SlideShare a Scribd company logo
1 of 3
Download to read offline
S. Boyd                                                                                               EE102


Table of Laplace Transforms
Remember that we consider all functions (signals) as defined only on t ≥ 0.

General
                                                                 ∞
 f (t)                                    F (s) =                    f (t)e−st dt
                                                             0

 f +g                                     F +G

 αf (α ∈ R)                               αF

 df
                                          sF (s) − f (0)
 dt
 dk f                                                                               df              dk−1 f
                                          sk F (s) − sk−1 f (0) − sk−2                 (0) − · · · − k−1 (0)
 dtk                                                                                dt              dt
                 t                                       F (s)
 g(t) =              f (τ ) dτ            G(s) =
             0                                             s
                                          1
 f (αt), α > 0                              F (s/α)
                                          α
 eat f (t)                                F (s − a)

                                               dF
 tf (t)                                   −
                                               ds
                                                         k
  k                                                 kd   F (s)
 t f (t)                                  (−1)
                                                         dsk
 f (t)                                         ∞
                                                   F (s) ds
   t                                       s

                 0          0≤t<T
 g(t) =                           ,T ≥0   G(s) = e−sT F (s)
                 f (t − T ) t ≥ T




                                               1
Specific

                        1
          1
                        s
          δ             1

          δ (k)         sk

                        1
          t
                        s2
          tk                1
             ,k≥0
          k!            sk+1
                         1
          eat
                        s−a
                             s        1/2    1/2
          cos ωt                  =       +
                        s2   +ω 2   s − jω s + jω
                             ω       1/2j   1/2j
          sin ωt                  =       −
                        s2   +ω 2   s − jω s + jω
                        s cos φ − ω sin φ
          cos(ωt + φ)
                             s2 + ω 2
                            s+a
          e−at cos ωt
                        (s + a)2 + ω 2
                              ω
          e−at sin ωt
                        (s + a)2 + ω 2




                                2
Notes on the derivative formula at t = 0
The formula L(f ) = sF (s) − f (0− ) must be interpreted very carefully when f has a discon-
tinuity at t = 0. We’ll give two examples of the correct interpretation.
    First, suppose that f is the constant 1, and has no discontinuity at t = 0. In other words,
f is the constant function with value 1. Then we have f = 0, and f (0− ) = 1 (since there is
no jump in f at t = 0). Now let’s apply the derivative formula above. We have F (s) = 1/s,
so the formula reads
                                    L(f ) = 0 = sF (s) − 1
which is correct.
    Now, let’s suppose that g is a unit step function, i.e., g(t) = 1 for t > 0, and g(0) = 0.
In contrast to f above, g has a jump at t = 0. In this case, g = δ, and g(0− ) = 0. Now let’s
apply the derivative formula above. We have G(s) = 1/s (exactly the same as F !), so the
formula reads
                                   L(g ) = 1 = sG(s) − 0
which again is correct.
   In these two examples the functions f and g are the same except at t = 0, so they have
the same Laplace transform. In the first case, f has no jump at t = 0, while in the second
case g does. As a result, f has no impulsive term at t = 0, whereas g does. As long as you
keep track of whether your function has, or doesn’t have, a jump at t = 0, and apply the
formula consistently, everything will work out.




                                              3

More Related Content

What's hot

2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
Signals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier DomainSignals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier DomainKetan Solanki
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 
free Video lecture
free Video lecturefree Video lecture
free Video lectureEdhole.com
 
Tele3113 wk11wed
Tele3113 wk11wedTele3113 wk11wed
Tele3113 wk11wedVin Voro
 
Practising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesPractising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesFrédéric Morain-Nicolier
 
free Video lecture
free Video lecture free Video lecture
free Video lecture Edhole.com
 

What's hot (14)

2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
Signals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier DomainSignals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier Domain
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
free Video lecture
free Video lecturefree Video lecture
free Video lecture
 
