SlideShare a Scribd company logo
Scattering Model for Vegetation Canopies and Simulation of
Satellite Navigation Channels
Ph.D. Defense
Frank M. Schubert
Navigation and Communications Section
Department of Electronic Systems
Aalborg University
September 14, 2012
1 / 46
Ph.D. Studies
Involved Institutions
Aalborg University
Navigation and Communications
Section
German Aerospace Center (DLR)
Institute for Communications and
Navigation
in Weßling-Oberpfaffenhofen,
Germany
European Space Agency
(ESA/ESTEC)
Networking/Partnering Initiative
(NPI): Establishing relations
between ESA and
universities/research institutes
through joint supervision of Ph.D.
students
in Noordwijk, The Netherlands
2 / 46
Introduction and Problem Statement
Multipath Propagation Deteriorates GNSS Positioning Performance
Satellite 1
Satellite 2
Satellite 3
Receiver
Wave propagation
GPS/GNSS receivers track radio
signals transmitted by satellites
3 / 46
Introduction and Problem Statement
Multipath Propagation Deteriorates GNSS Positioning Performance
Satellite 1 Receiver
Wave propagation
GPS/GNSS receivers track radio
signals transmitted by satellites
Best performance is achieved in
clear sky conditions
Objects like trees, forests scatter
transmitted signals
This multipath propagation
impairs positioning performance
Goals:
Analyze wave scattering by
trees
Evaluate signal tracking in
multipath-prone
environments by simulation
3 / 46
Scattering by Vegetation – Previous Work
Models Covering Vegetation Scattering in L-band (1-2 GHz)
Measurements/simulations of single trees
Caldeirinha (2001): outdoor and
indoor measurements
Fortuny & Sieber (1999): SAR imaging
in anechoic chamber
Models for terrestrial communications
de Jong & Herben (2004)
Models for land-mobile satellite
communications:
Goldhirsh & Vogel (1989)
Cheffena & Pérez-Fontán (2010)
Dedicated GNSS channel models
Steingaß & Lehner (2005, 2007):
Vehicles/pedestrians in
urban/suburban environments
Koh & Sarabandi (2002): Stationary
receiver in forest
©Caldeirinha
©de Jong & Herben
©Steingaß & Lehner
4 / 46
Scattering by Vegetation – Previous Work and Motivation
Summary
Previous works cover
Two-dimensional case (terrestrial
models)
Narrowband models, i.e. delay of
individual components is not
considered
Urban/suburban environments for
satellite navigation
Stationary environments
→ We seek a non-stationary model of
scattering by treetops
Rural environments
Moving receiver
Suitable for satellite navigation
applications
Wideband model
True propagation delays need to be
reported
©Caldeirinha
©de Jong & Herben
©Steingaß & Lehner
4 / 46
Thesis Contents Overview
GNSS signal
generator
GNSS
receiver
algorithm
Channel
Modeling
Signal
Processing
Chain
Ionospheric
scintil-
lations
Narrowband
Channel
Model
×
Scattering
volume
Tree, forest
Alley
Wideband
Channel
Model
Wideband
Measure-
ments
Alley mea-
surement
Small
forest mea-
surement
Single
tree mea-
surement
GNSS
satellite
Atmospheric
effects
Multipath propagation
GNSS
receiver
Electromagnetic wave propagation
5 / 46
Scattering Model for Vegetation Canopies and Simulation of
Satellite Navigation Channels
Contents
Simulation of Satellite Navigation Channels
Discriminator Function
Multipath Envelope
Satellite Navigation Channel Signal Simulator
SNACS Simulation Examples
Signal Model for Scattering Volumes
Single Scattering Volume
Channel System Functions
Time-Frequency Correlation Function
Several Scattering Volumes
6 / 46
Scattering Model for Vegetation Canopies and Simulation of
Satellite Navigation Channels
Contents
