                   9
Matched Filter
       The multiplying and integrating in correlation receiver can be reduced
       to a linear filtering.
       Consider the received signal r(t) passes through a filter hi(t):
       i.e. r (t ) ∗ hi (t ) = ∫ r (τ )hi (t − τ )dτ
                               T

       Let hi (τ ) = si (T − τ ) ⇒                       ∫ r (τ )h (t − τ )dτ = ∫ r (τ )s (t − T + τ )dτ
                                                                 i                              i                     for 0 ≤ t ≤ T
                                                         T                              T
       Then we sample the filter output at t=T,
       thus    ∫ r (τ )h (t − τ )dτ
               T
                        i                      = ∫ r (τ ) si (t − T + τ )dτ
                                                 T
                                                                                        = ∫ r (τ ) si (τ )dτ
                                                                                            T
                                                                                                               (correlation)
                                        t =T                                     t =T


       ML decision criterion:
                                         ∫ r (t ) s (t )dt − ∫ s
                                                                1      2
       Find i to maximize                            i          2      i(t )dt
                                         T                           T
                                                                     1 24
                                                                       4 3
       becomes Find i to maximize                                       ξi
                                                                                                                               Detected
                                                                                                                                 signal
                                                                                                                                symbol




       ∫ r (τ )h (t − τ )dτ
       T
                i                    − 1 ∫ si2 (t )dt
                                       2
                                         T
                              t =T       1 24
                                           4 3
                                                ξi
7 Oct. 2009                                                   TELE3113                                                         10
                                                                                   Matched-Filter Receiver
Matched Filter
     Consider the matched filter hi (t ) = si (T − t )
                                          si(-t)




                                 t                           t                            t
        si(t)                                      si(-t)            hi(t)




            0            T   t       -T                 0        t           0   T   t

   Equivalence of matched filter and correlator:
   Matched filter receiver
                                                       ≤ ≤




   Correlator receiver

7 Oct. 2009                                  TELE3113                                    11
Detection of PAM
       Detection of M-ary PAM (one-dimension)
symbol s1         s2             sM/2-1 sM/2 sM/2+1 sM/2+2                  sM-1     sM
                           …                                            …
amplitude                      −3 E − E 0          E        3 E                    ( M − 1) E
                                                                                       2
Let si = E Ai           where i = 1,2 ,...,M and Ai = (2i − 1 − M ) , energy of si is si

For equally probable signals, i.e. P( si ) = 1 / M
                                          for i = 1,2,...,M
                     1 M 2 E M 2 E M                      E M (M 2 − 1)  M 2 − 1 
average energy ε av = ∑ si = ∑ Ai = ∑ (2i − 1 − M ) =                  =
                                                                         3 E
                                                     2

                     M i =1 M i =1 M i =1                 M     3                 
                                                                                 
Received signal r = si + n = E Ai + n              where n = 0, σ n = η 2
                                                                  2



  Average Prob(symbol error) Pe =
                                       M −1
                                        M
                                               (
                                            P r − si > E            )
                                                  ∞
                                       M −1 2
                                             πη ∫E
                                                         2
                                     =              e − x η dx
                                        M
                                                                         2( M − 1)  2 E 
                                                        ∞
                        x 2            M −1 2
                                                        ∫                         Q     
                                                                2
              let y =                =                    e − y 2 dy =              η 
                          η             M   2π         2 E /η
                                                                            M           
7 Oct. 2009                                 TELE3113                                            12
Detection of QAM




                                                                                                      …
    Detection of M-ary QAM (two-dimension) : M=2k                                             2E

    For one-dimension M -ary PAM:
                                                                         2E
    Average Prob(symbol error) Pe (          M − PAM ,1D )
                                                                              …                            …
      2( M − 1)  2 E 
    =          Q
                 η 
                      
         M           
    For two-dimension M-ary QAM:
    Average Prob(correct decision) Pc ( M −QAM , 2 D ) = 1 − Pe (    (                        )   2




                                                                                                      …
                                                                              M − PAM ,1D )

