SlideShare a Scribd company logo
BMM 104: ENGINEERING MATHEMATICS I                                                                                Page 1 of 8


                              CHAPTER 9: THE LAPLACE TRANSFORM

Laplace Transformation and its Inverse

Definition:

Let f (t ) be defined for 0 ≤ t ≤ ∞ and let s denote an arbitrary real variable. The
Laplace transform of f (t ) , designated by either L[ f ( t ) ] or F ( s ) , is

                                                ∞
                   F ( s ) = L[ f (t )] = ∫e −st f (t )dt
                                                0

for all values of s for which the improper integral converges. Convergence occurs when
the limit

                   ∞                                a

                   ∫e
                        −st
                              f ( t ) dt = lim ∫ e −st f ( t ) dt
                                            a→∞
                    0                               0

exists. If the limit does not exist, the improper integral does not exist, the improper
integral diverges and f (t ) has no Laplace transform. When evaluating the integral, the
variable s is treated as a constant because the integration is with respect to t.

On the other hand, we may write f ( t ) = L−1 [ F ( s ) ] with L−1 is called inverse Laplace
transformation operator and f (t ) is called the inverse Laplace transformation for
 F (s) .

Example:

Find the Laplace transform by definition.

(a)     L[1]                              (b)             [ ]
                                                        L e at

Properties ( Linearity of Laplace Operator L and its inverse L−1 )

Suppose c1 and c 2 are arbitrary constants, then

(i)     L{ c1 f 1 ( t ) + c 2 f 2 ( t ) } = c1 L{ f 1 ( t ) } + c 2 L{ f 2 ( t ) } = c1 F1 ( s ) + c 2 F2 ( s )

(ii)    L−1 { c1 F1 ( s ) + c 2 F2 ( s )} = c1 L−1 { F1 ( s )} + c 2 L−1 { F2 ( s )} = c1 f 1 ( t ) + c 2 f 2 ( t )




Example:
BMM 104: ENGINEERING MATHEMATICS I                                                                             Page 2 of 8




Find the Laplace transform for the following functions.

(a)       {
        L 2 + 3e −2 t     }
                               1 
(b)     L − 2t − sin 3t + 4 cos t 
                               2 
(c)       {               −2 t
        L 2 cosh 5t − 7 e cos 4t               }
Example:

              −1  3      5      6 
(a)     Find L         + + 2          .
                 s − 3 s s + 4
              −1  2          4 
(b)     Find L         + 2       2 .
                 s − 3 s − 3 
              −1     2s + 3 
(c)     Find L  2              .
                  s − 4 s + 20 
              −1    2s − 3 
(d)     Find L  2             .
                  s − 4s + 6 
              −1            10       
(e)     Find L                       .
                                 (
                     ( s − 2 ) s + 1 
                                 2
                                           )
Theorem:

Suppose f (t ) is a continuous function for t ≥ 0 that has Laplace transform F ( s ) . If
 f ' ( t ) and f '' ( t ) have Laplace transformation, then

        * L{ f ' ( t )} = sF ( s ) − f ( 0 )

        * L{ f '' ( t )} = s 2 F ( s ) − sf ( 0 ) − f ' ( 0 )

NOTE:

The above Theorem is applied in solving initial value problem.

We apply,

           dy                                                   d 2 y 
        L   = sY ( s ) − y ( 0 )                   and        L  2  = s 2 Y ( s ) − sy ( 0 ) − y ' ( 0 )
           dt                                                    dt 

where      Y ( s ) = L{ y ( t )} .

Example:
BMM 104: ENGINEERING MATHEMATICS I                                                                    Page 3 of 8




By taking Laplace transformation on both of the following differential equations, find
Y ( s ).

(a)        y ' = cos 5t ; y ( 0 ) = 1
(b)        y '' + 4 y ' + 13 y = 0 ; y ( 0 ) = 2; y ' ( 0 ) = −7
(c)        y '' + y = 16 cos t ; y ( 0 ) = 0 ; y ' ( 0 ) = 0

First Shift Theorem

If L{ f ( t )} = F ( s ) then L{e at f ( t )} = F ( s − a ) where a is a real constant.

Example:

Determine the following.

(a)         {
           L e at cos bt   }                                     (b)    {
                                                                       L e at sin bt   }

Multiplication by t Theorem

                                                   d
If L{ f ( t )} = F ( s ) then L{tf ( t )} = −         F ( s) .
                                                   ds

Example:

Obtain the following.

(a)        L{te t }            (b)         L{t 2 e t }           (c)   L{t sin t }         (d)   L{t 2 sin t }




Solving Linear Initial-Value Problems with Constant Coefficients
BMM 104: ENGINEERING MATHEMATICS I                                             Page 4 of 8


Laplace transform for derivatives of a function contain terms that need the values of the
function and its derivative at t = 0. By having these (initial) conditions, the approach
using Laplace transformation become very suitable to solve initial value problem that
involving constant coefficients.

