SlideShare a Scribd company logo
1 of 26
Download to read offline
4. Discrétisation

                 u1 (k) D       u1 (t)                             y1 (t) A       y1 (k)
                            A                                                 D
                 u2 (k) D       u2 (t)        Système              y2 (t) A       y2 (k)
                            A                 linéaire                        D

                                            stationnaire
                                            x = Ax + Bu
                                            ˙
                 ur (k) D       ur (t)      y = Cx + Du            yp (t) A       yp (k)
                            A                                                 D


                Comment prendre explicitement en compte les convertisseurs ?

                                         Résoudre analytiquement

                                            x = Ax + Bu
                                            ˙
                                Avec un maintien de u entre k et k+1


Denis Gillet @ EPFL                                 1
Solution de l’équation d’état
                                x (t) = Ax (t) + Bu (t)
                                ˙
         Solution générale = solution homogène + solution particulière

Cas scalaire                                                                    Cas vectoriel
                                        x (t0 ) = x0
x (t) = ax (t)
˙                                                                               x (t) = Ax (t)
                                                                                ˙
x = eat c2 = ea(t   t0 )
                           x0
        1                 1
e =1+ +             2
                        +       3
                                    + ...
        2!                3!
                                                                                ⇥
                       1 2                    1 3
                                                2                       3
x = 1 + a (t     t0 ) + a (t            t0 ) + a (t                 t0 ) + . . . x0
                       2!                     3!
                                            2                   3
x = a0 + a1 (t      t0 ) + a2 (t       t0 ) + a3 (t          t0 ) + . . .

                                        Par analogie

                                                                            2               3
                            x = A0 + A1 (t              t0 ) + A2 (t     t0 ) + A3 (t    t0 ) + . . .
                                                    2
Solution de l’équation d’état homogène
                                                                    x (t) = Ax (t)
                                                                    ˙
                                         2                  3
x = A0 + A1 (t     t0 ) + A2 (t      t0 ) + A3 (t        t0 ) + . . .

      x (t0 ) = A0                                                      x (t0 ) = x0

                                             2
x = A1 + 2A2 (t
˙                    t0 ) + 3A3 (t       t0 ) + . . .
                                                         x (t) = Ax (t)
                                                         ˙
      x (t0 ) = A1
      ˙
                                                         x (t0 ) = Ax (t0 ) = Ax0
                                                         ˙
x = 2A2 + 6A3 (t
¨                     t0 ) + . . .
                                                        x (t) = Ax (t)
                                                        ¨          ˙
      x (t0 ) = 2A2
      ¨
                                                        x (t0 ) = Ax (t0 ) = A2 x0
                                                        ¨            ˙

                                     2                  3
                                                                            ⇥
                                A                 2  A              3
   x (t) = I + A (t      t0 ) +    (t         t0 ) +    (t      t0 ) + . . . x0
                                2!                   3!
          ⇧                                  ⌅⇤                             ⌃
                                         eA(t    t0 )

                                         3
Exponentielle de matrice


                                           2                             3                             ⇥
                                      A                       2  A                      3                     Ak         k
eA(t   t0 )
              = I + A (t       t0 ) +    (t               t0 ) +    (t               t0 ) + . . . =              (t   t0 )
                                      2!                         3!                                           k!
                                                                                                      k=0



                       x (t) = eA(t            t0 )
                                                      x0

                       x (t1 ) = eA(t1             t0 )
                                                        x (t0 )
                       x (t2 ) = eA(t2             t1 )
                                                        x (t1 ) = eA(t2            t1 ) A(t1 t0 )
                                                                                       e            x (t0 )
                       t 2 = t0
                       x (t0 ) = eA(t0             t1 ) A(t1 t0 )
                                                          e              x (t0 )

                       I = eA(t0       t1 ) A(t1 t0 )
                                               e                  =M         1
                                                                                 M
                                       ⇥       1
                           A(t1 t0 )
                           e                       = eA(t0        t1 )
                                                                         =e      A(t1 t0 )




                                                              4
Solution particulière de l’équation d’état
                                            x (t) = Ax (t) + Bu (t)
                                            ˙

x (t) = eA(t           t0 )
                              v (t)

AeA(t     t0 )
                   v (t) + eA(t             t0 )
                                                   v (t) = A eA(t t0 ) v (t) +Bu (t)
                                                   ˙
⇤                      ⇥                               ⌅     ⇤    ⇥        ⌅
                       x(t)
                       ˙                                             x(t)
                               ⇥     1
v (t) = eA(t
˙                       t0 )
                                          Bu (t) = e          A(t t0 )
                                                                         Bu (t)
            t

v (t) =            e   A(          t0 )
                                          Bu ( ) d
          t0
                                t                                           t

x (t) = eA(t           t0 )
                                    e      A(       t0 )
                                                           Bu ( ) d =           eA(t   t0 ) A(t0
                                                                                          e        )
                                                                                                       Bu ( ) d
                              t0                                          t0
               t

x (t) =            eA(t        )
                                   Bu ( ) d
          t0
                                                               5
Solution complète de l’équation d’état

                 x (t) = Ax (t) + Bu (t)
                 ˙

                                        t

 x (t) = e
         A(t t0 )
                    x (t0 ) +               A(t
                                            e         )
                                                          Bu ( ) d
                                      t0


             réponse libre   +       réponse forcée
                                     (produit de convolution)




                                 6
Discrétisation
                                   x (t) = Ax (t) + Bu (t)
                                   ˙
                                   y (t) = Cx (t) + Du (t)
                                                       t

                    x (t) = eA(t   t0 )
                                          x (t0 ) +        eA(t   )
                                                                      Bu ( ) d
                                                      t0

Convertisseurs AD
                                                                       kh+h
   t0 = kh
                             x (kh + h) = eAh x (kh) +                      eA(kh+h   )
                                                                                          Bu ( ) d
   t = kh + h
                                                                       kh

   t = kh                    y (kh) = Cx (kh) + Du (kh)

Convertisseurs DA
                                                                       kh+h
   u( ) = u(kh)              x (kh + h) = eAh x (kh) +                      eA(kh+h   )
                                                                                          Bu( )d
   kh     < kh + h                                                                         ⌅ ⇤⇥ ⇧
                                                                       kh                   u(kh)

                                                       7
Discrétisation
                              kh+h

x (kh + h) = eAh x (kh) +              eA(kh+h   )
                                                     Bu( )d
                                                      ⌅ ⇤⇥ ⇧
                              kh                      u(kh)


 = kh + h    ⇥        d =          d⇥
                                                 ⇥
                                   ⇧0
x (kh + h) = eAh x (kh) + ⇤             eA Bd ⌅ u (kh)
                                   h


y (kh) = Cx (kh) + Du (kh)
                          ⇤ h    ⌅
                            ⌥
                ⇥
x (k + 1) = eAh
                  x (k) + ⇧ eA d ⌃ B u (k)
           ⌦    ↵
              ⇥             0
                          ⌦        ↵

y (k) = Cx (k) + Du (k)
                          8
Solution de l’équation d’état analogique,
 linéaire et stationnaire + Discrétisation

     x (t) = Ax (t) + Bu (t)
     ˙
     y (t) = Cx (t) + Du (t)

                                        t

     x (t) = eA(t   t0 )
                           x (t0 ) +            eA(t       )
                                                               Bu ( ) d
                                       t0



     x (k + 1) = ⇤⇥ ⌅ x (k) +
                  ⇥                             ⇤⇥ ⌅           u (k)
                                       "               #
                    eAh                 Rh
                                                eA d   B
                                            0




     y (k) = Cx (k) + Du (k)


                                            9
Exponentielle de matrice: Série

                                    A2 2         Ai i
                 = eAh   = I + Ah +    h + ... +    h + ...
                                    2!           i!

