Technologies for future mobile
transport networks
Pham Tien Dat1, Atsushi Kanno1, Naokatsu Yamamoto1, and Tetsuya Kawanishi1,2
1National Institute of Information and Communications Technology, Japan
2Wasdea university, Tokyo, Japan
FG IMT-2020 Workshop and Demo Day: Technology Enablers for 5G
Outline
 Flexible fiber-wireless mobile fronthaul
• Downlink system
• Bidirectional transmission
 Seamless fiber-wireless for moving cells
 Multiple radios over fiber system
 Conclusion
2
Flexible fiber-wireless transport systems
BBU BBU BBU
BBU pool
Core
network
MUX/
DEMUX
Control
office
MUX/
DEMUX
RRH
RRH
RRH RAU RAU RAU
3
Fiber-wireless convergence
Seamless optical and MMW connection: Low latency, low power
RAU
Digital
E/O O/E
DSP
FE
LO
MMW
Conventional optical-MMW link: Large latency, high power
RAU
Digital
E/O O/E FE
Opt. LO
MMW
4
Operating principle
λ1
λ2
f
E/O O/E Down.
Microwave
Millimeter
Microwave
λ1
λ2
O/E
converter
Optical fiber
λ
λ1 λ2
Δf
Freq.
f = |c/λ1-c/λ2|
Up.Down.E/OO/E
Microwave
LO
Millimeter
Microwave λ
5
VSA: Vector Signal Analyser
LNA: Low Noise Amplifier
ATT: Attenuator
OBPF: Optical Band Pass Filter
MZM: Mach-Zehnder Modulator
EDFA: Erbium-Doped Fiber Amplifier
VSG: Vector Signal Generator
PD: photo-detector
Downlink system: experimental setup
6
P. T. Dat et al., ECOC (2016)
1 m
89.2 – 92.45
GHz
CS
AWG
Two-tone
opt. gen.
MZM
20km
PCAWG
LNALNA
RRH
88.1 GHz
LTE-A
F-OFDM
÷
PDPA
RAU
ATT
1,549.4 1,550 1,550.6
-90
-70
-50
-30
-10
10
Wavelength (nm)
Power(dBm)
EDFA
EDFAOBPF OBPF
Downlink system: experimental results
7
Data 1 Data 2
-2 0 2 4 6 8
Tx. LTE-A Power (dBm)
8
12
16
20
24
EVM(%)
Sig. 1, data 1
Sig. 1, data 2
Sig. 2, data 1
Sig. 2, data 2
Sig. 3, data 1
Sig. 3, data2
Sig. 4, data 1
Sig. 4, data 2
0 1 2 3 4 5 6
Rx. Opt. Power (dBm)
8
12
16
20
24
EVM(%)
Sig. 1, data 1
Sig. 1, data 2
Sig. 2, data 1
Sig. 2, data 2
Sig. 3, data 1
Sig. 3, data 2
Sig. 4, data 1
Sig. 4, data 2
Performance versus received optical powers Performance versus LTE-A signal powers
P. T. Dat et al., ECOC (2016)
1 1.5 2 2.5 3 3.5 4 4.5
-70
-60
-50
-40
-30
-20
-10
Frequency (GHz)
Power(dBm)
Sig.1
Sig.2
Sig.3 Sig.4
Bidirectional system: experimental setup
LNA LNA
Remote
Radio Head
ED
DL LTE-A
inter-band 2
VSG
UL LTE-A
LO
96 GHz
Did.
DL LTE-A
inter-band 1
VSA_1
VSA_2
Sync.
MZM
EDFA
PD PA10 km 92.5 GHz
Com.
DL LTE-A
inter-band 1
Central Station
Remote Antenna Unit
DL LTE-A
inter-band 2
VSG_2
ATT
RoF
Rx.
VSA
UL LTE-A
RoF
Rx.
LNA
ED
LNA
96 GHz
VSG_1
ATT
Sync.
EDFA
Opt. MMW
Gen.