Example:

(a)    Solve y '' + y = 16 cos t ; y ( 0 ) = y ' ( 0 ) = 0 .
(b)    Solve y '' + 4 y ' + 13 y = 0 ; y ( 0 ) = 2; y ' ( 0 ) = −7 .
(c)    Solve y '' − 3 y + 2 y ' = 12e 4 t ; y ( 0 ) = 1; y ' ( 0 ) = 0 .




                             TABLE OF LAPLACE TRANSFORMS
BMM 104: ENGINEERING MATHEMATICS I                                                                            Page 5 of 8


                          f (t )                                               F ( s ) = L{ f ( t )}
1     1                                      1
                                                                                                        s >0
                                             s
2     t                                       1
                                                                                                       s >0
                                             s2
3      tn ,                   n = 1,2 ,...    n!
                                                                                                       s >0
                                             s n +1
4      e at                                    1
                                                                                                       s>a
                                             s −a
5      sin at                                   a
                                                                                                       s >0
                                             s + a2
                                               2

6      cos at                                   s
                                                                                                       s >0
                                             s + a2
                                              2

7      sinh at                                  a
                                                                                                       s >a
                                             s − a2
                                              2

8      cosh at                                  s
                                                                                                       s >a
                                             s − a2
                                              2

9      e at sin bt                                         b
                                                                                                       s>a
                                             ( s − a) 2 + b2
10     e at cos bt                                     s−a
                                                                                                       s>a
                                             ( s − a) 2 + b2
11     t n e at                                           n!
                                                                                                       s>a
                                             ( s − a ) n +1
12     t sin at                                       2as
                                                                                                   s >0
                                             (s   2
                                                      + a2     )   2


13     t cos at                                s2 − a2
                                                                                                   s >0
                                             (s   2
                                                      + a2     )   2


14     t sinh at                                      2as
                                                                                                   s> a
                                             (s   2
                                                      − a2     )   2


15     t cosh at                                      s2 + a2
                                                                                                  s >a
                                               (s     2
                                                          − a2         )   2


16     y ' (t )                              sY ( s ) − y (0 ) with Y ( s ) = L{ y ( t )}
17     y (t )
          ''
                                             s 2 Y ( s ) − sy ( 0 ) − y ' ( 0 )
18     e at f (t )                           F ( s − a)
19     t n f (t ) ,           n = 1,2 ,...              d
                                             ( − 1) n        F ( s)
                                                      ds n
20     µa ( t ) f ( t )                      e − as L{ f ( t + a )}
21     µa ( t ) f ( t − a )                  e − as L{ f ( t )}
BMM 104: ENGINEERING MATHEMATICS I                                                   Page 6 of 8


22      f (t ) is periodic with period         ρ                ρ

                                                               ∫e
                                                                      −st
                                                                            f (t )
                                                                0

                                                                 1 − e −ρs
23     t                                             F ( s )G ( s )
       ∫    f (τ ) g ( t −τ ) dτ
       o

24     t                                             1
                                                       F (s)
       ∫ f (τ )dτ
       o
                                                     s




                                         PROBLEM SET: CHAPTER 9

1.    Evaluate the following Laplace transform.

      (a)          {
                 L e −7 t + e −2 t       }
      (b)        L{e 3t + sin 3t }
      (c)        L{3 sin 4t − 2 cos 4t }
      (d)        L{ sin at cos at}
      (e)        L{5 sinh 3t − 2 cosh 2t}

2.    Solve by using First Shift Theorem.

      (a)          {
                 L e 2 t sinh t      }
      (b)        L{e 2 t sin 3t cos 3t }
      (c)        L{e −3t cos( 2t + 4 )}

3.    Solve by using Multiplication by t Theorem.

      (a)        L{t cos at }
      (b)        L{t 2 e 2 t }
      (c)          {
                 L t sin 2 t     }




4.    Find the inverse of the following Laplace transform.

                       1
                 3s( s 2 + 4 )
      (a)
BMM 104: ENGINEERING MATHEMATICS I                                                       Page 7 of 8


                      2
      (b)
              s + s −6
               2

                   2s − 1
      (c)
              s + 4s + 5
                2

                        1
              s ( s + 4 s + 13)
      (d)           2


                            1
              s( s + 1) ( s 2 + 4 s + 5 )
      (e)


5.    Solve the following initial value problem.

      (a)     y '' + 9 y = t 2 ;                            y ( 0 ) = 1; y ' ( 0 ) = 0
      (b)     y '' − y = sin t ;                  y(0 ) = y' (0 ) = 0
      (c)     y '' + 4 y ' + 8 y = cos 2t ;       y ( 0 ) = 2; y ' ( 0 ) = 1
      (d)     y '' − 2 y ' + y = te t ;                     y ( 0 ) = 1; y ' ( 0 ) = 0
      (e)     y '' + 2 y ' + 5 y = e −t sin t ;             y ( 0 ) = 1; y ' ( 0 ) = 1