    ⇤   h                                 2          i
                                                                     ⇥
                          A 2 A 3              A
=           A
            e   d B = Ih + h +    h + ... +              hi+1 + . . . B
    0                     2!   3!           (i + 1)!

                     A   A2 2            Ai
                 =I + h+    h + ... +          hi + . . .
                     2!  3!           (i + 1)!

                                 = I + Ah⇥

                                   = ⇥hB
                                                         ⇥⇥⇥
                ⇥ I + Ah
                =           I+
                               Ah
                                      ...
                                           Ah
                                                I+
                                                   Ah
                       2        3         N 1      N
                                     10
Discrétisation de systèmes stationnaires
   Modèle linéaire                       Modèle non linéaire

                                        x (t) = f [x (t) , u (t)]
                                        ˙
                                        y (t) = g [x (t) , u (t)]

                                            Linéarisation
                        Contre-
                                                       Tangente
                        réaction


    x (t) = Ax (t) + Bu (t)
    ˙                                      ˙
                                           x (t)
                                           ˜       =       A˜ (t) + B u (t)
                                                             x        ˜
    y (t) = Cx (t) + Du (t)                y (t)
                                           ˜       =       C x (t) + D˜ (t)
                                                             ˜        u

                                                           h

Discrétisation exacte         =e    Ah             =           eA d   B
                                                       0


 x (k + 1) = ⇥x (k) + u (k)              x (k + 1) = ⇥˜ (k) + u (k)
                                         ˜             x        ˜
     y (k) = Cx (k) + Du (k)                 y (k) = C x (k) + D˜ (k)
                                              ˜        ˜        u
                                   11
4.1.8 Double intégrateur: Série

                          1
                u(t)                          y(t)
                          s2

y (t) = u(t)
¨

x1 (t) = y(t)
x2 (t) = y(t)
         ˙
                                                          
x1 (t) = y(t) = x2 (t)
˙        ˙                            0   1                    0
                         x(t) =
                         ˙                        x(t) +           u(t)
x2 (t) = y (t) = u(t)
˙        ¨                            0   0                    1
                                  ⇥           ⇤
y(t) = x1 (t)            y(t) =       1 0         x(t) + [0] u(t)

                           12
4.1.8 Double intégrateur: Série
                             A                B
                     ⇧
                     ⇤       ⌥       ⌃
                                     ⌅      ⇧ ⌥⌅
                                            ⇤   ⌃
                         0       1            0                                   ⇥
               x=
               ˙                         x+       u    et   y=       1        0       x
                         0       0            1                  ⌥       ⌃⇧
                                                                         C
                                         A2 2          Ai i
                     = eAh = I + Ah +       h + ... +      h + ...
                                         2!             i!
                       ⇥            ⇥             ⇥ 2                ⇥
               1    0         0 1           0 0 h             1 h
         =               +            h+               =               = eAh
               0    1         0 0           0 0      2        0 1
                             ⌅        ⇧ ⇥          ⌃                ⌥
     ⌦                   ⌦ h                   ⇤        h      2 h    ⇥   ⇤
         h
                                1           0          |0               0
 =           eA d   B=                 d         =            2
                                                                  0
                                0 1         1                    h      1
     0                    0                            0        |0
                                                   ⌅        2
                                                               ⇧⇥      ⇤ ⌅ h2 ⇧
                                                      h h           0
                                                 =         2            =    2
                                                      0 h           1        h
                ⇤         ⌅         ⇧ 2 ⌃
                                       h                                   ⇥
                    1 h
x (k + 1) =                 x (k) +    2    u (k) et y (k) = 1 0 x (k)
                    0 1                h
                                                  13
Solution de l’équation d’état
     par la transformée de Laplace

x(t) = Ax(t) + Bu(t)
˙

sX(s)         x(0) = AX(s) + BU (s)

(sI       A)X(s) = x(0) + BU (s)

                             1                              1
X(s) = (sI              A)       x(0) + (sI          A)         BU (s)
                             Rt
x(t) = eAt x(0) +            0
                                  eA(t      ⌧)
                                                 Bu(⌧ )d⌧
                  h                     i
    At        1                     1
e        =L           (sI    A)

                                   14
Algorithme de Leverrier (analogique)

                                                        ⇥
                                                    1
                        eAt = L     1
                                        (sI   A)             et     = eAh


                1     adj (sI   A)   H0 sn 1 + H1 sn 2 + H2 sn 3 + . . . + Hn                1
(sI        A)       =              =
                      det (sI   A)        sn + a1 sn 1 + a2 sn 2 + . . . + an


                                                            H0    = I
           a1   =       tr (AH0 )                           H1    = AH0 + a1 I
           a2   =       2 tr (AH1 )
                        1
                                                            H2    = AH1 + a2 I
                .
                .                                                 .
                                                                  .
                .                                                 .
      an    1   =       n 1 tr (AHn 2 )
                          1
                                                        Hn   1    = AHn 2 + an       1I

           an   =       n tr (AHn 1 )
                        1
                                                            Hn    = AHn     1   + an I = 0


                                               15
Double intégrateur: Leverrier
                                 A                     B
                        ⇧
                        ⇤        ⌥       ⌃
                                         ⌅      ⇧ ⌥⌅
                                                ⇤   ⌃
                             0       1            0                                                              ⇥
                x=
                ˙                            x+       u                          et        y=       1        0       x
                             0       0            1                                             ⌥       ⌃⇧
                                                                                                        C
                                                                             ⇥
                                                                         1
                        e   At
                                 =L          1
                                                 (sI       A)                         et        = eAh
                        ⇥                                                        ⇥                                                ⇥
                1   0                                                0       1                                           0   1
 H0 = I =                   , a1 =       tr (AH0 ) =       tr                        = 0, H1 = AH0 + a1 I =
                0   1                                                0       0                                           0   0
                                                        ⇥                                                        ⇥
                    1                     1       0 0                                                    0 0
       a2 =           tr (AH1 ) =           tr              = 0, H2 = AH1 + a2 I =                                   (contrˆle)
                                                                                                                           o
                    2                     2       0 0                                                    0 0
                                                                             ⇥                       ⇥
                                                           1         0                     0    1
                                                                                 s+                                                   ⇥
            H0 s + H1
            1                                              0         1                     0    0             1          s       1
(sI A) = 2              =                                                                                   = 2
          s + a1 s + a2                                                           s2                         s           0       s
          ⌅           ⇧ ⇥                                                    ⇤                                   ⇥           ⇤
            1/ 1 2
              s    s      1                                      t                                                   1   h
   e =L
    At  1
                        =                                                             donc      e   Ah
                                                                                                         =
             0    1/      0                                      1                                                   0   1
                    s
                                                                16
Théorème de Cayley-Hamilton
Soit A une matrice n x n:

   f (A) = p (A) =           0 An      1
                                           +   1 An   2
                                                          + ... +   n 1I