Simulation of Satellite Navigation Channels
Discriminator Function
Multipath Envelope
Satellite Navigation Channel Signal Simulator
SNACS Simulation Examples
Signal Model for Scattering Volumes
Single Scattering Volume
Channel System Functions
Time-Frequency Correlation Function
Several Scattering Volumes
7 / 46
Simulation Using Discriminator Function
GPS C/A Code Example
Satellites send spreading codes
Receiver correlates rx signal with locally generated code replica
Correlation function φss(τ) = 1
Tc
Tc
0
c(t)(t − tsp/2 − τ)dt
−1
0
1
C/A code, Prompt
Code
−1
0
1
Early
Code
0 2 4 6 8 10
−1
0
1
Late
Code
Time [µs]
−2 −1 0 1 2
−2
−1
0
1
2
3
C/A code ACF, chip spacing 1
Time Delay [chips]
Correlation
ε
early−late
multipath contribution 1 (τ = 0.4)
multipath contribution 2 (τ = 0.7)
resulting discriminator function
8 / 46
Effects of Multipath Propagation on GNSS Receivers
Two Components Model, cf. Hagerman (1973), Van Nee (1993), Braasch (1996)
Receiver reads
line of sight signal (LOS)
one additional multipath
component
GPS C/A error envelope
top: component in-phase
bottom: out-of-phase
1 chip early-late spacing
0.5 chip spacing
Δτ
61 62 63 64 65
Delay τ [ns]
0
0.5
1
Power
line of sight
MP component
0 500 1000 1500
Relative Delay Δτ [ns]
−50
0
50
RangingError[m]
Urban and rural areas: strong multipath propagation
Many echoes impinge within few nanoseconds after LOS: high error
→ Simulation needed for performance assessment
9 / 46
GNSS Simulation Methods
“Correlation Domain“
Channel assumed stationary during
integration time (correlation)
e.g. Navsim, Furthner et al. (2000),
”Realization of an End-to-End Software
Simulator for Navigation Systems“
“Samples domain”
Software defined receivers, e.g. Borre
et al. (2007), “A Software-Defined GPS
and Galileo Receiver – A Single-
Frequency Approach”
−2 −1 0 1 2
−2
−1
0
1
2
3
C/A code ACF, chip spacing 1
Time Delay [chips]
Correlation
ε
early−late
multipath contribution 1 (τ = 0.4)
multipath contribution 2 (τ = 0.7)
resulting discriminator function
−1
0
1
C/A code, Prompt
Code
−1
0
1
Early
Code
0 2 4 6 8 10
−1
0
1
Late
Code
Time [µs]
New GNSS signals: longer integration times, channel non-stationary
→ Samples domain simulation needed
10 / 46
The Satellite Navigation Channel Simulator (SNACS)
Overview, Inputs, Outputs
Signal
generation
Optional:
AWGN,
up-
conversion,
quantization,
low-pass
filter
GNSS signal
acquisition
and tracking
GNSS signal
parameters
Range
estimation
FIR filter
Interpolation
Channel
model/ mea-
surements
Parameters:
scenery, tra-
jectory, etc.
True range
Δ
11 / 46
Alley Drive Simulation Result
mean(Δ)= 28.4m
rms(Δ)= 32.2m
12 / 46
Alley Drive Simulation Result
12 / 46
Simulation Examples
DLR Urban Channel Model
Lehner & Steingaß (2005), “A
novel channel model for land
mobile satellite navigation“
Scenery definition
Trajectory definition
0 20 40 60 80 100 120
−10
0
10
20
30
40
50
60
70
80
x [m]
y[m]
Vehicle trajectory
start
vehicle position, one point per second
Channel response realization
13 / 46
Simulation Examples
DLR Urban Channel Model, Noise Free Simulations
Trajectory
0 20 40 60 80 100 120
−10
0
10
20
30
40
50
60
70
80
x [m]
y[m]
Vehicle trajectory
start
vehicle position, one point per second
Simulation parameters
GPS C/A CBOC AltBOC
Sampling frequency 40 MHz 60 MHz 80 MHz
Intermediate fre-
quency
10 MHz 15 MHz 20 MHz
Precorrelation band-
width
8 MHz 10 MHz 10 MHz
Correlation interval 1 ms 4 ms 1 ms
Early-late spacing 1 chips 0.4 chips 0.5 chips
C/A code CBOC(6,1,1/11) AltBOC(15,10)
14 / 46
Conclusions