                    ANSWERS FOR PROBLEM SET: CHAPTER 9

                   2s + 9
1.    (a)
              ( s + 7 )( s + 2 )
                   s( s + 3)
      (b)
              ( s − 3) ( s 2 + 9 )
              2( 6 − s )
      (c)
               s 2 + 16
                   a
      (d)
              s + 4a 2
                2

              − 2 s 3 + 15 s 2 + 18 s − 60
      (e)
                    ( s 2 − 4 )( s 2 − 9 )




                     1
2.    (a)
              ( s − 2) 2 − 1
                      3
      (b)
              ( s − 2 ) 2 + 36
              ( s + 3) cos 4 − 2 sin 4
      (c)
                    ( s + 3) 2 + 4
BMM 104: ENGINEERING MATHEMATICS I                                  Page 8 of 8




              s2 − a2
3.    (a)
            (s   2
                     + a2   )   2


                     2
      (b)
            ( s − 2) 3
             2( 3 s 2 + 4 )
      (c)
            s 2 ( s 2 + 4)
                                    2




             1
4.    (a)         ( 1 − cos 2t )
            12
      (b)
            5
               (e − e −3t )
            2 2t

      (c)   e −2 t ( 2 cos t − 5 sin t )
             1      −2t         2       
      (d)      1 − e  cos 3t + 3 sin 3t 
            13                          
            1 1 −t        1 −2 t
      (e)     − e +         e ( 3 cos t + sin t )
            5 2          10

            1 2 1
5.    (a)      t + ( 83 cos 3t − 2 )
            9       81
      (b)
            1 t
            4
               (e − e −t ) − 2 sin t OR 2 ( sinh t − sin t )
                              1                 1

             1              1           39 −2 t       47 −2 t
      (c)        cos 2t +      sin 2t +    e cos 2t +    e sin 2t
            20             10           20            20
                       1 
      (d)   et 1 − t + t 3 
                       6 
            1 −t
      (e)      e ( sin t + sin 2t )
            3
BMM 104: ENGINEERING MATHEMATICS I                                  Page 8 of 8




              s2 − a2
3.    (a)
            (s   2
                     + a2   )   2


                     2
      (b)
            ( s − 2) 3
             2( 3 s 2 + 4 )
      (c)
            s 2 ( s 2 + 4)
                                    2




             1
4.    (a)         ( 1 − cos 2t )
            12
      (b)
            5
               (e − e −3t )
            2 2t

      (c)   e −2 t ( 2 cos t − 5 sin t )
             1      −2t         2       
      (d)      1 − e  cos 3t + 3 sin 3t 
            13                          
            1 1 −t        1 −2 t
      (e)     − e +         e ( 3 cos t + sin t )
            5 2          10

            1 2 1
5.    (a)      t + ( 83 cos 3t − 2 )
            9       81
      (b)
            1 t
            4
               (e − e −t ) − 2 sin t OR 2 ( sinh t − sin t )
                              1                 1

             1              1           39 −2 t       47 −2 t
      (c)        cos 2t +      sin 2t +    e cos 2t +    e sin 2t
            20             10           20            20
                       1 
      (d)   et 1 − t + t 3 
                       6 
            1 −t
      (e)      e ( sin t + sin 2t )
            3
BMM 104: ENGINEERING MATHEMATICS I                                  Page 8 of 8




              s2 − a2
3.    (a)
            (s   2
                     + a2   )   2


                     2
      (b)
            ( s − 2) 3
             2( 3 s 2 + 4 )
      (c)
            s 2 ( s 2 + 4)
                                    2




             1
4.    (a)         ( 1 − cos 2t )
            12
      (b)
            5
               (e − e −3t )
            2 2t

      (c)   e −2 t ( 2 cos t − 5 sin t )
             1      −2t         2       
      (d)      1 − e  cos 3t + 3 sin 3t 
            13                          
            1 1 −t        1 −2 t
      (e)     − e +         e ( 3 cos t + sin t )
            5 2          10

            1 2 1
5.    (a)      t + ( 83 cos 3t − 2 )
            9       81
      (b)
            1 t
            4
               (e − e −t ) − 2 sin t OR 2 ( sinh t − sin t )
                              1                 1

             1              1           39 −2 t       47 −2 t
      (c)        cos 2t +      sin 2t +    e cos 2t +    e sin 2t
            20             10           20            20
                       1 
      (d)   et 1 − t + t 3 
                       6 
            1 −t
      (e)      e ( sin t + sin 2t )
            3
BMM 104: ENGINEERING MATHEMATICS I                                  Page 8 of 8




              s2 − a2
3.    (a)
            (s   2
                     + a2   )   2


                     2
      (b)
            ( s − 2) 3
             2( 3 s 2 + 4 )
      (c)
            s 2 ( s 2 + 4)
                                    2




             1
4.    (a)         ( 1 − cos 2t )
            12
      (b)
            5
               (e − e −3t )
            2 2t

      (c)   e −2 t ( 2 cos t − 5 sin t )
             1      −2t         2       
      (d)      1 − e  cos 3t + 3 sin 3t 
            13                          
            1 1 −t        1 −2 t
      (e)     − e +         e ( 3 cos t + sin t )
            5 2          10

