SlideShare a Scribd company logo
Homogeneous systems of linear ordinary
differential equation - Lecture 8 ∗
September 27, 2012
Transition matrix
˙x(t) = A(t)x(t), x(t0) = x0
where A(t) is a m × n matrix whose entries are continuous functions of time
t.
The solution is x(t) = Φ(t, t0)x0, where Φ(t, t0) is the transition matrix given
in terms of the Peano-Baker series:
Φ(t, t0) = I +
t
t0
A(s) ds +
t
t0
s
t0
A(s)A(σ) dσds + . . .
Special case A(t) ≡ A is a constant n × n matrix:
Φ(t, t0) = I +
t
t0
A ds +
t
t0
s
t0
A2
dσds +
t
t0
s
t0
σ
t0
A3
dτdσds + . . .
t
t0
s
t0
σ
t0
A3
dτdσds =
t
t0
s
t0
A3
(σ − t0) dσds
=
t
t0
A3 (s − t0)2
2
ds
=
1
6
A3
(t − t0)3
=
1
3!
A3
(t − t0)3
The k-th term
t
t0
σk−1
t0
· · ·
σ0
t0
Ak
dσ0dσ1 . . . dσk−1 =
1
k!
Ak
(t − t0)k
The Peano-Baker series can be written as:
Φ(t, t0) = I+A·(t−t0)+
1
2!
A2
(t−t0)2
+
1
3!
A3
(t−t0)3
+. . . =
∞
k=0
(A · (t − t0))k
k!
= eA·(t−t0)
∗This work is being done by various members of the class of 2012
1
Dynamic Systems Theory 2
Scalar systems with constant coefficients
˙x = ax, x(0) = x0 ⇔ x(t) = eat
· x0
Solve this by more elementary means
˙x = ax ⇒
dx
dt
= ax ⇒ dx = axdt ⇒
dx
x
= adt
⇒ ln(x) =
t
0
a dτ = at + C ⇒ x = eat
· eC
and x(0) = x0 ⇒ eC
= x0
For scalar systems with time dependent coefficients
˙x = a(t)x(t), x(0) = x0
we can write the solution
x(t) = e
t
0
a(σ) dσ
x0
For a n × n matrix whose entries are functions of t
Φ(t, t0) = I +
t
t0
A(s) ds +
t
t0
s
t0
A(s)A(σ) dσds + . . .
= e
t
t0
A(σ) dσ
(in general)
There is a very special case in which the matrix case has a simplication that
is similar to the scalar case:
˙x = f(t)Ax(t), x(0) = x0
where f(t) is a scalar cotinuous function and A is a constant n × n matrix.
Φ(t, t0) = I +
t
0
f(σ)A dσ +
t
0
σ1
0
f(σ1)f(σ2)A2
dσ2dσ1 + . . .
= I +
t
0
f(σ) dσ · A +
t
0
σ1
0
f(σ1)f(σ2) dσ2dσ1 A2
+ . . .
Let γ(t) =
t
0
f(s) ds, the above series can be rewritten as
Φ(t, t0) = I + γ(t)A +
1
2!
[γ(t)]2
A2
+
1
3!
[γ(t)]3
A3
+ . . .
(Exercise: evaluate the k-th term in the series to show that this is correct).
Seeing this pattern, we write Φ(t, t0) = eγ(t)A
= e( t
0
f(s) ds)A
.
Dynamic Systems Theory 3
Specific examples
Recall the controlled pendulum system
¨θ + c ˙θ +
g
l
sin(θ) = u(t)
θ∗
1 = 0 and θ∗
2 = π are the two equilibrium points.
Linearize about the stable equilibrium (θ∗
1) – first assuming c = 0 (no fric-
tion).
¨x +
g
l
x = ¯u.
For today’s lecture we’re assuming ¯u = 0 (no forcing). Thus to put the
system into the framework under discussion we first orderize as follows:
x1 = g
l x
x2 = ˙x
⇒
˙x1 = g
l ˙x = g
l x2
˙x2 = ¨x = −g
l x = − g
l x1
˙x1
˙x2
=
0 α
−α 0
·
x1
x2
where α = g
l .
To solve this differential equation, we compute
e