    Average Prob(symbol error) Pe ( M −QAM , 2 D ) = 1 − Pc ( M −QAM , 2 D )

                                   2E 
                                                                     (
                                                             = 1 − 1 − Pe (   M − PAM ,1D )
                                                                                              )
                                                                                              2


   For M=4, Pe ( 4 − PAM ,1D ) = Q
                                   η 
                                           
                                          
   Average Prob(symbol error) Pe ( 4−QAM , 2 D ) = 1 − 1 − Pe (  (        4 − PAM ,1D )
                                                                                          )
                                                                                          2


                                                                                      2
                                                                   2 E       2E         2 E 
                                                       = 1 − 1 − Q
                                                                    η 
                                                                           = Q
                                                                                 η 
                                                                                       2 − Q
                                                                                               η 
                                                                                                    
                                                             
                                                                                          
7 Oct. 2009                                       TELE3113                                                13

Tele3113 wk11wed

  • 1.
    TELE3113 Analogue andDigital Communications – Detection Theory (2) Wei Zhang w.zhang@unsw.edu.au School of Electrical Engineering and Telecommunications The University of New South Wales 7 Oct. 2009 TELE3113 1
  • 2.
    Integrate-and-Dump detector Integrate-and-Dump detector r(t)=si(t)+n(t)  s (t ) = + A 0≤t ≤T for 1 si (t ) =  1 s2 (t ) = − A 0≤t ≤T for 0 t 0 +T  a1 (t ) + no for 1 Output of the integrator: z (t ) = ∫ [si (t ) + n(t )]dt =  t 0 +T t0 a2 (t ) + no for 0 where a1 = ∫ Adt = AT t0 t 0 +T a2 = ∫ (− A)dt = − AT t0 t 0 +T no = ∫ n(t )dt t0 7 Oct. 2009 TELE3113 2
  • 3.
    Integrate-and-Dump detector no is a zero-mean Gaussian random variable. t0 +T   t 0 +T  E{no } = E  ∫ n(t )dt  = ∫ E{n(t )}dt = 0  t0   t0    t 0 +T   2  { } σ no = Var{no } = E no = E  ∫ n(t )dt   2 2    t0      t o +T t 0 +T = ∫ ∫ E{n(t )n(ε )}dtdε t0 t0 t o +T t 0 +T η = ∫ ∫ δ (t − ε )dtdε t0 t0 2 t 0 +T η ηT = ∫ t0 2 dε = 2 1 1 pdf of no: f n (α ) = −α 2 /( 2σ no ) 2 2 e = e −α /(ηT ) o 2π σ no πηT 7 Oct. 2009 TELE3113 3