            1 2 1
5.    (a)      t + ( 83 cos 3t − 2 )
            9       81
      (b)
            1 t
            4
               (e − e −t ) − 2 sin t OR 2 ( sinh t − sin t )
                              1                 1

             1              1           39 −2 t       47 −2 t
      (c)        cos 2t +      sin 2t +    e cos 2t +    e sin 2t
            20             10           20            20
                       1 
      (d)   et 1 − t + t 3 
                       6 
            1 −t
      (e)      e ( sin t + sin 2t )
            3

More Related Content

What's hot

1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt
UdayveerSingh55
 
Geothermal energy presentation
Geothermal energy presentationGeothermal energy presentation
Geothermal energy presentation
NAMRATA BORDOLOI
 
Engineering Mathematics
Engineering MathematicsEngineering Mathematics
Engineering Mathematics
ABU TALEB
 
Future of Energy - The Emerging View
Future of Energy - The Emerging ViewFuture of Energy - The Emerging View
Future of Energy - The Emerging View
Future Agenda
 
Potential of Solar energy in India
Potential of Solar energy in IndiaPotential of Solar energy in India
Potential of Solar energy in India
sandeep nain
 
legendre transformatio.pptx
legendre transformatio.pptxlegendre transformatio.pptx
legendre transformatio.pptx
Mohsan10
 
abstract of power transmission via solar power satellite
abstract of power transmission via solar power satelliteabstract of power transmission via solar power satellite
abstract of power transmission via solar power satellite
Doddoji Adharvana
 
Green Power Presentation
Green Power PresentationGreen Power Presentation
Green Power Presentation
djehlke
 
Solar Presentation & Script.pptx
Solar Presentation & Script.pptxSolar Presentation & Script.pptx
Solar Presentation & Script.pptx
TrainingDevelopmentT
 
Numerical method for solving non linear equations
Numerical method for solving non linear equationsNumerical method for solving non linear equations
Numerical method for solving non linear equations
MdHaque78
 
Fourier series and transforms
Fourier series and transformsFourier series and transforms
Fourier series and transforms
Pepa Vidosa Serradilla
 
power flow and optimal power flow
power flow and optimal power flowpower flow and optimal power flow
power flow and optimal power flow
Ahmed M. Elkholy
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
Chandra Kundu
 
Integration
IntegrationIntegration
Integration
Chhitiz Shrestha
 
Analysis of Solar Diesel Hybrid off Grid System in Myanmar
Analysis of Solar Diesel Hybrid off Grid System in MyanmarAnalysis of Solar Diesel Hybrid off Grid System in Myanmar
Analysis of Solar Diesel Hybrid off Grid System in Myanmar
ijtsrd
 
Automatic load frequency control
Automatic load frequency controlAutomatic load frequency control
Automatic load frequency control
Balaram Das
 
High Penetration of Renewable Energy
High Penetration of Renewable EnergyHigh Penetration of Renewable Energy
High Penetration of Renewable Energy
Power System Operation
 
Renewable energy Sources, Efficiency, Uses and latest Research
Renewable energy Sources, Efficiency, Uses and latest Research Renewable energy Sources, Efficiency, Uses and latest Research
Renewable energy Sources, Efficiency, Uses and latest Research
Zohaib HUSSAIN
 
Applied numerical methods lec13
Applied numerical methods lec13Applied numerical methods lec13
Applied numerical methods lec13
Yasser Ahmed
 
Solar pv connected to grid
Solar pv connected to gridSolar pv connected to grid
Solar pv connected to grid
Darshan Prajapati
 

What's hot (20)

1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt
 
Geothermal energy presentation
Geothermal energy presentationGeothermal energy presentation
Geothermal energy presentation
 
Engineering Mathematics
Engineering MathematicsEngineering Mathematics
Engineering Mathematics
 
Future of Energy - The Emerging View
Future of Energy - The Emerging ViewFuture of Energy - The Emerging View
Future of Energy - The Emerging View
 
Potential of Solar energy in India
Potential of Solar energy in IndiaPotential of Solar energy in India
Potential of Solar energy in India
 
legendre transformatio.pptx
legendre transformatio.pptxlegendre transformatio.pptx
legendre transformatio.pptx
 
abstract of power transmission via solar power satellite
abstract of power transmission via solar power satelliteabstract of power transmission via solar power satellite
abstract of power transmission via solar power satellite
 
Green Power Presentation
Green Power PresentationGreen Power Presentation
Green Power Presentation
 
Solar Presentation & Script.pptx
Solar Presentation & Script.pptxSolar Presentation & Script.pptx
Solar Presentation & Script.pptx
 
Numerical method for solving non linear equations
Numerical method for solving non linear equationsNumerical method for solving non linear equations
Numerical method for solving non linear equations
 
Fourier series and transforms
Fourier series and transformsFourier series and transforms
Fourier series and transforms
 
power flow and optimal power flow
power flow and optimal power flowpower flow and optimal power flow
power flow and optimal power flow
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
Integration
IntegrationIntegration
Integration
 