830 840 850 860 870
-120
-100
-80
-60
-40
Frequency (MHz)
Power(dBm)
2.580 2.59 2.6 2.61 2.62
-120
-100
-80
-60
-40
Frequency (GHz)
Power(dBm)
8
Bidirectional: experimental results
 Successful bidirectional transmission for CA LTE-A signals
 Applicable for future 5G signal transmission (256-QAM with EVM < 3.5%)
 PONs can be applied for optical transport (ITU-T req. for PONs: 15 dB)
P. T. Dat et al., OFC (2015)
DL LTE-A signal
-2 0 2 4 6
Rx. Opt. Power (dBm)
0
2
4
6
8
10
12
EVM(%)
64-QAM, interband 1
64-QAM, interband 2
-2 0 2 4 6
Rx. Opt. Power (dBm)
0
2
4
6
8
10
12
64-QAM, interband 1
64-QAM, interband 2
Only DL With UL
-15 -10 -5 0 5
Rx. Opt. Power (dBm)
2
4
6
8
10
12
64-QAM, no DL
64-QAM, with DL
UL LTE-A signal
>17 dB
9
Seamless fiber-wireless for moving cells
Millimeter-wave
WDM Radio over Fiber
Linearly located remote cells
Metro/Access Network Control Station
RAU #1 RAU #2 RAU #n
Multiplexer
Aisle Seat
From outside
P. T. Dat et al., IEEE
Commun. Mag. (2015)
10
Network control and moving cells
Switch
Metro/Access Network
Location
position
Switch
control
Uplink power
λ1, λ2 λ3, λ4
Control Office
WDM
RoF Tx.
WDM
DEMUX
λ n-1, λn
Signal
Processing
Units
Modulation
Modulation
Modulation
11
Proof-of-concept: experimental setup
DPMZM: Dual-parallel MZM
OBEF: Optical band pass elimination filter
OBPF: Optical band pass filter
ATT: Attenuator
P-S: Power Splitter
ISO: Isolator
PS: Phase shifter
EDFA 1 km
MZM2 EDFA
LD2
20 km
CS
ATT
(1)
LD1 MZM1
DPMZMLD
OBEF EDFA OBPF
Opt. MMW Gen. 1LO_1
(3)
(2)
RAU_1
PD PA
X
PD
LNA
RoF
Tx.
LNA
P-S
ATT. PA
ISO ISOPS
SHD
TAU
Opt. MMW Gen. 2ATT
ATT
RoF
Rx.
ATT
LO_2LO_3
VSA
PC VSG
(4)
(5)
(6)
1548 1552 1556
-80
-60
-40
-20
0
Wavelength (nm)
1547 1551 1555
-80
-60
-40
-20
0
Wavelength (nm)
1555 1556 1557
-80
-60
-40
-20
0
Wavelength (nm)
1548 1550 1552
-80
-60
-40
-20
0
Wavelength (nm)
Power(dBm)
1548 1549 1550 1551
-80
-60
-40
-20
0
Wavelength (nm)
1548 1550 1552
-80
-60
-40
-20
Wavelength (nm)
1548 1550 1552
-80
-60
-40
-20
Wavelength (nm)
(1) (2) (3) (3) (4) (5) (6)
RF cable
10 MHz
RAU_2
AP
20 GHz
40 GHz
41.9 GHz
23.125 GHz
IF
LO
P. T. Dat et al., OFC (2016)
12
 Good performance for both backhaul and over in-train networks
 High-spectral efficiency, low fiber-dispersion, cost effective system
-6 -4 -2 0 2 4
4
6
8
10
IF Tx. Power (dBm)
EVM(%)
-4 -2 0 2 4 6
4
6
8
10
IF Tx. Power (dBm)
32-QAM, CH1
64-QAM, CH1
32-QAM, CH2
64-QAM, CH2
32-QAM, CH1
64-QAM, CH1
32-QAM, CH2
64-QAM, CH2
P. T. Dat et al., OFC (2016)
Proof-of-concept: experimental results
30-MHz OFDM signal 50-MHz OFDM signal
13
Multiple radios over fiber
14
Signal-1 Subcarrier
mapping
IFFT-1 CP-1
Subband-1
filter
Signal-K
Subcarrier
mapping IFFT-K CP-K
Subband-K
filter
+
Multi-RATs over seamless fiber-wireless system
Data mapping using F-OFDM
4G or control
signals DAC
+ E/O
Optical LO
BBU pool-1
BBU pool-N
DSP-based
mapping DAC
MFHRAT-1
4G LTE
O/E
 CPRI for fronthauling: bit rate >>
100 Gb/s/cell.
 RoF: high-speed components,
massive systems
Cooperation of optical and
radio access networks
Multiple radios over fiber: experimental setup
20 km
MZM
EDFA
LD
CS
DPMZMLD
EDFA OBPF
Frequency
Doubler
VSG VSG
LTE-A
IF
Com.
AWG
12 GHz
ATT
RRH
PD
PDATT
25-GHz
RAT
LPF
IF
signal
LO signal
OBPF
OBPF
VSA
21 GHz
User
RAU
PDATT
Div.