Les coefficients      i    sont solution de:
                f ( i) = p ( i)                i = 1, . . . , n

Les   i   sont les valeurs propres de A, soit les solutions de:
                  det ( I        A) = | I           A| = 0

Pour des valeurs propres de multiplicité mi

                         f (1) ( i )       =   p(1) ( i )
                                           .
                                           .
                                           .
                  f (mi    1)
                                ( i)       =   p(mi    1)
                                                            ( i)
                                       17
4.1.12 Double intégrateur: Cayley-Hamilton
                               A                         B
                       ⇧
                       ⇤           ⌥        ⌃
                                            ⌅      ⇧ ⌥⌅
                                                   ⇤   ⌃
                           0           1             0                                                           ⇥
           x=
           ˙                                    x+       u                et           y=           1        0       x
                           0           0             1                                          ⌥       ⌃⇧
                                                                                                        C


                                                                                       e   1h
                                                                                                =        0 ⇥1 +          1
        f (A) = e          Ah
                                       =        0A +       1I                                   =        0 ⇥2 +
                                                                                           2h
                                                                                       e                                 1

               ⇥                   ⇤        ⇥          ⇤          ⇥                ⇤
                           0                    0 1                            1
 | I   A| =                                                  =                             =    2
                                                                                                    = 0,                 =       =0
                       0                        0 0                   0                                              1       2




                               e       1h
                                            =     0 ⇥1     +     1                     1=           1


   d              d
      e   2h
               =     (                 0 ⇥2 +       1)                    he       2h
                                                                                           =    0                        h=      0
  d⇥2            d⇥2
                                                       ⇥                           ⇥                             ⇥
                                            0 1                       1 0                           1 h
                   Ah
                   e       =h                              +1                          =
                                            0 0                       0 1                           0 1
                                                                 18
4.2 Solution de l’équation d’état discrète linéaire
  x (k + 1) = ⇥x (k) + u (k)
      y (k) = Cx (k) + Du (k)

  x(k0 + 1) = ⇥x(k0 ) + u(k0 )

  x(k0 + 2) = ⇥x(k0 + 1) + u(k0 + 1)
  x(k0 + 2) = ⇥ [⇥x(k0 ) + u(k0 )] + u(k0 + 1)
  x(k0 + 2) = ⇥2 x(k0 ) + ⇥ u(k0 ) + u(k0 + 1)

  x(k0 + 3) = ⇥x(k0 + 2) + u(k0 + 2)              ⇥
  x(k0 + 3) = ⇥ ⇥ x(k0 ) + ⇥ u(k0 ) + u(k0 + 1) + u(k0 + 2)
                   2

  x(k0 + 3) = ⇥3 x(k0 ) + ⇥2 u(k0 ) + ⇥ u(k0 + 1) + u(k0 + 2)
                                   k 1
       x(k) = ⇥k   k0
                        x(k0 ) +          ⇥k   i 1
                                                     u(i)
                                   i=k0

            réponse libre     +     réponse forcée
                                    (produit de convolution)
                                               19
Matrice de transfert discrète
x (k + 1) = ⇥x (k) + u (k)             CI nulles
    y (k) = Cx (k) + Du (k)

    zX(z) ⇥X(z) = U (z)
    Y (z) = CX(z) + DU (z)

    (zI ⇥)X(z) = U (z)
    Y (z) = CX(z) + DU (z)

    X(z) = (zI ⇥) 1 U (z) ⇥
    Y (z) = C (zI ⇥) 1 U (z)⇥ + DU (z)
    Y (z) = C(zI ⇥) 1 + D U (z) ⇥ H(z)U (z)

 u(k)                      y(k)            U (z)          Y (z)
         Modèle d’état                             H(z)
        linéaire discret




                   x(k)
                                  20
Matrice de transfert discrète
             h                        i
                             1
H(z) = C(zI              )       +D               Y (z) = H(z)U (z)
2            3    2                                             32            3
    Y1 (z)            H11 (z)    H12 (z)    ···       H1r (z)        U1 (z)
6   Y2 (z)   7 6      H21 (z)    H22 (z)              H2r (z)   76   U2 (z)   7
6            7 6                                                76            7
6      .
       .     7=6        .
                        .                   ..          .
                                                        .       76     .
                                                                       .      7
4      .     5 4        .                     .         .       54     .      5
    Yp (z)            Hp1 (z)    Hp2 (z)    ···       Hpr (z)        Ur (z)

                    0 .
                      .
                      .                           .
                                                  .
             Uj (z)               Hij (z)         .
                      .
                      .
                      .                           .        Yi (z)
                    0                             .
                                                  .
                                      21
Algorithme de Leverrier (discret)

                                                         1
                                  H (z) = C (zI     ⇥)        +D


                1     adj (zI        )   H0 z n 1 + H 1 z n 2 + H2 z n 3 + . . . + Hn     1
(zI         )       =                  =
                      det (zI        )         z n + a1 z n 1 + a2 z n 2 + . . . + an


                                                         H0   = I
           a1    =      tr ( H0 )                        H1   =     H0 + a1 I
           a2    =       2 tr (
                         1
                                  H1 )                   H2   =     H1 + a2 I
                 .
                 .                                            .
                                                              .
                 .                                            .
      an    1    =       n 1 tr ( Hn 2 )
                          1
                                                    Hn    1   =     Hn   2   + an   1I

           an    =       n tr ( Hn 1 )
                         1
                                                         Hn   =     Hn   1   + an I = 0