Part I – Simulation of Satellite Navigation Channels
GNSS signal
simulator
implementation
SNACS written in C++, multi-threading
faster than Matlab-based implementations
Simulations of
scenarios
Measurements of drive through alley
DLR urban channel model, drive around
the block
Multipath propagation in rural
environments degrades positioning
performance
New GNSS signals Higher bandwidths: frequency-selective
channels
Longer integration times: non-stationary
channels
15 / 46
Scattering Model for Vegetation Canopies and Simulation of
Satellite Navigation Channels
Contents
Simulation of Satellite Navigation Channels
Discriminator Function
Multipath Envelope
Satellite Navigation Channel Signal Simulator
SNACS Simulation Examples
Signal Model for Scattering Volumes
Single Scattering Volume
Channel System Functions
Time-Frequency Correlation Function
Several Scattering Volumes
16 / 46
Thesis Contents Overview
GNSS signal
generator
GNSS
receiver
algorithm
Channel
Modeling
Signal
Processing
Chain
Ionospheric
scintil-
lations
Narrowband
Channel
Model
×
Scattering
volume
Tree, forest
Alley
Wideband
Channel
Model
Wideband
Measure-
ments
Alley mea-
surement
Small
forest mea-
surement
Single
tree mea-
surement
GNSS
satellite
Atmospheric
effects
Multipath propagation
GNSS
receiver
Electromagnetic wave propagation
17 / 46
Geometric Scenery
Scenery in 3D: Top view:
0
(t) = 0 + t
V
T
= d1(r)
T − r
Scattering volume V
Fixed transmitter in T
Receiver moves on straight-line trajectory (t) = 0 + t
18 / 46
Scattering Centers in Treetops
Made Visible by SAR Imaging
SAR imaging at 1-5.5 MHz of a fir tree in an anechoic chamber
Distinct scattering centers inside the treetop
Figures by Fortuny & Sieber (1999), “Three-dimensional synthetic
aperture radar imaging of a fir tree: first results”
19 / 46
Geometric Scenery
Scenery in 3D: Top view:
0
(t) = 0 + t
Vr
T
dd(t)
= T − (t)
= d1(r)
T − r
(t) − r = d2(t, r)
Scattering volume V: filled with point-source scatterers r to model scattering
centers
Fixed transmitter in T
Receiver moves on straight-line trajectory (t) = 0 + t
Distances
Transmitter–scatterer: d1(r)
Scatterer–receiver: d2(t, r)
Transmitter–receiver: dd(t)
20 / 46
Point-Source Scatterers
Modeled by Spatial, Marked Point Processes
0
(t) = 0 + t
Vr
T
dd(t)
d1(r)
d2(t, r)
Effective scatterers
not directly linked to tree constituents
absorb system effects, e.g. antenna pattern
Scatterers are modeled by spatial point process 
{(r, βr ) : r ∈ } ⊂ R3 × C: marked point process
Points r, marks βr
Intensity function ϱ(r) with ϱ : V → [0, ∞)
Conditional power Q(r) with Q : V → [0, ∞)
Marks have zero mean
E {βr } = 0
Marks are mutually uncorrelated
E β∗
r
βr r, r = Q(r)1 r = r
21 / 46
Transmitted and Received Signals
0
(t) = 0 + t
Vr
T
dd(t)
d1(r)
d2(t, r) ds(t, r) = d1(r) + d2(t, r)
τs(t, r) = ds(t, r)/c0
c0: speed of light
Transmitted signal in T can be written as
˜st(t) = Re {st(t) exp(j2πƒct)}
st(t): Baseband signal
Received signal in (t) is modeled as sum of delayed and attenuated
versions of st(t)
˜sr(t) = r∈
βr
d2(t, r)
mplitde
˜st(t − τs(t, r))
Spherical wave propagation is assumed along r–(t) path
Wave’s amplitude dependent on distance to scatterer and its weight βr
22 / 46
Channel System Functions
Time-Variant Response
Integral form of the input-output relationship for an LTV channel
sr(t) = st(t − τ)h(t, τ) dτ
Time-variant channel response h(t, τ) consists of direct and scattered parts
h(t, τ) = hd(t, τ) + hs(t, τ)
hd(t, τ) : first, no attenuation, magnitude normalized to 1
hs(t, τ) =
r∈
sctterers
βr
d2(t, r)
mpl.