Tele3113 wk11wed
Tele3113 wk11wedTele3113 wk11wed
Tele3113 wk11wed
 
Practising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesPractising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital Images
 
Cheat Sheet
Cheat SheetCheat Sheet
Cheat Sheet
 
free Video lecture
free Video lecture free Video lecture
free Video lecture
 
Ism et chapter_2
Ism et chapter_2Ism et chapter_2
Ism et chapter_2
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
4. cft
4. cft4. cft
4. cft
 
Desktop
DesktopDesktop
Desktop
 

Viewers also liked

Viewers also liked (20)

Collage i lapbook
Collage i lapbookCollage i lapbook
Collage i lapbook
 
Aplicaciones educativas de la web 2 slider
Aplicaciones educativas de la web 2 sliderAplicaciones educativas de la web 2 slider
Aplicaciones educativas de la web 2 slider
 
Cdocumentsandsettingsillusionmisdocumentoslaescuelanuevaoactiva 090621222503-...
Cdocumentsandsettingsillusionmisdocumentoslaescuelanuevaoactiva 090621222503-...Cdocumentsandsettingsillusionmisdocumentoslaescuelanuevaoactiva 090621222503-...
Cdocumentsandsettingsillusionmisdocumentoslaescuelanuevaoactiva 090621222503-...
 
ADA 1 - Bloque 2
ADA 1 - Bloque 2ADA 1 - Bloque 2
ADA 1 - Bloque 2
 
Parte 3
Parte 3Parte 3
Parte 3
 
Eutanasia
EutanasiaEutanasia
Eutanasia
 
Prandiano 001
Prandiano  001Prandiano  001
Prandiano 001
 
5ºano mat geometria e áreas
5ºano mat geometria e áreas5ºano mat geometria e áreas
5ºano mat geometria e áreas
 
Net
NetNet
Net
 
Apple
AppleApple
Apple
 
POPs in the Galapagos Islands-Juan Jose Alava-Fall2012-ENSC100
POPs in the Galapagos Islands-Juan Jose Alava-Fall2012-ENSC100POPs in the Galapagos Islands-Juan Jose Alava-Fall2012-ENSC100
POPs in the Galapagos Islands-Juan Jose Alava-Fall2012-ENSC100
 
Med 174
Med 174Med 174
Med 174
 
You need this to be a jewelry designer
You need this to be a jewelry designerYou need this to be a jewelry designer
You need this to be a jewelry designer
 
Proyecto iv
Proyecto ivProyecto iv
Proyecto iv
 
Construïm
ConstruïmConstruïm
Construïm
 
MANUAL DE WORD
MANUAL DE WORDMANUAL DE WORD
MANUAL DE WORD
 
Med 153
Med 153Med 153
Med 153
 
Una mañana ludica
Una mañana ludicaUna mañana ludica
Una mañana ludica
 
Competencia Inicial
Competencia InicialCompetencia Inicial
Competencia Inicial
 
Perkins conocimiento escolar
Perkins   conocimiento escolarPerkins   conocimiento escolar
Perkins conocimiento escolar
 

Similar to Laplace table

11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...Alexander Decker
 
Tele4653 l4
Tele4653 l4Tele4653 l4
Tele4653 l4Vin Voro
 
laplace.pdf
laplace.pdflaplace.pdf
laplace.pdfNeema85
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppttuiye
 
Laplace transforms and problems
Laplace transforms and problemsLaplace transforms and problems
Laplace transforms and problemsVishnu V
 
Tele4653 l1
Tele4653 l1Tele4653 l1
Tele4653 l1Vin Voro
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsVjekoslavKovac1
 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace TransformVishnu V
 
Laplace_Transformation
Laplace_TransformationLaplace_Transformation
Laplace_TransformationAbhinavGeedi
 

Similar to Laplace table (20)