Analysis of Solar Diesel Hybrid off Grid System in Myanmar
Analysis of Solar Diesel Hybrid off Grid System in MyanmarAnalysis of Solar Diesel Hybrid off Grid System in Myanmar
Analysis of Solar Diesel Hybrid off Grid System in Myanmar
 
Automatic load frequency control
Automatic load frequency controlAutomatic load frequency control
Automatic load frequency control
 
High Penetration of Renewable Energy
High Penetration of Renewable EnergyHigh Penetration of Renewable Energy
High Penetration of Renewable Energy
 
Renewable energy Sources, Efficiency, Uses and latest Research
Renewable energy Sources, Efficiency, Uses and latest Research Renewable energy Sources, Efficiency, Uses and latest Research
Renewable energy Sources, Efficiency, Uses and latest Research
 
Applied numerical methods lec13
Applied numerical methods lec13Applied numerical methods lec13
Applied numerical methods lec13
 
Solar pv connected to grid
Solar pv connected to gridSolar pv connected to grid
Solar pv connected to grid
 

Viewers also liked

Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
University Malaya
 
Presentation on laplace transforms
Presentation on laplace transformsPresentation on laplace transforms
Presentation on laplace transforms
Himel Himo
 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
Akanksha Diwadi
 
Chapter 2 Laplace Transform
Chapter 2 Laplace TransformChapter 2 Laplace Transform
Chapter 2 Laplace Transform
Zakiah Saad
 
LAPLACE TRANSFORM SUITABILITY FOR IMAGE PROCESSING
LAPLACE TRANSFORM SUITABILITY FOR IMAGE PROCESSINGLAPLACE TRANSFORM SUITABILITY FOR IMAGE PROCESSING
LAPLACE TRANSFORM SUITABILITY FOR IMAGE PROCESSING
Priyanka Rathore
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
Naveen Sihag
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
Dr. Nirav Vyas
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
Awais Chaudhary
 
Laplace transform and its applications
Laplace transform and its applicationsLaplace transform and its applications
Laplace transform and its applications
Nisarg Shah
 

Viewers also liked (9)

Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
 
Presentation on laplace transforms
Presentation on laplace transformsPresentation on laplace transforms
Presentation on laplace transforms
 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
 
Chapter 2 Laplace Transform
Chapter 2 Laplace TransformChapter 2 Laplace Transform
Chapter 2 Laplace Transform
 
LAPLACE TRANSFORM SUITABILITY FOR IMAGE PROCESSING
LAPLACE TRANSFORM SUITABILITY FOR IMAGE PROCESSINGLAPLACE TRANSFORM SUITABILITY FOR IMAGE PROCESSING
LAPLACE TRANSFORM SUITABILITY FOR IMAGE PROCESSING
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Laplace transform and its applications
Laplace transform and its applicationsLaplace transform and its applications
Laplace transform and its applications
 

Similar to Chapter 9(laplace transform)

Den5200 ps1
Den5200 ps1Den5200 ps1
Den5200 ps1
jogerpow
 
NotesLaplace.pdf
NotesLaplace.pdfNotesLaplace.pdf
NotesLaplace.pdf
Mahamad Jawhar
 
LaplaceTransformIIT.pdf
LaplaceTransformIIT.pdfLaplaceTransformIIT.pdf
LaplaceTransformIIT.pdf
jenniecortesmomongan
 
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
Alexander Decker
 
Laplace table
Laplace tableLaplace table
Laplace table
noori734
 
Laplace table
Laplace tableLaplace table
Laplace table
prathsel
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
Edhole.com
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
joni joy
 
Laplace transforms and problems
Laplace transforms and problemsLaplace transforms and problems
Laplace transforms and problems
Vishnu V
 
Differential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlabDifferential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlab
Ravi Jindal
 
Ch06 2
Ch06 2Ch06 2
Ch06 2
Rendy Robert
 
Chapter4 tf
Chapter4 tfChapter4 tf
On Laplace Transform.ppt
On Laplace Transform.pptOn Laplace Transform.ppt
On Laplace Transform.ppt
AwaisAsghar31
 
Laplace quad
Laplace quadLaplace quad
Laplace quad
Shekhar Gautam
 
TLT
TLTTLT
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
Matthew Leingang
 
4th Semester Mechanincal Engineering (2012-December) Question Papers
4th Semester Mechanincal Engineering (2012-December) Question Papers4th Semester Mechanincal Engineering (2012-December) Question Papers
4th Semester Mechanincal Engineering (2012-December) Question Papers
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
Laplace1
Laplace1Laplace1
Laplace1
Ana Torres
 
Ppt formula for sum of series
Ppt  formula for sum of seriesPpt  formula for sum of series
Ppt formula for sum of series
manojsweet
 
Lecture 2.pptx this is fantastic for all
Lecture 2.pptx this is fantastic for allLecture 2.pptx this is fantastic for all
Lecture 2.pptx this is fantastic for all
ssuserdde43b
 