0 α
−α 0

t
= I +
0 α
−α 0
t +
1
2
0 α
−α 0
2
t2
+
1
3!
0 α
−α 0
3
t3
+ . . .
=
1 0
0 1
+
0 α
−α 0
t +
1
2
−α2
0
0 α2
2
t2
+
1
3!
0 −α3
α3
0
3
t3
+
1
4!
α4
0
0 α4
4
t4
+
1
5!
0 α5
−α5
0
6
t5
+
1
6!
−α6
0
0 α6
5
t6
+ . . .
=
1 − 1
2 α2
t2
+ 1
4! α4
t4
− 1
6! α6
t6
+ . . . −αt + 1
3! α3
t3
− 1
5! α5
t5
+ . . .
αt − 1
3! α3
t3
+ 1
5! α5
t5
− . . . 1 − 1
2 α2
t2
+ 1
4! α4
t4
− 1
6! α6
t6
+ . . .
=
cos(αt) sin(αt)
− sin(αt) cos(αt)
Check that this satisfies the differential equation
d
dt
cos(αt) sin(αt)
− sin(αt) cos(αt)
=
−α sin(αt) α cos(αt)
−α cos(αt) −α sin(αt)
=
0 α
−α 0
·
cos(αt) sin(αt)
− sin(αt) cos(αt)
and
Dynamic Systems Theory 4
cos(α · 0) sin(α · 0)
− sin(α · 0) cos(α · 0)
=
1 0
0 1
= I
The solution to the origina problem is
˙x1(t)
˙x2(t)
=
cos(αt) sin(αt)
− sin(αt) cos(αt)
·
x1(0)
x2(0)
x(t) =
l
g
x1(t) =
l
g
(cos(αt)x1(0) + sin(αt)x2(0))
= cos(αt)x(0) +
l
g
sin(αt) ˙x(0)
= cos
g
l
t x(0) +
l
g
sin
g
l
t ˙x(0)
Example 2
˙x = Ax
where A is a 3 × 3 matrix
A =


0 −kz ky
kz 0 −kx
−ky kx 0


where k2
x + k2
y + k2
z = 1. A is a skew symetric matrix (aij = −aji).
Note: The norm of the x(t) satisfying this equation is constant ( d
dt x(t) =
0). Thus the solution “lives” on the surface of the unit sphere.
eAt
=


1 0 0
0 1 0
0 0 1

 +


0 −kz ky
kz 0 −kx
−ky kx 0

 t +


−k2
z − k2
y kykx kxkz
kykx −k2
z − k2
x kykz
kxkz kykz −k2
y − k2
x

 t2
+




0
kz
−kz(−k2
z − k2
x) − k2
ykz
−ky
−k2
zky − ky(k2
y + k2
x)
−kz 0 −ky
ky −kx 0



 t3
+ . . .
= I + At +
1
2
A2
t2
−
1
3!
At3
−
1
4!
A2
t4
+
1
5!
At5
= I + A t −
1
3!
t3
+
1
5!
t5
− . . . + A2 1
2
t2
−
1
4!
t4
+
1
6!
t6
− . . .
= I + A sin(t) + A2
(1 − cos(t))
Dynamic Systems Theory 5
Simplications that always work
Compute e


−3/2 1/2
1/2 −3/2

t
. Directly
1 0
0 1
+
−3/2 1/2
1/2 −3/2
t +
1
2
5/2 −3/2
−3/2 5/2
t2
+ . . .
(I can’t see a pattern.)
Suppose I express A w.r.t. another basis {p1, p2} and suppose that in this
basis A has the form
λ1 0
0 λ2
.
Ap1 = λ1p1
Ap2 = λ2p2
A p1 p2 = λ1p1 λ2p2 = p1 p2
λ1 0
0 λ2
AP = P
λ1 0
0 λ2
P−1
AP =
λ1 0
0 λ2
= Λ
eAt
= eP ΛP −1
t
= I + PΛP−1
t +
1
2
(PΛP−1
)(PΛP−1
)t2
+ . . .
= I + PΛP−1
t +
1
2
(PΛ2
P−1
)t2
+
1
3!
(PΛ3
P−1
)t3
+
1
4!
(PΛ4
P−1
)t4
+ . . .
= P I + Λt +
1
2
Λ2
t2
+
1
3!
Λ3
t3
+
1
4!
Λ4
t4
+ . . . P−1
= P
eλ1t
0
0 eλ2t P−1