LTE-A
X4
OBPF
ATT PDOBPF
2.5 m
96-GHz
MFH
95 GHz
OSC
RRH
HPF
MZM: Mach-Zehnder Modulator
EDFA: Erbium-Doped Fiber Amplifier
VSG: Vector Signal Generator
Com.: RF combiner
PD: photo-detector
Did. RF Divider
VSA: Vector Signal Analyser
LNA: Low Noise Amplifier
ATT: Attenuator
(O)BPF: (Optical) Band Pass Filter
PC
15
1555.6 1556
Wavelength (nm)
-90
-70
-50
-30
-10
10
Power(dBm)
Multiple radios over fiber: experimental results
-8.5 -7.5 -6.5 -5.5 -4.5
Rx. Opt. Power (dBm)
10
12
14
16
18
20
EVM(%)
Signal 1
Signal 2
Signal 3
Signal 4
6 8 10 12 14 16
Tx. LTE-A Power (dBm)
10
12
14
16
EVM(%)
Signal 1
Signal 2
Signal 3
Signal 4
0.5 1 1.5 2 2.5 3
Frequency (GHz)
-110
-90
-70
-50
-30
Power(dBm)
OFDM LTE-A
Sig. 1 Sig. 2 Sig. 4Sig. 3
OFDM NOMA (16 x 16) SCMA
3.96 4 4.04
Frequency (GHz)
-90
-50
-10
Power(dBm)
OFDM
FBMC
-10 -8 -6 -4
Rx. Opt. Power (dBm)
2
4
6
8
OFDM
OFDM NOMA
OFDM SCMA
FBMC
-18 -14 -10 -6
Rx. Opt. Power (dBm)
1
2
3
4
CC1 (20 MHz)
CC2 (20 MHz)
CC3 (20 MHz)
EVM(%)
F-OFDM Signal
LTE-A Signal New RAT signal (OFDM/FBMC) 16
Summary
 Seamless convergence of fiber-MMW would be a
potential solution for future mobile fronthauling when
fiber cable is not available.
 Convergence of WDM IFoF and linearly located
distributed antenna systems is very promising for high-
speed communication to high-speed trains.
 Co-design and cooperative fiber-radio access networks
would be the key for future MMW and massive MIMO
mobile signal, and multi-RAT transmission.
17
Thank you
ptdat@nict.go.jp
This work was conducted as a part of the “Research and development
for expansion of radio wave resources,” supported by the Ministry of
Internal Affairs and Communications (MIC), Japan.

Technologies for future mobile transport networks

  • 1.
    Technologies for futuremobile transport networks Pham Tien Dat1, Atsushi Kanno1, Naokatsu Yamamoto1, and Tetsuya Kawanishi1,2 1National Institute of Information and Communications Technology, Japan 2Wasdea university, Tokyo, Japan FG IMT-2020 Workshop and Demo Day: Technology Enablers for 5G
  • 2.
    Outline  Flexible fiber-wirelessmobile fronthaul • Downlink system • Bidirectional transmission  Seamless fiber-wireless for moving cells  Multiple radios over fiber system  Conclusion 2
  • 3.
    Flexible fiber-wireless transportsystems BBU BBU BBU BBU pool Core network MUX/ DEMUX Control office MUX/ DEMUX RRH RRH RRH RAU RAU RAU 3
  • 4.
    Fiber-wireless convergence Seamless opticaland MMW connection: Low latency, low power RAU Digital E/O O/E DSP FE LO MMW Conventional optical-MMW link: Large latency, high power RAU Digital E/O O/E FE Opt. LO MMW 4
  • 5.
    Operating principle λ1 λ2 f E/O O/EDown. Microwave Millimeter Microwave λ1 λ2 O/E converter Optical fiber λ λ1 λ2 Δf Freq. f = |c/λ1-c/λ2| Up.Down.E/OO/E Microwave LO Millimeter Microwave λ 5
  • 6.
    VSA: Vector SignalAnalyser LNA: Low Noise Amplifier ATT: Attenuator OBPF: Optical Band Pass Filter MZM: Mach-Zehnder Modulator EDFA: Erbium-Doped Fiber Amplifier VSG: Vector Signal Generator PD: photo-detector Downlink system: experimental setup 6 P. T. Dat et al., ECOC (2016) 1 m 89.2 – 92.45 GHz CS AWG Two-tone opt. gen. MZM 20km PCAWG LNALNA RRH 88.1 GHz LTE-A F-OFDM ÷ PDPA RAU ATT 1,549.4 1,550 1,550.6 -90 -70 -50 -30 -10 10 Wavelength (nm) Power(dBm) EDFA EDFAOBPF OBPF
  • 7.