Similar to Chapter 9(laplace transform) (20)

Den5200 ps1
Den5200 ps1Den5200 ps1
Den5200 ps1
 
NotesLaplace.pdf
NotesLaplace.pdfNotesLaplace.pdf
NotesLaplace.pdf
 
LaplaceTransformIIT.pdf
LaplaceTransformIIT.pdfLaplaceTransformIIT.pdf
LaplaceTransformIIT.pdf
 
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Laplace transforms and problems
Laplace transforms and problemsLaplace transforms and problems
Laplace transforms and problems
 
Differential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlabDifferential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlab
 
Ch06 2
Ch06 2Ch06 2
Ch06 2
 
Chapter4 tf
Chapter4 tfChapter4 tf
Chapter4 tf
 
On Laplace Transform.ppt
On Laplace Transform.pptOn Laplace Transform.ppt
On Laplace Transform.ppt
 
Laplace quad
Laplace quadLaplace quad
Laplace quad
 
TLT
TLTTLT
TLT
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
4th Semester Mechanincal Engineering (2012-December) Question Papers
4th Semester Mechanincal Engineering (2012-December) Question Papers4th Semester Mechanincal Engineering (2012-December) Question Papers
4th Semester Mechanincal Engineering (2012-December) Question Papers
 
Laplace1
Laplace1Laplace1
Laplace1
 
Ppt formula for sum of series
Ppt  formula for sum of seriesPpt  formula for sum of series
Ppt formula for sum of series
 
Lecture 2.pptx this is fantastic for all
Lecture 2.pptx this is fantastic for allLecture 2.pptx this is fantastic for all
Lecture 2.pptx this is fantastic for all
 

Chapter 9(laplace transform)