More Related Content

What's hot

Complex variables
Complex variablesComplex variables
Complex variables
MADHAVASAIYENDUVA
 
Solution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius MethodSolution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius Method
Dr. Mehar Chand
 
Ch07 6
Ch07 6Ch07 6
Ch07 6
Rendy Robert
 
Unit1 vrs
Unit1 vrsUnit1 vrs
presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve
Mukuldev Khunte
 
C slides 11
C slides 11C slides 11
C slides 11
Denis Gillet
 
Ma2002 1.14 rm
Ma2002 1.14 rmMa2002 1.14 rm
Ma2002 1.14 rm
Ramakrishna Paduchuri
 
C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)
parth98796
 
Another possibility
Another possibilityAnother possibility
Another possibility
Css Founder
 
Ep 5512 lecture-02
Ep 5512 lecture-02Ep 5512 lecture-02
Ep 5512 lecture-02
Kindshih Berihun
 
Introduction to Differential Equations
Introduction to Differential EquationsIntroduction to Differential Equations
Introduction to Differential Equations
Vishvaraj Chauhan
 
Unit1
Unit1Unit1
Matematika diskrit: fungsi pembangkit part 3
Matematika diskrit: fungsi pembangkit part 3Matematika diskrit: fungsi pembangkit part 3
Matematika diskrit: fungsi pembangkit part 3
radar radius
 
1010n3a
1010n3a1010n3a
1010n3a
Faiza Saher
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
Dr. Nirav Vyas
 
Ch05 7
Ch05 7Ch05 7
Ch05 7
Rendy Robert
 
Kuhn munkres algorithm
Kuhn munkres algorithmKuhn munkres algorithm
Kuhn munkres algorithm
Abdullah Nasser
 
Complex analysis notes
Complex analysis notesComplex analysis notes
Complex analysis notes
Prakash Dabhi
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
tejaspatel1997
 
Math resources trigonometric_formulas
Math resources trigonometric_formulasMath resources trigonometric_formulas
Math resources trigonometric_formulas
Er Deepak Sharma
 

What's hot (20)

Complex variables
Complex variablesComplex variables
Complex variables
 
Solution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius MethodSolution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius Method
 
Ch07 6
Ch07 6Ch07 6
Ch07 6
 
Unit1 vrs
Unit1 vrsUnit1 vrs
Unit1 vrs
 
presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve
 
C slides 11
C slides 11C slides 11
C slides 11
 
Ma2002 1.14 rm
Ma2002 1.14 rmMa2002 1.14 rm
Ma2002 1.14 rm
 
C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)
 
Another possibility
Another possibilityAnother possibility
Another possibility
 
Ep 5512 lecture-02
Ep 5512 lecture-02Ep 5512 lecture-02
Ep 5512 lecture-02
 
Introduction to Differential Equations
Introduction to Differential EquationsIntroduction to Differential Equations
Introduction to Differential Equations
 
Unit1
Unit1Unit1
Unit1
 
Matematika diskrit: fungsi pembangkit part 3
Matematika diskrit: fungsi pembangkit part 3Matematika diskrit: fungsi pembangkit part 3
Matematika diskrit: fungsi pembangkit part 3
 
1010n3a
1010n3a1010n3a
1010n3a
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Ch05 7
Ch05 7Ch05 7
Ch05 7
 
Kuhn munkres algorithm
Kuhn munkres algorithmKuhn munkres algorithm
Kuhn munkres algorithm
 
Complex analysis notes
Complex analysis notesComplex analysis notes
Complex analysis notes
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
 
Math resources trigonometric_formulas
Math resources trigonometric_formulasMath resources trigonometric_formulas
Math resources trigonometric_formulas
 