  • 4.
    Integrate-and-Dump detector  s1 (t ) = + A 0≤t ≤T for 1 As si (t ) =  s 0 (t ) = − A 0≤t ≤T for 0 s0 s1 We choose the decision threshold to be 0. 0 − AT + AT Two cases of detection error: (a) +A is transmitted but (AT+no)<0 no<-AT (b) -A is transmitted but (-AT+no)>0 no>+AT Error probability: Pe = P (no < − AT | A) P ( A) + P (no > AT | A) P (− A) − AT 2 ∞ 2 e −α /(ηT ) e −α /(ηT ) = P ( A) −∞ ∫ πηT dα + P (− A) ∫ AT πηT dα ∞ 2 e −α /(ηT )  2 A2T  dα [P( A) + P (− A)] ∞ 2 e −u / 2 = ∫ πηT Thus, Pe = Q   Q Q(x ) = ∫ du AT  η   x 2π ∞ 2 e −u / 2 2α  2 Eb  = ∫ T du Qu = 2π ηT = Q  η   Q Eb = ∫ A2 dt 2 A2T η   0 7 Oct. 2009 TELE3113 4
  • 5.
    Integrate-and-Dump detector Considertwo signal symbols s1 and s2. Let Ed be the energy of the difference signal (s1- s2), s2 s1 T  Ed  signal symbol energy=si2 Ed = ∫ [s1 (t ) − s2 (t )] dt Pe = Q  2 i.e.  2η  0    s (t ) = + A 0≤t ≤T for 1 For example: If si (t ) =  1 s2 (t ) = − A 0≤t ≤T for 0 T T Thus Ed = ∫ [s1 (t ) − s2 (t )] dt = ∫ [A − (− A)] dt = 4 A T 2 2 2 0 0  4 A2T   2 A2T  ⇒ Pe = Q  = Q   2η   η      7 Oct. 2009 TELE3113 5
  • 6.
    Integrate-and-Dump detector Example: In a binary system with bipolar binary signal which is a +A volt or –A volt pulse during the interval (0,T), the sending of either +A or –A are equally probable. The value of A is 10mV. The noise power spectral density is 10-9 W/Hz. The transmission rate of data (bit rate) is 104 bit/s. An integrate-and-dump detector is used. (a) Find the probability of error, Pe. (b) If the bit rate is increased to 105 bit/s what value of A is needed to attain the same Pe, as in part (a). η Solution: (a) With = 10 −9 , P(+A)=P(-A)=0.5 , bit interval T=10-4 seconds, A=10mV 2  2 A 2T   −4  ( ) −3 2 Pe = Q  = Q 2(10 × 10 ) (10 )  = Q 10 = 7.8 × 10 − 4  η   2 × 10 −9        ( ) 2 (b) Bit interval T=10 -5 seconds, for the same P , i.e. P = Q 2 A T  = Q 10 e e  η    2 A 2T = 10 → A= ( 10 2 × 10 −9 ) = 31.62mV η 2 10 −5 ( ) 7 Oct. 2009 TELE3113 6
  • 7.
    Optimal Detection Threshold Pe = P (detect s 2 | s1 ) P( s1 ) + P (detect s1 | s 2 ) P( s 2 ) λ ∞ = P ( s1 ) ∫ f (r | s1 )dr + P( s 2 ) ∫ f (r | s 2 )dr −∞ λ λ  λ  = P ( s1 ) ∫ f (r | s1 )dr + P( s 2 ) 1 − ∫ f (r | s 2 )dr  −∞  −∞  λ = P( s 2 ) + ∫ [P(s ) f (r | s ) − P(s −∞ 1 1 2 ) f (r | s 2 )]dr 7 Oct. 2009 TELE3113 7
  • 8.
    Optimal Detection Threshold To find a threshold λo which minimizes Pe, we set dPe = 0 dλ gives Taking ln(.) on both sides, then P( s1 ) f (λo | s1 ) = P ( s 2 ) f (λo | s 2 ) λo (s1 − s2 ) s12 − s2 2 P(s ) f (λo | s1 ) P ( s 2 ) − = ln 2 = σn 2 2σ n2 P(s1 ) f (λo | s 2 ) P( s1 ) o o s +s σn 2 P(s ) − ( λo − s1 ) 2 /( 2σ no ) 2 λo − 1 2 = o ln 2 f (λo | s1 ) e P( s 2 ) 2 s1 − s2 P(s1 ) = −( λ − s ) 2 /( 2σ 2 ) = s1 + s2 σ no 2 f (λ o | s 2 ) e o 2 no P( s1 ) λo = + P(s ) ln 2 2 s1 − s2 P(s1 ) 2 2 2 2 λo ( s1 − s2 ) / σ no − ( s1 − s 2 ) /( 2σ no ) P( s 2 ) e = If P ( s1 ) = P ( s 2 ) ⇒ λo = s1 + s 2 P ( s1 ) 2 7 Oct. 2009 TELE3113 8