                                               22
4.2.4 Double intégrateur: Matrice de transfert
                                     ⇥
                          1 h
                  =                                                     H (z) = C (zI                         ⇥)
                                                                                                                       1
                                                                                                                               +D
                          0 1
                                                                                                                                                        ⇥
          1     adj (zI                  )     Iz + H1                                                    1                    z        1       h
(zI   )       =                            = 2            = 2
                det (zI                  )  z + a1 z + a2  z                                              2z + 1                   0        z       1
              a1      =     tr ( ) =           2
                                           ⇥                    ⇤           ⇥            ⇤       ⇥                     ⇤
                                               1       h                         1   0                    1        h
          H1          =     + a1 I =                                    2                    =
                                               0       1                         0   1                    0        1
                                                                    ⇥                    ⇤
                                                                            1        0
              a2      =     2 tr (
                            1
                                         H1 ) =            1
                                                           2 tr                              =1
                                                                            0        1
                                                   ⇥                         ⇤       ⇥            ⇤       ⇥                ⇤
                                                            1           0                1   0                 0       0
          H2          =     H1 + a2 I =                                          +                    =                            cqfd
                                                            0           1                0   1                 0       0
                                               ⌅                                         ⇧⌅        ⇤ ⇧
                                           ⇥           z          1              h               h2 2                      1
              H (z) =         1 0                                                                                                   2
                                                            0               z        1                h            (z          1)
                                 ⌅     ⇤ ⇧                                                           ⇤
                             ⇥       h2 2    1      (z                                           1) h 2 + h2
                                                                                                          2
                                                                                                                                 h2 z + 1
H (z) =       z       1 h                       2 =                                                                            =
                                      h    (z 1)                                                 (z
                                                                                                               2
                                                                                                              1)                 2 (z 1)2
Stabilité
                      1
H (z) = C (zI    ⇥)         +D

       Cadj(zI        ⇥)         H (z)
H(z) =                   +D =
        det(zI        ⇥)      det(zI ⇥)
        ⇤                               ⌅
          H11 (z)     ...    H1r (z)                             ⇥
        ⌥   .                   .                      Hij (z)
H (z) = ⇧   .
            .                   .
                                .    ⌃ = [Hij (z)] =
                                                     det (zI   )
          Hp1 (z)     ···    Hpr (z)


         Pˆles zi des Hij solution de: det (zI
          o                                             )=0

     Valeurs propres vi de       solution de: det ( I     )=0
                                 zi = vi
     Asymptotiquement stable si: |vi | < 1 pour i = 1, . . . , n


                                   24
4.1.13 Exemple: Entraînement discret

                                        ⇤           ⌅        ⇤        ⌅
u (k)           u (t)       x =
                            ˙
                                            0   1
                                                        x+
                                                                  0
                                                                          u   y (t)            y (k)           x (k + 1) = ⇥x (k) + u (k)
        D                                   0   a                 b                    A
            A                                       ⇥                                      D                           y (k) = Cx (k)
                            y   =           1   0       x



                    "                                         #                        "                                   #
                        1       1
                                a   eah                 1                       b
                                                                                           1
                                                                                           a    eah        1           h
⇥=e     Ah
                =                                                             =                                                exemple: 4.1.13
                        0               e   ah                                  a                eah
                                                                                                               1

                                                                                                       ⇤                   ⇥                  ⇥ ⌅
                    1       Iz + H1                                                 1                          z       eah     1
                                                                                                                               a   eah       1
  (zI           )       = 2            =
                         z + a1 z + a2   (z                                      eah ) (z        1)                    0           z     1

                                    1
H (z) = C (zI               ⇥)                  +D               Inutile ! Les valeurs propres donnent la mˆme info
                                                                                                           e
                ⇤                                                  ⇥ ⌅                                                         ⇧
                                1           1
                                            a       e   ah
                                                                  1                                                ⇥               1   = z1 = 1
| I     |=                                                                     =(          1)              ah
                                                                                                           e           =0⇥             = z2 = eah
                         0                                  eah                                                                    2

                                                                                  25
Systèmes discrets linéaires et stationnaires
                                       Solution                     k 1
x (k + 1)    =     ⇥x (k) + u (k)        x (k) = ⇥k k0 x (k0 ) +           ⇥k   l 1
                                                                                      u (l)
                                                 ⌅   ⇤⇥     ⇧
    y (k)    =     Cx (k) + Du (k)                                  l=k0
                                                   R´ponse libre
                                                    e               ⌅           ⇤⇥       ⇧
                                                                        R´ponse forc´e
                                                                         e          e

                         Matrice de transfert et stabilité
                                             ⇥
                                     1
                 Y (z) = C (zI ⇥)       + D U (z) = H (z) U (z)
                 ⇤                             ⌅
               H11 (z)       ...     H1r (z)                             ⇥
             ⌥   .                      .                      Hij (z)
     H (z) = ⇧   .
                 .                      .
                                        .    ⌃ = [Hij (z)] =
                                                             det (zI   )
               Hp1 (z)       ···     Hpr (z)

                  Pˆles zi des Hij solution de: det (zI
                   o                                               )=0

            Valeurs propres vi de       solution de: det ( I            )=0
                                       zi = vi
            Asymptotiquement stable si: |vi | < 1 pour i = 1, . . . , n
                                          26

More Related Content

What's hot

Logics of the laplace transform
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transformTarun Gehlot
 
TABLA DE DERIVADAS
TABLA DE DERIVADASTABLA DE DERIVADAS
TABLA DE DERIVADASEducación
 
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...SSA KPI
 
Chapter 4: Modern Location Theory of the Firm
Chapter 4: Modern Location Theory of the FirmChapter 4: Modern Location Theory of the Firm
Chapter 4: Modern Location Theory of the FirmDISPAR
 
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingScientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingEnthought, Inc.
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553Destiny Nooppynuchy
 
Peer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsPeer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsmolmodbasics
 
Matrix factorization
Matrix factorizationMatrix factorization
Matrix factorizationrubyyc
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Matthew Leingang
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsMatthew Leingang
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeNamit Kotiya
 
Beam theory
Beam theoryBeam theory
Beam theorybissla19
 
Formulario cuantica 2
Formulario cuantica 2Formulario cuantica 2
Formulario cuantica 2Abraham Prado
 
Integral table
Integral tableIntegral table
Integral tablebags07
 
Special second order non symmetric fitted method for singular
Special second order non symmetric fitted method for singularSpecial second order non symmetric fitted method for singular
Special second order non symmetric fitted method for singularAlexander Decker
 

What's hot (19)

Logics of the laplace transform
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transform
 
TABLA DE DERIVADAS
TABLA DE DERIVADASTABLA DE DERIVADAS
TABLA DE DERIVADAS
 
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
 
Chapter 4: Modern Location Theory of the Firm
Chapter 4: Modern Location Theory of the FirmChapter 4: Modern Location Theory of the Firm
Chapter 4: Modern Location Theory of the Firm
 
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingScientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
 
Peer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsPeer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanics
 
Matrix factorization
Matrix factorizationMatrix factorization
Matrix factorization
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
 
Midsem sol 2013
Midsem sol 2013Midsem sol 2013
Midsem sol 2013
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential Functions
 
8. terapan hk1 n
8. terapan hk1 n8. terapan hk1 n
8. terapan hk1 n
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulae
 
Beam theory
Beam theoryBeam theory
Beam theory
 
Differential equation
Differential equationDifferential equation
Differential equation
 
Formulario cuantica 2
Formulario cuantica 2Formulario cuantica 2
Formulario cuantica 2
 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2
 
Integral table
Integral tableIntegral table
Integral table
 
Special second order non symmetric fitted method for singular
Special second order non symmetric fitted method for singularSpecial second order non symmetric fitted method for singular
Special second order non symmetric fitted method for singular
 