  • 1. BMM 104: ENGINEERING MATHEMATICS I Page 1 of 8 CHAPTER 9: THE LAPLACE TRANSFORM Laplace Transformation and its Inverse Definition: Let f (t ) be defined for 0 ≤ t ≤ ∞ and let s denote an arbitrary real variable. The Laplace transform of f (t ) , designated by either L[ f ( t ) ] or F ( s ) , is ∞ F ( s ) = L[ f (t )] = ∫e −st f (t )dt 0 for all values of s for which the improper integral converges. Convergence occurs when the limit ∞ a ∫e −st f ( t ) dt = lim ∫ e −st f ( t ) dt a→∞ 0 0 exists. If the limit does not exist, the improper integral does not exist, the improper integral diverges and f (t ) has no Laplace transform. When evaluating the integral, the variable s is treated as a constant because the integration is with respect to t. On the other hand, we may write f ( t ) = L−1 [ F ( s ) ] with L−1 is called inverse Laplace transformation operator and f (t ) is called the inverse Laplace transformation for F (s) . Example: Find the Laplace transform by definition. (a) L[1] (b) [ ] L e at Properties ( Linearity of Laplace Operator L and its inverse L−1 ) Suppose c1 and c 2 are arbitrary constants, then (i) L{ c1 f 1 ( t ) + c 2 f 2 ( t ) } = c1 L{ f 1 ( t ) } + c 2 L{ f 2 ( t ) } = c1 F1 ( s ) + c 2 F2 ( s ) (ii) L−1 { c1 F1 ( s ) + c 2 F2 ( s )} = c1 L−1 { F1 ( s )} + c 2 L−1 { F2 ( s )} = c1 f 1 ( t ) + c 2 f 2 ( t ) Example:
  • 2. BMM 104: ENGINEERING MATHEMATICS I Page 2 of 8 Find the Laplace transform for the following functions. (a) { L 2 + 3e −2 t }  1  (b) L − 2t − sin 3t + 4 cos t   2  (c) { −2 t L 2 cosh 5t − 7 e cos 4t } Example: −1  3 5 6  (a) Find L  + + 2 . s − 3 s s + 4 −1  2 4  (b) Find L  + 2 2 . s − 3 s − 3  −1  2s + 3  (c) Find L  2 .  s − 4 s + 20  −1  2s − 3  (d) Find L  2 .  s − 4s + 6  −1  10  (e) Find L  . ( ( s − 2 ) s + 1  2 ) Theorem: Suppose f (t ) is a continuous function for t ≥ 0 that has Laplace transform F ( s ) . If f ' ( t ) and f '' ( t ) have Laplace transformation, then * L{ f ' ( t )} = sF ( s ) − f ( 0 ) * L{ f '' ( t )} = s 2 F ( s ) − sf ( 0 ) − f ' ( 0 ) NOTE: The above Theorem is applied in solving initial value problem. We apply,  dy  d 2 y  L   = sY ( s ) − y ( 0 ) and L  2  = s 2 Y ( s ) − sy ( 0 ) − y ' ( 0 )  dt   dt  where Y ( s ) = L{ y ( t )} . Example:
  • 3. BMM 104: ENGINEERING MATHEMATICS I Page 3 of 8 By taking Laplace transformation on both of the following differential equations, find Y ( s ). (a) y ' = cos 5t ; y ( 0 ) = 1 (b) y '' + 4 y ' + 13 y = 0 ; y ( 0 ) = 2; y ' ( 0 ) = −7 (c) y '' + y = 16 cos t ; y ( 0 ) = 0 ; y ' ( 0 ) = 0 First Shift Theorem If L{ f ( t )} = F ( s ) then L{e at f ( t )} = F ( s − a ) where a is a real constant. Example: Determine the following. (a) { L e at cos bt } (b) { L e at sin bt } Multiplication by t Theorem d If L{ f ( t )} = F ( s ) then L{tf ( t )} = − F ( s) . ds Example: Obtain the following. (a) L{te t } (b) L{t 2 e t } (c) L{t sin t } (d) L{t 2 sin t } Solving Linear Initial-Value Problems with Constant Coefficients
  • 4. BMM 104: ENGINEERING MATHEMATICS I Page 4 of 8 Laplace transform for derivatives of a function contain terms that need the values of the function and its derivative at t = 0. By having these (initial) conditions, the approach using Laplace transformation become very suitable to solve initial value problem that involving constant coefficients. Example: (a) Solve y '' + y = 16 cos t ; y ( 0 ) = y ' ( 0 ) = 0 . (b) Solve y '' + 4 y ' + 13 y = 0 ; y ( 0 ) = 2; y ' ( 0 ) = −7 . (c) Solve y '' − 3 y + 2 y ' = 12e 4 t ; y ( 0 ) = 1; y ' ( 0 ) = 0 . TABLE OF LAPLACE TRANSFORMS
  • 5. BMM 104: ENGINEERING MATHEMATICS I Page 5 of 8 f (t ) F ( s ) = L{ f ( t )} 1 1 1 s >0 s 2 t 1 s >0 s2 3 tn , n = 1,2 ,... n! s >0 s n +1 4 e at 1 s>a s −a 5 sin at a s >0 s + a2 2 6 cos at s s >0 s + a2 2 7 sinh at a s >a s − a2 2 8 cosh at s s >a s − a2 2 9 e at sin bt b s>a ( s − a) 2 + b2 10 e at cos bt s−a s>a ( s − a) 2 + b2 11 t n e at n! s>a ( s − a ) n +1 12 t sin at 2as s >0 (s 2 + a2 ) 2 13 t cos at s2 − a2 s >0 (s 2 + a2 ) 2 14 t sinh at 2as s> a (s 2 − a2 ) 2 15 t cosh at s2 + a2 s >a (s 2 − a2 ) 2 16 y ' (t ) sY ( s ) − y (0 ) with Y ( s ) = L{ y ( t )} 17 y (t ) '' s 2 Y ( s ) − sy ( 0 ) − y ' ( 0 ) 18 e at f (t ) F ( s − a) 19 t n f (t ) , n = 1,2 ,... d ( − 1) n F ( s) ds n 20 µa ( t ) f ( t ) e − as L{ f ( t + a )} 21 µa ( t ) f ( t − a ) e − as L{ f ( t )}