    Downlink system: experimentalresults 7 Data 1 Data 2 -2 0 2 4 6 8 Tx. LTE-A Power (dBm) 8 12 16 20 24 EVM(%) Sig. 1, data 1 Sig. 1, data 2 Sig. 2, data 1 Sig. 2, data 2 Sig. 3, data 1 Sig. 3, data2 Sig. 4, data 1 Sig. 4, data 2 0 1 2 3 4 5 6 Rx. Opt. Power (dBm) 8 12 16 20 24 EVM(%) Sig. 1, data 1 Sig. 1, data 2 Sig. 2, data 1 Sig. 2, data 2 Sig. 3, data 1 Sig. 3, data 2 Sig. 4, data 1 Sig. 4, data 2 Performance versus received optical powers Performance versus LTE-A signal powers P. T. Dat et al., ECOC (2016) 1 1.5 2 2.5 3 3.5 4 4.5 -70 -60 -50 -40 -30 -20 -10 Frequency (GHz) Power(dBm) Sig.1 Sig.2 Sig.3 Sig.4
  • 8.
    Bidirectional system: experimentalsetup LNA LNA Remote Radio Head ED DL LTE-A inter-band 2 VSG UL LTE-A LO 96 GHz Did. DL LTE-A inter-band 1 VSA_1 VSA_2 Sync. MZM EDFA PD PA10 km 92.5 GHz Com. DL LTE-A inter-band 1 Central Station Remote Antenna Unit DL LTE-A inter-band 2 VSG_2 ATT RoF Rx. VSA UL LTE-A RoF Rx. LNA ED LNA 96 GHz VSG_1 ATT Sync. EDFA Opt. MMW Gen. 830 840 850 860 870 -120 -100 -80 -60 -40 Frequency (MHz) Power(dBm) 2.580 2.59 2.6 2.61 2.62 -120 -100 -80 -60 -40 Frequency (GHz) Power(dBm) 8
  • 9.
    Bidirectional: experimental results Successful bidirectional transmission for CA LTE-A signals  Applicable for future 5G signal transmission (256-QAM with EVM < 3.5%)  PONs can be applied for optical transport (ITU-T req. for PONs: 15 dB) P. T. Dat et al., OFC (2015) DL LTE-A signal -2 0 2 4 6 Rx. Opt. Power (dBm) 0 2 4 6 8 10 12 EVM(%) 64-QAM, interband 1 64-QAM, interband 2 -2 0 2 4 6 Rx. Opt. Power (dBm) 0 2 4 6 8 10 12 64-QAM, interband 1 64-QAM, interband 2 Only DL With UL -15 -10 -5 0 5 Rx. Opt. Power (dBm) 2 4 6 8 10 12 64-QAM, no DL 64-QAM, with DL UL LTE-A signal >17 dB 9
  • 10.
    Seamless fiber-wireless formoving cells Millimeter-wave WDM Radio over Fiber Linearly located remote cells Metro/Access Network Control Station RAU #1 RAU #2 RAU #n Multiplexer Aisle Seat From outside P. T. Dat et al., IEEE Commun. Mag. (2015) 10
  • 11.
    Network control andmoving cells Switch Metro/Access Network Location position Switch control Uplink power λ1, λ2 λ3, λ4 Control Office WDM RoF Tx. WDM DEMUX λ n-1, λn Signal Processing Units Modulation Modulation Modulation 11
  • 12.
    Proof-of-concept: experimental setup DPMZM:Dual-parallel MZM OBEF: Optical band pass elimination filter OBPF: Optical band pass filter ATT: Attenuator P-S: Power Splitter ISO: Isolator PS: Phase shifter EDFA 1 km MZM2 EDFA LD2 20 km CS ATT (1) LD1 MZM1 DPMZMLD OBEF EDFA OBPF Opt. MMW Gen. 1LO_1 (3) (2) RAU_1 PD PA X PD LNA RoF Tx. LNA P-S ATT. PA ISO ISOPS SHD TAU Opt. MMW Gen. 2ATT ATT RoF Rx. ATT LO_2LO_3 VSA PC VSG (4) (5) (6) 1548 1552 1556 -80 -60 -40 -20 0 Wavelength (nm) 1547 1551 1555 -80 -60 -40 -20 0 Wavelength (nm) 1555 1556 1557 -80 -60 -40 -20 0 Wavelength (nm) 1548 1550 1552 -80 -60 -40 -20 0 Wavelength (nm) Power(dBm) 1548 1549 1550 1551 -80 -60 -40 -20 0 Wavelength (nm) 1548 1550 1552 -80 -60 -40 -20 Wavelength (nm) 1548 1550 1552 -80 -60 -40 -20 Wavelength (nm) (1) (2) (3) (3) (4) (5) (6) RF cable 10 MHz RAU_2 AP 20 GHz 40 GHz 41.9 GHz 23.125 GHz IF LO P. T. Dat et al., OFC (2016) 12
  • 13.