Viewers also liked

Les Usages Pro Des Outils De Communication
Les Usages Pro Des Outils De CommunicationLes Usages Pro Des Outils De Communication
Les Usages Pro Des Outils De CommunicationDavid Serrault
 
Portfolio david serrault 2015
Portfolio david serrault 2015Portfolio david serrault 2015
Portfolio david serrault 2015David Serrault
 
Sprint Lifelogging & Personal Informatics - Premier Diamant
Sprint Lifelogging & Personal Informatics - Premier DiamantSprint Lifelogging & Personal Informatics - Premier Diamant
Sprint Lifelogging & Personal Informatics - Premier DiamantDavid Serrault
 
10 stakes in car User Experience - Paris college of arts 12-2014 - David Serr...
10 stakes in car User Experience - Paris college of arts 12-2014 - David Serr...10 stakes in car User Experience - Paris college of arts 12-2014 - David Serr...
10 stakes in car User Experience - Paris college of arts 12-2014 - David Serr...David Serrault
 
Web 2.0 Personal Learning Environments (PLE 2.0): From dreams to reality?
Web 2.0 Personal Learning Environments (PLE 2.0): From dreams to reality?Web 2.0 Personal Learning Environments (PLE 2.0): From dreams to reality?
Web 2.0 Personal Learning Environments (PLE 2.0): From dreams to reality?Denis Gillet
 
Areas of Tension in Technology Enhanced Learning
Areas of Tension in Technology Enhanced LearningAreas of Tension in Technology Enhanced Learning
Areas of Tension in Technology Enhanced LearningDenis Gillet
 
Company presentation
Company presentationCompany presentation
Company presentationToricompany
 
Science 2.0: Supporting a Doctoral Community of Practice in Technology Enhanc...
Science 2.0: Supporting a Doctoral Community of Practice in Technology Enhanc...Science 2.0: Supporting a Doctoral Community of Practice in Technology Enhanc...
Science 2.0: Supporting a Doctoral Community of Practice in Technology Enhanc...Denis Gillet
 
Cours massifs ouverts en ligne - Environnements personnels d'apprentissage co...
Cours massifs ouverts en ligne - Environnements personnels d'apprentissage co...Cours massifs ouverts en ligne - Environnements personnels d'apprentissage co...
Cours massifs ouverts en ligne - Environnements personnels d'apprentissage co...Denis Gillet
 
Webinar ple 20_6_12
Webinar ple 20_6_12Webinar ple 20_6_12
Webinar ple 20_6_12Denis Gillet
 
Strengthening learning contexts: An introduction
Strengthening learning contexts: An introductionStrengthening learning contexts: An introduction
Strengthening learning contexts: An introductionDenis Gillet
 
Enseigner et apprendre ensemble: Expériences à l'EPFL
Enseigner et apprendre ensemble: Expériences à l'EPFLEnseigner et apprendre ensemble: Expériences à l'EPFL
Enseigner et apprendre ensemble: Expériences à l'EPFLDenis Gillet
 
Doctoral Community of Practice in Technology Enhanced Learning (requirements)
Doctoral Community of Practice in Technology Enhanced Learning (requirements)Doctoral Community of Practice in Technology Enhanced Learning (requirements)
Doctoral Community of Practice in Technology Enhanced Learning (requirements)Denis Gillet
 

Viewers also liked (20)

Les Usages Pro Des Outils De Communication
Les Usages Pro Des Outils De CommunicationLes Usages Pro Des Outils De Communication
Les Usages Pro Des Outils De Communication
 
Portfolio david serrault 2015
Portfolio david serrault 2015Portfolio david serrault 2015
Portfolio david serrault 2015
 
Presentation Huc&Nunc
Presentation Huc&NuncPresentation Huc&Nunc
Presentation Huc&Nunc
 
Remote labs
Remote labsRemote labs
Remote labs
 
Sprint Lifelogging & Personal Informatics - Premier Diamant
Sprint Lifelogging & Personal Informatics - Premier DiamantSprint Lifelogging & Personal Informatics - Premier Diamant
Sprint Lifelogging & Personal Informatics - Premier Diamant
 
10 stakes in car User Experience - Paris college of arts 12-2014 - David Serr...
10 stakes in car User Experience - Paris college of arts 12-2014 - David Serr...10 stakes in car User Experience - Paris college of arts 12-2014 - David Serr...
10 stakes in car User Experience - Paris college of arts 12-2014 - David Serr...
 
Web 2.0 Personal Learning Environments (PLE 2.0): From dreams to reality?
Web 2.0 Personal Learning Environments (PLE 2.0): From dreams to reality?Web 2.0 Personal Learning Environments (PLE 2.0): From dreams to reality?
Web 2.0 Personal Learning Environments (PLE 2.0): From dreams to reality?
 
design & e-business
design & e-businessdesign & e-business
design & e-business
 
Areas of Tension in Technology Enhanced Learning
Areas of Tension in Technology Enhanced LearningAreas of Tension in Technology Enhanced Learning
Areas of Tension in Technology Enhanced Learning
 
Ple 2.0 ed-media
Ple 2.0 ed-mediaPle 2.0 ed-media
Ple 2.0 ed-media
 
B slides 11
B slides 11B slides 11
B slides 11
 
Company presentation
Company presentationCompany presentation
Company presentation
 
Science 2.0: Supporting a Doctoral Community of Practice in Technology Enhanc...
Science 2.0: Supporting a Doctoral Community of Practice in Technology Enhanc...Science 2.0: Supporting a Doctoral Community of Practice in Technology Enhanc...
Science 2.0: Supporting a Doctoral Community of Practice in Technology Enhanc...
 
A slides 11
A slides 11A slides 11
A slides 11
 
Cours massifs ouverts en ligne - Environnements personnels d'apprentissage co...
Cours massifs ouverts en ligne - Environnements personnels d'apprentissage co...Cours massifs ouverts en ligne - Environnements personnels d'apprentissage co...
Cours massifs ouverts en ligne - Environnements personnels d'apprentissage co...
 