  • 6. BMM 104: ENGINEERING MATHEMATICS I Page 6 of 8 22 f (t ) is periodic with period ρ ρ ∫e −st f (t ) 0 1 − e −ρs 23 t F ( s )G ( s ) ∫ f (τ ) g ( t −τ ) dτ o 24 t 1 F (s) ∫ f (τ )dτ o s PROBLEM SET: CHAPTER 9 1. Evaluate the following Laplace transform. (a) { L e −7 t + e −2 t } (b) L{e 3t + sin 3t } (c) L{3 sin 4t − 2 cos 4t } (d) L{ sin at cos at} (e) L{5 sinh 3t − 2 cosh 2t} 2. Solve by using First Shift Theorem. (a) { L e 2 t sinh t } (b) L{e 2 t sin 3t cos 3t } (c) L{e −3t cos( 2t + 4 )} 3. Solve by using Multiplication by t Theorem. (a) L{t cos at } (b) L{t 2 e 2 t } (c) { L t sin 2 t } 4. Find the inverse of the following Laplace transform. 1 3s( s 2 + 4 ) (a)
  • 7. BMM 104: ENGINEERING MATHEMATICS I Page 7 of 8 2 (b) s + s −6 2 2s − 1 (c) s + 4s + 5 2 1 s ( s + 4 s + 13) (d) 2 1 s( s + 1) ( s 2 + 4 s + 5 ) (e) 5. Solve the following initial value problem. (a) y '' + 9 y = t 2 ; y ( 0 ) = 1; y ' ( 0 ) = 0 (b) y '' − y = sin t ; y(0 ) = y' (0 ) = 0 (c) y '' + 4 y ' + 8 y = cos 2t ; y ( 0 ) = 2; y ' ( 0 ) = 1 (d) y '' − 2 y ' + y = te t ; y ( 0 ) = 1; y ' ( 0 ) = 0 (e) y '' + 2 y ' + 5 y = e −t sin t ; y ( 0 ) = 1; y ' ( 0 ) = 1 ANSWERS FOR PROBLEM SET: CHAPTER 9 2s + 9 1. (a) ( s + 7 )( s + 2 ) s( s + 3) (b) ( s − 3) ( s 2 + 9 ) 2( 6 − s ) (c) s 2 + 16 a (d) s + 4a 2 2 − 2 s 3 + 15 s 2 + 18 s − 60 (e) ( s 2 − 4 )( s 2 − 9 ) 1 2. (a) ( s − 2) 2 − 1 3 (b) ( s − 2 ) 2 + 36 ( s + 3) cos 4 − 2 sin 4 (c) ( s + 3) 2 + 4
  • 8. BMM 104: ENGINEERING MATHEMATICS I Page 8 of 8 s2 − a2 3. (a) (s 2 + a2 ) 2 2 (b) ( s − 2) 3 2( 3 s 2 + 4 ) (c) s 2 ( s 2 + 4) 2 1 4. (a) ( 1 − cos 2t ) 12 (b) 5 (e − e −3t ) 2 2t (c) e −2 t ( 2 cos t − 5 sin t ) 1  −2t  2  (d) 1 − e  cos 3t + 3 sin 3t  13    1 1 −t 1 −2 t (e) − e + e ( 3 cos t + sin t ) 5 2 10 1 2 1 5. (a) t + ( 83 cos 3t − 2 ) 9 81 (b) 1 t 4 (e − e −t ) − 2 sin t OR 2 ( sinh t − sin t ) 1 1 1 1 39 −2 t 47 −2 t (c) cos 2t + sin 2t + e cos 2t + e sin 2t 20 10 20 20  1  (d) et 1 − t + t 3   6  1 −t (e) e ( sin t + sin 2t ) 3
  • 9. BMM 104: ENGINEERING MATHEMATICS I Page 8 of 8 s2 − a2 3. (a) (s 2 + a2 ) 2 2 (b) ( s − 2) 3 2( 3 s 2 + 4 ) (c) s 2 ( s 2 + 4) 2 1 4. (a) ( 1 − cos 2t ) 12 (b) 5 (e − e −3t ) 2 2t (c) e −2 t ( 2 cos t − 5 sin t ) 1  −2t  2  (d) 1 − e  cos 3t + 3 sin 3t  13    1 1 −t 1 −2 t (e) − e + e ( 3 cos t + sin t ) 5 2 10 1 2 1 5. (a) t + ( 83 cos 3t − 2 ) 9 81 (b) 1 t 4 (e − e −t ) − 2 sin t OR 2 ( sinh t − sin t ) 1 1 1 1 39 −2 t 47 −2 t (c) cos 2t + sin 2t + e cos 2t + e sin 2t 20 10 20 20  1  (d) et 1 − t + t 3   6  1 −t (e) e ( sin t + sin 2t ) 3
  • 10. BMM 104: ENGINEERING MATHEMATICS I Page 8 of 8 s2 − a2 3. (a) (s 2 + a2 ) 2 2 (b) ( s − 2) 3 2( 3 s 2 + 4 ) (c) s 2 ( s 2 + 4) 2 1 4. (a) ( 1 − cos 2t ) 12 (b) 5 (e − e −3t ) 2 2t (c) e −2 t ( 2 cos t − 5 sin t ) 1  −2t  2  (d) 1 − e  cos 3t + 3 sin 3t  13    1 1 −t 1 −2 t (e) − e + e ( 3 cos t + sin t ) 5 2 10 1 2 1 5. (a) t + ( 83 cos 3t − 2 ) 9 81 (b) 1 t 4 (e − e −t ) − 2 sin t OR 2 ( sinh t − sin t ) 1 1 1 1 39 −2 t 47 −2 t (c) cos 2t + sin 2t + e cos 2t + e sin 2t 20 10 20 20  1  (d) et 1 − t + t 3   6  1 −t (e) e ( sin t + sin 2t ) 3
  • 11. BMM 104: ENGINEERING MATHEMATICS I Page 8 of 8 s2 − a2 3. (a) (s 2 + a2 ) 2 2 (b) ( s − 2) 3 2( 3 s 2 + 4 ) (c) s 2 ( s 2 + 4) 2 1 4. (a) ( 1 − cos 2t ) 12 (b) 5 (e − e −3t ) 2 2t (c) e −2 t ( 2 cos t − 5 sin t ) 1  −2t  2  (d) 1 − e  cos 3t + 3 sin 3t  13    1 1 −t 1 −2 t (e) − e + e ( 3 cos t + sin t ) 5 2 10 1 2 1 5. (a) t + ( 83 cos 3t − 2 ) 9 81 (b) 1 t 4 (e − e −t ) − 2 sin t OR 2 ( sinh t − sin t ) 1 1 1 1 39 −2 t 47 −2 t (c) cos 2t + sin 2t + e cos 2t + e sin 2t 20 10 20 20  1  (d) et 1 − t + t 3   6  1 −t (e) e ( sin t + sin 2t ) 3