Similar to 501 lecture8

Contemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manualContemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manual
to2001
 
160511 hasegawa lab_seminar
160511 hasegawa lab_seminar160511 hasegawa lab_seminar
160511 hasegawa lab_seminar
Tomohiro Koana
 
Comparison Theorems for SDEs
Comparison Theorems for SDEs Comparison Theorems for SDEs
Comparison Theorems for SDEs
Ilya Gikhman
 
Ch07 7
Ch07 7Ch07 7
Ch07 7
Rendy Robert
 
optimal control principle slided
optimal control principle slidedoptimal control principle slided
optimal control principle slided
Karthi Ramachandran
 
stochastic processes assignment help
stochastic processes assignment helpstochastic processes assignment help
stochastic processes assignment help
Statistics Homework Helper
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Trapezoidal Method IN Numerical Analysis
Trapezoidal Method IN  Numerical AnalysisTrapezoidal Method IN  Numerical Analysis
Trapezoidal Method IN Numerical Analysis
Mostafijur Rahman
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
Pamela Paz
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
FahadYaqoob5
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
FahadYaqoob5
 
Simple harmonic motion1
Simple harmonic motion1Simple harmonic motion1
Simple harmonic motion1
Rosmaya Mokhtar
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulas
Hoopeer Hoopeer
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 
On problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-objectOn problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-object
Cemal Ardil
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Henrique Covatti
 
Wide sense stationary process in digital communication
Wide sense stationary process in digital communicationWide sense stationary process in digital communication
Wide sense stationary process in digital communication
VitthalGavhane1
 
corripio
corripio corripio
corripio
Sabrina Amaral
 
Capitulo 2 corripio
Capitulo 2 corripioCapitulo 2 corripio
Capitulo 2 corripio
omardavid01
 
AJMS_384_22.pdf
AJMS_384_22.pdfAJMS_384_22.pdf
AJMS_384_22.pdf
BRNSS Publication Hub
 

Similar to 501 lecture8 (20)

Contemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manualContemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manual
 
160511 hasegawa lab_seminar
160511 hasegawa lab_seminar160511 hasegawa lab_seminar
160511 hasegawa lab_seminar
 
Comparison Theorems for SDEs
Comparison Theorems for SDEs Comparison Theorems for SDEs
Comparison Theorems for SDEs
 
Ch07 7
Ch07 7Ch07 7
Ch07 7
 
optimal control principle slided
optimal control principle slidedoptimal control principle slided
optimal control principle slided
 
stochastic processes assignment help
stochastic processes assignment helpstochastic processes assignment help
stochastic processes assignment help
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Chapter3 laplace
 
Trapezoidal Method IN Numerical Analysis
Trapezoidal Method IN  Numerical AnalysisTrapezoidal Method IN  Numerical Analysis
Trapezoidal Method IN Numerical Analysis
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
 
Simple harmonic motion1
Simple harmonic motion1Simple harmonic motion1
Simple harmonic motion1
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulas
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
On problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-objectOn problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-object
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Wide sense stationary process in digital communication
Wide sense stationary process in digital communicationWide sense stationary process in digital communication
Wide sense stationary process in digital communication
 
corripio
corripio corripio
corripio
 
Capitulo 2 corripio
Capitulo 2 corripioCapitulo 2 corripio
Capitulo 2 corripio
 
AJMS_384_22.pdf
AJMS_384_22.pdfAJMS_384_22.pdf
AJMS_384_22.pdf
 

Recently uploaded

Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
gerogepatton
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
mamamaam477
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
Nada Hikmah
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
NazakatAliKhoso2
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
sachin chaurasia
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
bijceesjournal
 
Certificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi AhmedCertificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi Ahmed
Mahmoud Morsy
 
NATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENT
NATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENTNATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENT
NATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENT
Addu25809
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
gowrishankartb2005
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
LAXMAREDDY22
 

Recently uploaded (20)

Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
 
Certificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi AhmedCertificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi Ahmed
 
NATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENT
NATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENTNATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENT
NATURAL DEEP EUTECTIC SOLVENTS AS ANTI-FREEZING AGENT
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
 

501 lecture8

  • 1. Homogeneous systems of linear ordinary differential equation - Lecture 8 ∗ September 27, 2012 Transition matrix ˙x(t) = A(t)x(t), x(t0) = x0 where A(t) is a m × n matrix whose entries are continuous functions of time t. The solution is x(t) = Φ(t, t0)x0, where Φ(t, t0) is the transition matrix given in terms of the Peano-Baker series: Φ(t, t0) = I + t t0 A(s) ds + t t0 s t0 A(s)A(σ) dσds + . . . Special case A(t) ≡ A is a constant n × n matrix: Φ(t, t0) = I + t t0 A ds + t t0 s t0 A2 dσds + t t0 s t0 σ t0 A3 dτdσds + . . . t t0 s t0 σ t0 A3 dτdσds = t t0 s t0 A3 (σ − t0) dσds = t t0 A3 (s − t0)2 2 ds = 1 6 A3 (t − t0)3 = 1 3! A3 (t − t0)3 The k-th term t t0 σk−1 t0 · · · σ0 t0 Ak dσ0dσ1 . . . dσk−1 = 1 k! Ak (t − t0)k The Peano-Baker series can be written as: Φ(t, t0) = I+A·(t−t0)+ 1 2! A2 (t−t0)2 + 1 3! A3 (t−t0)3 +. . . = ∞ k=0 (A · (t − t0))k k! = eA·(t−t0) ∗This work is being done by various members of the class of 2012 1
  • 2. Dynamic Systems Theory 2 Scalar systems with constant coefficients ˙x = ax, x(0) = x0 ⇔ x(t) = eat · x0 Solve this by more elementary means ˙x = ax ⇒ dx dt = ax ⇒ dx = axdt ⇒ dx x = adt ⇒ ln(x) = t 0 a dτ = at + C ⇒ x = eat · eC and x(0) = x0 ⇒ eC = x0 For scalar systems with time dependent coefficients ˙x = a(t)x(t), x(0) = x0 we can write the solution x(t) = e t 0 a(σ) dσ x0 For a n × n matrix whose entries are functions of t Φ(t, t0) = I + t t0 A(s) ds + t t0 s t0 A(s)A(σ) dσds + . . . = e t t0 A(σ) dσ (in general) There is a very special case in which the matrix case has a simplication that is similar to the scalar case: ˙x = f(t)Ax(t), x(0) = x0 where f(t) is a scalar cotinuous function and A is a constant n × n matrix. Φ(t, t0) = I + t 0 f(σ)A dσ + t 0 σ1 0 f(σ1)f(σ2)A2 dσ2dσ1 + . . . = I + t 0 f(σ) dσ · A + t 0 σ1 0 f(σ1)f(σ2) dσ2dσ1 A2 + . . . Let γ(t) = t 0 f(s) ds, the above series can be rewritten as Φ(t, t0) = I + γ(t)A + 1 2! [γ(t)]2 A2 + 1 3! [γ(t)]3 A3 + . . . (Exercise: evaluate the k-th term in the series to show that this is correct). Seeing this pattern, we write Φ(t, t0) = eγ(t)A = e( t 0 f(s) ds)A .