D slides 11
D slides 11D slides 11
D slides 11
 
Webinar ple 20_6_12
Webinar ple 20_6_12Webinar ple 20_6_12
Webinar ple 20_6_12
 
Strengthening learning contexts: An introduction
Strengthening learning contexts: An introductionStrengthening learning contexts: An introduction
Strengthening learning contexts: An introduction
 
Enseigner et apprendre ensemble: Expériences à l'EPFL
Enseigner et apprendre ensemble: Expériences à l'EPFLEnseigner et apprendre ensemble: Expériences à l'EPFL
Enseigner et apprendre ensemble: Expériences à l'EPFL
 
Doctoral Community of Practice in Technology Enhanced Learning (requirements)
Doctoral Community of Practice in Technology Enhanced Learning (requirements)Doctoral Community of Practice in Technology Enhanced Learning (requirements)
Doctoral Community of Practice in Technology Enhanced Learning (requirements)
 

Similar to C slides 11 (20)

Tele3113 wk11wed
Tele3113 wk11wedTele3113 wk11wed
Tele3113 wk11wed
 
Introduction to modern time series analysis
Introduction to modern time series analysisIntroduction to modern time series analysis
Introduction to modern time series analysis
 
Solved problems
Solved problemsSolved problems
Solved problems
 
12.5. vector valued functions
12.5. vector valued functions12.5. vector valued functions
12.5. vector valued functions
 
Assignment6
Assignment6Assignment6
Assignment6
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Chapter3 laplace
 
Desktop
DesktopDesktop
Desktop
 
Desktop
DesktopDesktop
Desktop
 
1 d wave equation
1 d wave equation1 d wave equation
1 d wave equation
 
Notes 17
Notes 17Notes 17
Notes 17
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
Chapter4 tf
Chapter4 tfChapter4 tf
Chapter4 tf
 
Kinematika rotasi
Kinematika rotasiKinematika rotasi
Kinematika rotasi
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
Figures
FiguresFigures
Figures
 
Sect2 3
Sect2 3Sect2 3
Sect2 3
 
Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006
 
Local Volatility 1
Local Volatility 1Local Volatility 1
Local Volatility 1
 
Supplement to local voatility
Supplement to local voatilitySupplement to local voatility
Supplement to local voatility
 