     Good performancefor both backhaul and over in-train networks  High-spectral efficiency, low fiber-dispersion, cost effective system -6 -4 -2 0 2 4 4 6 8 10 IF Tx. Power (dBm) EVM(%) -4 -2 0 2 4 6 4 6 8 10 IF Tx. Power (dBm) 32-QAM, CH1 64-QAM, CH1 32-QAM, CH2 64-QAM, CH2 32-QAM, CH1 64-QAM, CH1 32-QAM, CH2 64-QAM, CH2 P. T. Dat et al., OFC (2016) Proof-of-concept: experimental results 30-MHz OFDM signal 50-MHz OFDM signal 13
  • 14.
    Multiple radios overfiber 14 Signal-1 Subcarrier mapping IFFT-1 CP-1 Subband-1 filter Signal-K Subcarrier mapping IFFT-K CP-K Subband-K filter + Multi-RATs over seamless fiber-wireless system Data mapping using F-OFDM 4G or control signals DAC + E/O Optical LO BBU pool-1 BBU pool-N DSP-based mapping DAC MFHRAT-1 4G LTE O/E  CPRI for fronthauling: bit rate >> 100 Gb/s/cell.  RoF: high-speed components, massive systems Cooperation of optical and radio access networks
  • 15.
    Multiple radios overfiber: experimental setup 20 km MZM EDFA LD CS DPMZMLD EDFA OBPF Frequency Doubler VSG VSG LTE-A IF Com. AWG 12 GHz ATT RRH PD PDATT 25-GHz RAT LPF IF signal LO signal OBPF OBPF VSA 21 GHz User RAU PDATT Div. LTE-A X4 OBPF ATT PDOBPF 2.5 m 96-GHz MFH 95 GHz OSC RRH HPF MZM: Mach-Zehnder Modulator EDFA: Erbium-Doped Fiber Amplifier VSG: Vector Signal Generator Com.: RF combiner PD: photo-detector Did. RF Divider VSA: Vector Signal Analyser LNA: Low Noise Amplifier ATT: Attenuator (O)BPF: (Optical) Band Pass Filter PC 15 1555.6 1556 Wavelength (nm) -90 -70 -50 -30 -10 10 Power(dBm)
  • 16.
    Multiple radios overfiber: experimental results -8.5 -7.5 -6.5 -5.5 -4.5 Rx. Opt. Power (dBm) 10 12 14 16 18 20 EVM(%) Signal 1 Signal 2 Signal 3 Signal 4 6 8 10 12 14 16 Tx. LTE-A Power (dBm) 10 12 14 16 EVM(%) Signal 1 Signal 2 Signal 3 Signal 4 0.5 1 1.5 2 2.5 3 Frequency (GHz) -110 -90 -70 -50 -30 Power(dBm) OFDM LTE-A Sig. 1 Sig. 2 Sig. 4Sig. 3 OFDM NOMA (16 x 16) SCMA 3.96 4 4.04 Frequency (GHz) -90 -50 -10 Power(dBm) OFDM FBMC -10 -8 -6 -4 Rx. Opt. Power (dBm) 2 4 6 8 OFDM OFDM NOMA OFDM SCMA FBMC -18 -14 -10 -6 Rx. Opt. Power (dBm) 1 2 3 4 CC1 (20 MHz) CC2 (20 MHz) CC3 (20 MHz) EVM(%) F-OFDM Signal LTE-A Signal New RAT signal (OFDM/FBMC) 16
  • 17.
    Summary  Seamless convergenceof fiber-MMW would be a potential solution for future mobile fronthauling when fiber cable is not available.  Convergence of WDM IFoF and linearly located distributed antenna systems is very promising for high- speed communication to high-speed trains.  Co-design and cooperative fiber-radio access networks would be the key for future MMW and massive MIMO mobile signal, and multi-RAT transmission. 17
  • 18.
    Thank you ptdat@nict.go.jp This workwas conducted as a part of the “Research and development for expansion of radio wave resources,” supported by the Ministry of Internal Affairs and Communications (MIC), Japan.