  • 3. Dynamic Systems Theory 3 Specific examples Recall the controlled pendulum system ¨θ + c ˙θ + g l sin(θ) = u(t) θ∗ 1 = 0 and θ∗ 2 = π are the two equilibrium points. Linearize about the stable equilibrium (θ∗ 1) – first assuming c = 0 (no fric- tion). ¨x + g l x = ¯u. For today’s lecture we’re assuming ¯u = 0 (no forcing). Thus to put the system into the framework under discussion we first orderize as follows: x1 = g l x x2 = ˙x ⇒ ˙x1 = g l ˙x = g l x2 ˙x2 = ¨x = −g l x = − g l x1 ˙x1 ˙x2 = 0 α −α 0 · x1 x2 where α = g l . To solve this differential equation, we compute e   0 α −α 0  t = I + 0 α −α 0 t + 1 2 0 α −α 0 2 t2 + 1 3! 0 α −α 0 3 t3 + . . . = 1 0 0 1 + 0 α −α 0 t + 1 2 −α2 0 0 α2 2 t2 + 1 3! 0 −α3 α3 0 3 t3 + 1 4! α4 0 0 α4 4 t4 + 1 5! 0 α5 −α5 0 6 t5 + 1 6! −α6 0 0 α6 5 t6 + . . . = 1 − 1 2 α2 t2 + 1 4! α4 t4 − 1 6! α6 t6 + . . . −αt + 1 3! α3 t3 − 1 5! α5 t5 + . . . αt − 1 3! α3 t3 + 1 5! α5 t5 − . . . 1 − 1 2 α2 t2 + 1 4! α4 t4 − 1 6! α6 t6 + . . . = cos(αt) sin(αt) − sin(αt) cos(αt) Check that this satisfies the differential equation d dt cos(αt) sin(αt) − sin(αt) cos(αt) = −α sin(αt) α cos(αt) −α cos(αt) −α sin(αt) = 0 α −α 0 · cos(αt) sin(αt) − sin(αt) cos(αt) and
  • 4. Dynamic Systems Theory 4 cos(α · 0) sin(α · 0) − sin(α · 0) cos(α · 0) = 1 0 0 1 = I The solution to the origina problem is ˙x1(t) ˙x2(t) = cos(αt) sin(αt) − sin(αt) cos(αt) · x1(0) x2(0) x(t) = l g x1(t) = l g (cos(αt)x1(0) + sin(αt)x2(0)) = cos(αt)x(0) + l g sin(αt) ˙x(0) = cos g l t x(0) + l g sin g l t ˙x(0) Example 2 ˙x = Ax where A is a 3 × 3 matrix A =   0 −kz ky kz 0 −kx −ky kx 0   where k2 x + k2 y + k2 z = 1. A is a skew symetric matrix (aij = −aji). Note: The norm of the x(t) satisfying this equation is constant ( d dt x(t) = 0). Thus the solution “lives” on the surface of the unit sphere. eAt =   1 0 0 0 1 0 0 0 1   +   0 −kz ky kz 0 −kx −ky kx 0   t +   −k2 z − k2 y kykx kxkz kykx −k2 z − k2 x kykz kxkz kykz −k2 y − k2 x   t2 +     0 kz −kz(−k2 z − k2 x) − k2 ykz −ky −k2 zky − ky(k2 y + k2 x) −kz 0 −ky ky −kx 0     t3 + . . . = I + At + 1 2 A2 t2 − 1 3! At3 − 1 4! A2 t4 + 1 5! At5 = I + A t − 1 3! t3 + 1 5! t5 − . . . + A2 1 2 t2 − 1 4! t4 + 1 6! t6 − . . . = I + A sin(t) + A2 (1 − cos(t))
  • 5. Dynamic Systems Theory 5 Simplications that always work Compute e   −3/2 1/2 1/2 −3/2  t . Directly 1 0 0 1 + −3/2 1/2 1/2 −3/2 t + 1 2 5/2 −3/2 −3/2 5/2 t2 + . . . (I can’t see a pattern.) Suppose I express A w.r.t. another basis {p1, p2} and suppose that in this basis A has the form λ1 0 0 λ2 . Ap1 = λ1p1 Ap2 = λ2p2 A p1 p2 = λ1p1 λ2p2 = p1 p2 λ1 0 0 λ2 AP = P λ1 0 0 λ2 P−1 AP = λ1 0 0 λ2 = Λ eAt = eP ΛP −1 t = I + PΛP−1 t + 1 2 (PΛP−1 )(PΛP−1 )t2 + . . . = I + PΛP−1 t + 1 2 (PΛ2 P−1 )t2 + 1 3! (PΛ3 P−1 )t3 + 1 4! (PΛ4 P−1 )t4 + . . . = P I + Λt + 1 2 Λ2 t2 + 1 3! Λ3 t3 + 1 4! Λ4 t4 + . . . P−1 = P eλ1t 0 0 eλ2t P−1