C slides 11

  • 1. 4. Discrétisation u1 (k) D u1 (t) y1 (t) A y1 (k) A D u2 (k) D u2 (t) Système y2 (t) A y2 (k) A linéaire D stationnaire x = Ax + Bu ˙ ur (k) D ur (t) y = Cx + Du yp (t) A yp (k) A D Comment prendre explicitement en compte les convertisseurs ? Résoudre analytiquement x = Ax + Bu ˙ Avec un maintien de u entre k et k+1 Denis Gillet @ EPFL 1
  • 2. Solution de l’équation d’état x (t) = Ax (t) + Bu (t) ˙ Solution générale = solution homogène + solution particulière Cas scalaire Cas vectoriel x (t0 ) = x0 x (t) = ax (t) ˙ x (t) = Ax (t) ˙ x = eat c2 = ea(t t0 ) x0 1 1 e =1+ + 2 + 3 + ... 2! 3! ⇥ 1 2 1 3 2 3 x = 1 + a (t t0 ) + a (t t0 ) + a (t t0 ) + . . . x0 2! 3! 2 3 x = a0 + a1 (t t0 ) + a2 (t t0 ) + a3 (t t0 ) + . . . Par analogie 2 3 x = A0 + A1 (t t0 ) + A2 (t t0 ) + A3 (t t0 ) + . . . 2
  • 3. Solution de l’équation d’état homogène x (t) = Ax (t) ˙ 2 3 x = A0 + A1 (t t0 ) + A2 (t t0 ) + A3 (t t0 ) + . . . x (t0 ) = A0 x (t0 ) = x0 2 x = A1 + 2A2 (t ˙ t0 ) + 3A3 (t t0 ) + . . . x (t) = Ax (t) ˙ x (t0 ) = A1 ˙ x (t0 ) = Ax (t0 ) = Ax0 ˙ x = 2A2 + 6A3 (t ¨ t0 ) + . . . x (t) = Ax (t) ¨ ˙ x (t0 ) = 2A2 ¨ x (t0 ) = Ax (t0 ) = A2 x0 ¨ ˙ 2 3 ⇥ A 2 A 3 x (t) = I + A (t t0 ) + (t t0 ) + (t t0 ) + . . . x0 2! 3! ⇧ ⌅⇤ ⌃ eA(t t0 ) 3
  • 4. Exponentielle de matrice 2 3 ⇥ A 2 A 3 Ak k eA(t t0 ) = I + A (t t0 ) + (t t0 ) + (t t0 ) + . . . = (t t0 ) 2! 3! k! k=0 x (t) = eA(t t0 ) x0 x (t1 ) = eA(t1 t0 ) x (t0 ) x (t2 ) = eA(t2 t1 ) x (t1 ) = eA(t2 t1 ) A(t1 t0 ) e x (t0 ) t 2 = t0 x (t0 ) = eA(t0 t1 ) A(t1 t0 ) e x (t0 ) I = eA(t0 t1 ) A(t1 t0 ) e =M 1 M ⇥ 1 A(t1 t0 ) e = eA(t0 t1 ) =e A(t1 t0 ) 4
  • 5. Solution particulière de l’équation d’état x (t) = Ax (t) + Bu (t) ˙ x (t) = eA(t t0 ) v (t) AeA(t t0 ) v (t) + eA(t t0 ) v (t) = A eA(t t0 ) v (t) +Bu (t) ˙ ⇤ ⇥ ⌅ ⇤ ⇥ ⌅ x(t) ˙ x(t) ⇥ 1 v (t) = eA(t ˙ t0 ) Bu (t) = e A(t t0 ) Bu (t) t v (t) = e A( t0 ) Bu ( ) d t0 t t x (t) = eA(t t0 ) e A( t0 ) Bu ( ) d = eA(t t0 ) A(t0 e ) Bu ( ) d t0 t0 t x (t) = eA(t ) Bu ( ) d t0 5
  • 6. Solution complète de l’équation d’état x (t) = Ax (t) + Bu (t) ˙ t x (t) = e A(t t0 ) x (t0 ) + A(t e ) Bu ( ) d t0 réponse libre + réponse forcée (produit de convolution) 6
  • 7. Discrétisation x (t) = Ax (t) + Bu (t) ˙ y (t) = Cx (t) + Du (t) t x (t) = eA(t t0 ) x (t0 ) + eA(t ) Bu ( ) d t0 Convertisseurs AD kh+h t0 = kh x (kh + h) = eAh x (kh) + eA(kh+h ) Bu ( ) d t = kh + h kh t = kh y (kh) = Cx (kh) + Du (kh) Convertisseurs DA kh+h u( ) = u(kh) x (kh + h) = eAh x (kh) + eA(kh+h ) Bu( )d kh < kh + h ⌅ ⇤⇥ ⇧ kh u(kh) 7
  • 8. Discrétisation kh+h x (kh + h) = eAh x (kh) + eA(kh+h ) Bu( )d ⌅ ⇤⇥ ⇧ kh u(kh) = kh + h ⇥ d = d⇥ ⇥ ⇧0 x (kh + h) = eAh x (kh) + ⇤ eA Bd ⌅ u (kh) h y (kh) = Cx (kh) + Du (kh) ⇤ h ⌅ ⌥ ⇥ x (k + 1) = eAh x (k) + ⇧ eA d ⌃ B u (k) ⌦ ↵ ⇥ 0 ⌦ ↵ y (k) = Cx (k) + Du (k) 8
  • 9. Solution de l’équation d’état analogique, linéaire et stationnaire + Discrétisation x (t) = Ax (t) + Bu (t) ˙ y (t) = Cx (t) + Du (t) t x (t) = eA(t t0 ) x (t0 ) + eA(t ) Bu ( ) d t0 x (k + 1) = ⇤⇥ ⌅ x (k) + ⇥ ⇤⇥ ⌅ u (k) " # eAh Rh eA d B 0 y (k) = Cx (k) + Du (k) 9
  • 10. Exponentielle de matrice: Série A2 2 Ai i = eAh = I + Ah + h + ... + h + ... 2! i! ⇤ h 2 i ⇥ A 2 A 3 A = A e d B = Ih + h + h + ... + hi+1 + . . . B 0 2! 3! (i + 1)! A A2 2 Ai =I + h+ h + ... + hi + . . . 2! 3! (i + 1)! = I + Ah⇥ = ⇥hB ⇥⇥⇥ ⇥ I + Ah = I+ Ah ... Ah I+ Ah 2 3 N 1 N 10
  • 11. Discrétisation de systèmes stationnaires Modèle linéaire Modèle non linéaire x (t) = f [x (t) , u (t)] ˙ y (t) = g [x (t) , u (t)] Linéarisation Contre- Tangente réaction x (t) = Ax (t) + Bu (t) ˙ ˙ x (t) ˜ = A˜ (t) + B u (t) x ˜ y (t) = Cx (t) + Du (t) y (t) ˜ = C x (t) + D˜ (t) ˜ u h Discrétisation exacte =e Ah = eA d B 0 x (k + 1) = ⇥x (k) + u (k) x (k + 1) = ⇥˜ (k) + u (k) ˜ x ˜ y (k) = Cx (k) + Du (k) y (k) = C x (k) + D˜ (k) ˜ ˜ u 11
  • 12. 4.1.8 Double intégrateur: Série 1 u(t) y(t) s2 y (t) = u(t) ¨ x1 (t) = y(t) x2 (t) = y(t) ˙   x1 (t) = y(t) = x2 (t) ˙ ˙ 0 1 0 x(t) = ˙ x(t) + u(t) x2 (t) = y (t) = u(t) ˙ ¨ 0 0 1 ⇥ ⇤ y(t) = x1 (t) y(t) = 1 0 x(t) + [0] u(t) 12
  • 13. 4.1.8 Double intégrateur: Série A B ⇧ ⇤ ⌥ ⌃ ⌅ ⇧ ⌥⌅ ⇤ ⌃ 0 1 0 ⇥ x= ˙ x+ u et y= 1 0 x 0 0 1 ⌥ ⌃⇧ C A2 2 Ai i = eAh = I + Ah + h + ... + h + ... 2! i! ⇥ ⇥ ⇥ 2 ⇥ 1 0 0 1 0 0 h 1 h = + h+ = = eAh 0 1 0 0 0 0 2 0 1 ⌅ ⇧ ⇥ ⌃ ⌥ ⌦ ⌦ h ⇤ h 2 h ⇥ ⇤ h 1 0 |0 0 = eA d B= d = 2 0 0 1 1 h 1 0 0 0 |0 ⌅ 2 ⇧⇥ ⇤ ⌅ h2 ⇧ h h 0 = 2 = 2 0 h 1 h ⇤ ⌅ ⇧ 2 ⌃ h ⇥ 1 h x (k + 1) = x (k) + 2 u (k) et y (k) = 1 0 x (k) 0 1 h 13
  • 14. Solution de l’équation d’état par la transformée de Laplace x(t) = Ax(t) + Bu(t) ˙ sX(s) x(0) = AX(s) + BU (s) (sI A)X(s) = x(0) + BU (s) 1 1 X(s) = (sI A) x(0) + (sI A) BU (s) Rt x(t) = eAt x(0) + 0 eA(t ⌧) Bu(⌧ )d⌧ h i At 1 1 e =L (sI A) 14