Laplace1
Laplace1Laplace1
Laplace1
 
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
 
Tele4653 l4
Tele4653 l4Tele4653 l4
Tele4653 l4
 
laplace.pdf
laplace.pdflaplace.pdf
laplace.pdf
 
NotesLaplace.pdf
NotesLaplace.pdfNotesLaplace.pdf
NotesLaplace.pdf
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Chapter3 laplace
 
LaplaceTransformIIT.pdf
LaplaceTransformIIT.pdfLaplaceTransformIIT.pdf
LaplaceTransformIIT.pdf
 
Segundo teorema
Segundo teoremaSegundo teorema
Segundo teorema
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppt
 
Laplace transforms and problems
Laplace transforms and problemsLaplace transforms and problems
Laplace transforms and problems
 
Inverse laplace
Inverse laplaceInverse laplace
Inverse laplace
 
Problem
ProblemProblem
Problem
 
Tele4653 l1
Tele4653 l1Tele4653 l1
Tele4653 l1
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Chapter 5 (maths 3)
Chapter 5 (maths 3)Chapter 5 (maths 3)
Chapter 5 (maths 3)
 
Laplace quad
Laplace quadLaplace quad
Laplace quad
 
lec04.pdf
lec04.pdflec04.pdf
lec04.pdf
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
 
Laplace_Transformation
Laplace_TransformationLaplace_Transformation
Laplace_Transformation
 

Laplace table

  • 1. S. Boyd EE102 Table of Laplace Transforms Remember that we consider all functions (signals) as defined only on t ≥ 0. General ∞ f (t) F (s) = f (t)e−st dt 0 f +g F +G αf (α ∈ R) αF df sF (s) − f (0) dt dk f df dk−1 f sk F (s) − sk−1 f (0) − sk−2 (0) − · · · − k−1 (0) dtk dt dt t F (s) g(t) = f (τ ) dτ G(s) = 0 s 1 f (αt), α > 0 F (s/α) α eat f (t) F (s − a) dF tf (t) − ds k k kd F (s) t f (t) (−1) dsk f (t) ∞ F (s) ds t s 0 0≤t<T g(t) = ,T ≥0 G(s) = e−sT F (s) f (t − T ) t ≥ T 1
  • 2. Specific 1 1 s δ 1 δ (k) sk 1 t s2 tk 1 ,k≥0 k! sk+1 1 eat s−a s 1/2 1/2 cos ωt = + s2 +ω 2 s − jω s + jω ω 1/2j 1/2j sin ωt = − s2 +ω 2 s − jω s + jω s cos φ − ω sin φ cos(ωt + φ) s2 + ω 2 s+a e−at cos ωt (s + a)2 + ω 2 ω e−at sin ωt (s + a)2 + ω 2 2
  • 3. Notes on the derivative formula at t = 0 The formula L(f ) = sF (s) − f (0− ) must be interpreted very carefully when f has a discon- tinuity at t = 0. We’ll give two examples of the correct interpretation. First, suppose that f is the constant 1, and has no discontinuity at t = 0. In other words, f is the constant function with value 1. Then we have f = 0, and f (0− ) = 1 (since there is no jump in f at t = 0). Now let’s apply the derivative formula above. We have F (s) = 1/s, so the formula reads L(f ) = 0 = sF (s) − 1 which is correct. Now, let’s suppose that g is a unit step function, i.e., g(t) = 1 for t > 0, and g(0) = 0. In contrast to f above, g has a jump at t = 0. In this case, g = δ, and g(0− ) = 0. Now let’s apply the derivative formula above. We have G(s) = 1/s (exactly the same as F !), so the formula reads L(g ) = 1 = sG(s) − 0 which again is correct. In these two examples the functions f and g are the same except at t = 0, so they have the same Laplace transform. In the first case, f has no jump at t = 0, while in the second case g does. As a result, f has no impulsive term at t = 0, whereas g does. As long as you keep track of whether your function has, or doesn’t have, a jump at t = 0, and apply the formula consistently, everything will work out. 3