  • 9.
    Correlator Receiver r r 2 Recall ML decision criterion: minimize r − si r r = ∫ [r (t ) − si (t )] dt = ∫ r 2 (t )dt + ∫ − 2 ∫ r (t ) si (t )dt 2 With r − si 2 si2 (t )dt T T T T 1 24 4 3 1 24 4 3 constant energy of i - th signal r r ∫ si2 (t )dt − 2 ∫ r (t ) si (t )dt 2 minimize r − si minimize T T Let ξ i denotes the energy of si(t). ML decision criterion becomes Detected Find i to maximize signal ∫ r (t ) si (t )dt − 1 ∫ si2 (t )dt symbol 2 T T 1 24 4 3 ξi Or simply: Find i to maximize ∫ r (t )s (t )dt T i if all signal symbols have the same energy Correlation Receiver 7 Oct. 2009 TELE3113 9
  • 10.
    Matched Filter The multiplying and integrating in correlation receiver can be reduced to a linear filtering. Consider the received signal r(t) passes through a filter hi(t): i.e. r (t ) ∗ hi (t ) = ∫ r (τ )hi (t − τ )dτ T Let hi (τ ) = si (T − τ ) ⇒ ∫ r (τ )h (t − τ )dτ = ∫ r (τ )s (t − T + τ )dτ i i for 0 ≤ t ≤ T T T Then we sample the filter output at t=T, thus ∫ r (τ )h (t − τ )dτ T i = ∫ r (τ ) si (t − T + τ )dτ T = ∫ r (τ ) si (τ )dτ T (correlation) t =T t =T ML decision criterion: ∫ r (t ) s (t )dt − ∫ s 1 2 Find i to maximize i 2 i(t )dt T T 1 24 4 3 becomes Find i to maximize ξi Detected signal symbol ∫ r (τ )h (t − τ )dτ T i − 1 ∫ si2 (t )dt 2 T t =T 1 24 4 3 ξi 7 Oct. 2009 TELE3113 10 Matched-Filter Receiver
  • 11.
    Matched Filter Consider the matched filter hi (t ) = si (T − t ) si(-t) t t t si(t) si(-t) hi(t) 0 T t -T 0 t 0 T t Equivalence of matched filter and correlator: Matched filter receiver ≤ ≤ Correlator receiver 7 Oct. 2009 TELE3113 11
  • 12.
    Detection of PAM Detection of M-ary PAM (one-dimension) symbol s1 s2 sM/2-1 sM/2 sM/2+1 sM/2+2 sM-1 sM … … amplitude −3 E − E 0 E 3 E ( M − 1) E 2 Let si = E Ai where i = 1,2 ,...,M and Ai = (2i − 1 − M ) , energy of si is si For equally probable signals, i.e. P( si ) = 1 / M for i = 1,2,...,M 1 M 2 E M 2 E M E M (M 2 − 1)  M 2 − 1  average energy ε av = ∑ si = ∑ Ai = ∑ (2i − 1 − M ) = =  3 E 2 M i =1 M i =1 M i =1 M 3    Received signal r = si + n = E Ai + n where n = 0, σ n = η 2 2 Average Prob(symbol error) Pe = M −1 M ( P r − si > E ) ∞ M −1 2 πη ∫E 2 = e − x η dx M 2( M − 1)  2 E  ∞ x 2 M −1 2 ∫ Q  2 let y = = e − y 2 dy =  η  η M 2π 2 E /η M   7 Oct. 2009 TELE3113 12
  • 13.
    Detection of QAM … Detection of M-ary QAM (two-dimension) : M=2k 2E For one-dimension M -ary PAM: 2E Average Prob(symbol error) Pe ( M − PAM ,1D ) … … 2( M − 1)  2 E  = Q  η   M   For two-dimension M-ary QAM: Average Prob(correct decision) Pc ( M −QAM , 2 D ) = 1 − Pe ( ( ) 2 … M − PAM ,1D ) Average Prob(symbol error) Pe ( M −QAM , 2 D ) = 1 − Pc ( M −QAM , 2 D )  2E  ( = 1 − 1 − Pe ( M − PAM ,1D ) ) 2 For M=4, Pe ( 4 − PAM ,1D ) = Q  η     Average Prob(symbol error) Pe ( 4−QAM , 2 D ) = 1 − 1 − Pe ( ( 4 − PAM ,1D ) ) 2 2   2 E   2E   2 E  = 1 − 1 − Q  η    = Q  η    2 − Q  η           7 Oct. 2009 TELE3113 13