  • 15. Algorithme de Leverrier (analogique) ⇥ 1 eAt = L 1 (sI A) et = eAh 1 adj (sI A) H0 sn 1 + H1 sn 2 + H2 sn 3 + . . . + Hn 1 (sI A) = = det (sI A) sn + a1 sn 1 + a2 sn 2 + . . . + an H0 = I a1 = tr (AH0 ) H1 = AH0 + a1 I a2 = 2 tr (AH1 ) 1 H2 = AH1 + a2 I . . . . . . an 1 = n 1 tr (AHn 2 ) 1 Hn 1 = AHn 2 + an 1I an = n tr (AHn 1 ) 1 Hn = AHn 1 + an I = 0 15
  • 16. Double intégrateur: Leverrier A B ⇧ ⇤ ⌥ ⌃ ⌅ ⇧ ⌥⌅ ⇤ ⌃ 0 1 0 ⇥ x= ˙ x+ u et y= 1 0 x 0 0 1 ⌥ ⌃⇧ C ⇥ 1 e At =L 1 (sI A) et = eAh ⇥ ⇥ ⇥ 1 0 0 1 0 1 H0 = I = , a1 = tr (AH0 ) = tr = 0, H1 = AH0 + a1 I = 0 1 0 0 0 0 ⇥ ⇥ 1 1 0 0 0 0 a2 = tr (AH1 ) = tr = 0, H2 = AH1 + a2 I = (contrˆle) o 2 2 0 0 0 0 ⇥ ⇥ 1 0 0 1 s+ ⇥ H0 s + H1 1 0 1 0 0 1 s 1 (sI A) = 2 = = 2 s + a1 s + a2 s2 s 0 s ⌅ ⇧ ⇥ ⇤ ⇥ ⇤ 1/ 1 2 s s 1 t 1 h e =L At 1 = donc e Ah = 0 1/ 0 1 0 1 s 16
  • 17. Théorème de Cayley-Hamilton Soit A une matrice n x n: f (A) = p (A) = 0 An 1 + 1 An 2 + ... + n 1I Les coefficients i sont solution de: f ( i) = p ( i) i = 1, . . . , n Les i sont les valeurs propres de A, soit les solutions de: det ( I A) = | I A| = 0 Pour des valeurs propres de multiplicité mi f (1) ( i ) = p(1) ( i ) . . . f (mi 1) ( i) = p(mi 1) ( i) 17
  • 18. 4.1.12 Double intégrateur: Cayley-Hamilton A B ⇧ ⇤ ⌥ ⌃ ⌅ ⇧ ⌥⌅ ⇤ ⌃ 0 1 0 ⇥ x= ˙ x+ u et y= 1 0 x 0 0 1 ⌥ ⌃⇧ C e 1h = 0 ⇥1 + 1 f (A) = e Ah = 0A + 1I = 0 ⇥2 + 2h e 1 ⇥ ⇤ ⇥ ⇤ ⇥ ⇤ 0 0 1 1 | I A| = = = 2 = 0, = =0 0 0 0 0 1 2 e 1h = 0 ⇥1 + 1 1= 1 d d e 2h = ( 0 ⇥2 + 1) he 2h = 0 h= 0 d⇥2 d⇥2 ⇥ ⇥ ⇥ 0 1 1 0 1 h Ah e =h +1 = 0 0 0 1 0 1 18
  • 19. 4.2 Solution de l’équation d’état discrète linéaire x (k + 1) = ⇥x (k) + u (k) y (k) = Cx (k) + Du (k) x(k0 + 1) = ⇥x(k0 ) + u(k0 ) x(k0 + 2) = ⇥x(k0 + 1) + u(k0 + 1) x(k0 + 2) = ⇥ [⇥x(k0 ) + u(k0 )] + u(k0 + 1) x(k0 + 2) = ⇥2 x(k0 ) + ⇥ u(k0 ) + u(k0 + 1) x(k0 + 3) = ⇥x(k0 + 2) + u(k0 + 2) ⇥ x(k0 + 3) = ⇥ ⇥ x(k0 ) + ⇥ u(k0 ) + u(k0 + 1) + u(k0 + 2) 2 x(k0 + 3) = ⇥3 x(k0 ) + ⇥2 u(k0 ) + ⇥ u(k0 + 1) + u(k0 + 2) k 1 x(k) = ⇥k k0 x(k0 ) + ⇥k i 1 u(i) i=k0 réponse libre + réponse forcée (produit de convolution) 19
  • 20. Matrice de transfert discrète x (k + 1) = ⇥x (k) + u (k) CI nulles y (k) = Cx (k) + Du (k) zX(z) ⇥X(z) = U (z) Y (z) = CX(z) + DU (z) (zI ⇥)X(z) = U (z) Y (z) = CX(z) + DU (z) X(z) = (zI ⇥) 1 U (z) ⇥ Y (z) = C (zI ⇥) 1 U (z)⇥ + DU (z) Y (z) = C(zI ⇥) 1 + D U (z) ⇥ H(z)U (z) u(k) y(k) U (z) Y (z) Modèle d’état H(z) linéaire discret x(k) 20
  • 21. Matrice de transfert discrète h i 1 H(z) = C(zI ) +D Y (z) = H(z)U (z) 2 3 2 32 3 Y1 (z) H11 (z) H12 (z) ··· H1r (z) U1 (z) 6 Y2 (z) 7 6 H21 (z) H22 (z) H2r (z) 76 U2 (z) 7 6 7 6 76 7 6 . . 7=6 . . .. . . 76 . . 7 4 . 5 4 . . . 54 . 5 Yp (z) Hp1 (z) Hp2 (z) ··· Hpr (z) Ur (z) 0 . . . . . Uj (z) Hij (z) . . . . . Yi (z) 0 . . 21
  • 22. Algorithme de Leverrier (discret) 1 H (z) = C (zI ⇥) +D 1 adj (zI ) H0 z n 1 + H 1 z n 2 + H2 z n 3 + . . . + Hn 1 (zI ) = = det (zI ) z n + a1 z n 1 + a2 z n 2 + . . . + an H0 = I a1 = tr ( H0 ) H1 = H0 + a1 I a2 = 2 tr ( 1 H1 ) H2 = H1 + a2 I . . . . . . an 1 = n 1 tr ( Hn 2 ) 1 Hn 1 = Hn 2 + an 1I an = n tr ( Hn 1 ) 1 Hn = Hn 1 + an I = 0 22
  • 23. 4.2.4 Double intégrateur: Matrice de transfert ⇥ 1 h = H (z) = C (zI ⇥) 1 +D 0 1 ⇥ 1 adj (zI ) Iz + H1 1 z 1 h (zI ) = = 2 = 2 det (zI ) z + a1 z + a2 z 2z + 1 0 z 1 a1 = tr ( ) = 2 ⇥ ⇤ ⇥ ⇤ ⇥ ⇤ 1 h 1 0 1 h H1 = + a1 I = 2 = 0 1 0 1 0 1 ⇥ ⇤ 1 0 a2 = 2 tr ( 1 H1 ) = 1 2 tr =1 0 1 ⇥ ⇤ ⇥ ⇤ ⇥ ⇤ 1 0 1 0 0 0 H2 = H1 + a2 I = + = cqfd 0 1 0 1 0 0 ⌅ ⇧⌅ ⇤ ⇧ ⇥ z 1 h h2 2 1 H (z) = 1 0 2 0 z 1 h (z 1) ⌅ ⇤ ⇧ ⇤ ⇥ h2 2 1 (z 1) h 2 + h2 2 h2 z + 1 H (z) = z 1 h 2 = = h (z 1) (z 2 1) 2 (z 1)2
  • 24. Stabilité 1 H (z) = C (zI ⇥) +D Cadj(zI ⇥) H (z) H(z) = +D = det(zI ⇥) det(zI ⇥) ⇤ ⌅ H11 (z) ... H1r (z) ⇥ ⌥ . . Hij (z) H (z) = ⇧ . . . . ⌃ = [Hij (z)] = det (zI ) Hp1 (z) ··· Hpr (z) Pˆles zi des Hij solution de: det (zI o )=0 Valeurs propres vi de solution de: det ( I )=0 zi = vi Asymptotiquement stable si: |vi | < 1 pour i = 1, . . . , n 24
  • 25. 4.1.13 Exemple: Entraînement discret ⇤ ⌅ ⇤ ⌅ u (k) u (t) x = ˙ 0 1 x+ 0 u y (t) y (k) x (k + 1) = ⇥x (k) + u (k) D 0 a b A A ⇥ D y (k) = Cx (k) y = 1 0 x " # " # 1 1 a eah 1 b 1 a eah 1 h ⇥=e Ah = = exemple: 4.1.13 0 e ah a eah 1 ⇤ ⇥ ⇥ ⌅ 1 Iz + H1 1 z eah 1 a eah 1 (zI ) = 2 = z + a1 z + a2 (z eah ) (z 1) 0 z 1 1 H (z) = C (zI ⇥) +D Inutile ! Les valeurs propres donnent la mˆme info e ⇤ ⇥ ⌅ ⇧ 1 1 a e ah 1 ⇥ 1 = z1 = 1 | I |= =( 1) ah e =0⇥ = z2 = eah 0 eah 2 25
  • 26. Systèmes discrets linéaires et stationnaires Solution k 1 x (k + 1) = ⇥x (k) + u (k) x (k) = ⇥k k0 x (k0 ) + ⇥k l 1 u (l) ⌅ ⇤⇥ ⇧ y (k) = Cx (k) + Du (k) l=k0 R´ponse libre e ⌅ ⇤⇥ ⇧ R´ponse forc´e e e Matrice de transfert et stabilité ⇥ 1 Y (z) = C (zI ⇥) + D U (z) = H (z) U (z) ⇤ ⌅ H11 (z) ... H1r (z) ⇥ ⌥ . . Hij (z) H (z) = ⇧ . . . . ⌃ = [Hij (z)] = det (zI ) Hp1 (z) ··· Hpr (z) Pˆles zi des Hij solution de: det (zI o )=0 Valeurs propres vi de solution de: det ( I )=0 zi = vi Asymptotiquement stable si: |vi | < 1 pour i = 1, . . . , n 26