exp −j
2π
λc
ds(t, r)
phse
δ(τ − τs(t, r))
dely
In the following: scattered part is considered
ds(t, r) = d1(r) + d2(t, r) Model: Measurement:
(t)
Vr
Tdd(t)
d1(r)
d2(t, r)
23 / 46
Time-Variant Response and Doppler-Delay Spread Function
Comparison of Measurements and Model, Single Tree
0 1 2 3 4
Time t [s]
0
100
200
300
400
Delayτ[ns]
−100 0 100
Doppler Frequency ν [Hz]
0
100
200
300
400
Delay[ns]
 t→ν
0 1 2 3 4
Time t [s]
0
100
200
300
400
Delayτ[ns]
−100 0 100
Doppler Frequency ν [Hz]
0
100
200
300
400
Delay[ns]
−40 −30 −20 −10 0
Power [dB]
24 / 46
Time-Variant Response
Comparison of Measurements and Model, Group of Trees
Vehicle’s front camera
Measured channel response
Channel model visualization
Modeled channel response
25 / 46
Channel System Functions
Time-Variant Transfer Function of the Scattered Part
|hs(t, τ)|2
:
3 4 5 6 7
Time t [s]
4300
4350
4400
4450
Delayτ[ns]
τd(t)
−30
−20
−10
0
Power[dB]
¢ τ → ƒ
3 4 5 6 7
Time t [s]
−50
0
50
Frequencyƒ[MHz]
−30
−20
−10
0
Power[dB]
Time-frequency transfer function of the scattered part:
Hs(t, ƒ) = Fτ {hs(t, τ)} = r∈
βr
d2(t,r)
exp −j2π(ƒc + ƒ)
ds(t,r)
c0
26 / 46
Channel System Functions
Time-Variant Response and Transfer Function of the Scattered Part
27 / 46
Channel System Functions
Time-Variant Transfer Function of the Scattered Part, Three Phases
|hs(t, τ)|2
:
3 4 5 6 7
Time t [s]
4300
4350
4400
4450
Delayτ[ns]
τd(t)
−30
−20
−10
0
Power[dB]
¢ τ → ƒ
3 4 5 6 7
Time t [s]
−50
0
50
Frequencyƒ[MHz]
−30
−20
−10
0
Power[dB]
Time-frequency transfer function of the scattered part:
Hs(t, ƒ) = Fτ {hs(t, τ)} = r∈
βr
d2(t,r)
exp −j2π(ƒc + ƒ)
ds(t,r)
c0
28 / 46
First- and Second-Order Characterization of the Scattered Part
Mean and Time-Frequency Correlation Function
Hs(t, ƒ) has zero mean:
E {Hs(t, ƒ)} = 0
Goal: time-frequency correlation
function
R(ƒ, ƒ , t, t ) =
E Hs
∗
(t, ƒ)Hs(t , ƒ )
Numerical estimation
ˆR(ƒ, ƒ , t, t ) =
1
K
K−1
k=0
H∗
s,k
(t, ƒ)Hs,k(t , ƒ )
Example of ˆR(ƒ, ƒ , t, t ) with
K = 1000
t = 2.5 s, ƒ = 0 MHz
Long computation
→ Derive closed-form solution of
R(ƒ, ƒ , t, t )
|Hs(t, ƒ)|2
:
3 4 5 6 7
Time t [s]
−50
0
50
Frequencyƒ[MHz]
−30
−20
−10
0
Power[dB]
ˆR(ƒ, ƒ , t, t ) :
2 3
Time t [s]
−50
0
50
Frequencyƒ[MHz]
0
0.001
0.002
29 / 46
Time-Frequency Correlation Function
Closed-Form Expression of R(ƒ, ƒ , t, t )
Hs(t, ƒ) = r∈
βr
d2(t,r)
exp −j2π(ƒc + ƒ)
ds(t,r)
c0
: spatial, marked point process
ϱ(r): its intensity function
Goal: time-frequency correlation function
R(ƒ, ƒ , t, t ) = E Hs
∗
(t, ƒ)Hs(t , ƒ )
R(·) = E r∈ Q(r)g1(r, t, t , ƒ, ƒ , ƒc, c0)
Campbell’s Theorem
E r∈ ƒ(r) = R3 ƒ(r)ϱ(r) dr
Integral form
R(·) = V
Q(r)ϱ(r)g1(r, ·) dr
We define the probability density function (pdf)
γ(r) −1Q(r)ϱ(r),  = Q(r)ϱ(r) dr < ∞
R(·) = Eγ {g1(r, ·)}
→ Introduce approximations to be able to proceed
Hs(t, ƒ)
↓
E {βr } = 0,
E β∗
r
βr r, r =
Q(r)1 r = r
↓
Campbell’s Theorem
↓
R(·)
30 / 46
Time-Frequency Correlation Function
Closed-Form Expression, Approximations
R(·) = E Hs(t, ƒ)Hs
∗
(t , ƒ ) =
Eγ g1(r, t, t , ƒ, ƒ , ƒc, c0)
γ(r) −1Q(r)ϱ(r),  = Q(r)ϱ(r) dr
1. Decouple two factors in g1(r, ·)
Distance-dependent term is varying
slowly
Phase term is varying rapidly
→ R(·) ≈ Eγ {g2(r, ·)} Eγ {g3(r, ·)}
2. Assume plane wave propagation on
d1(r), d2(t, r)
→ R(·) ≈ g4(t, t , ƒ, ƒ , ƒc, c0)
0
(t)
Vr
T
d1(r)
d2(t, r)
Approx. closed-form of R(·):
2 3
Time t [s]
−50
0
50
Frequencyƒ[MHz]
0
0.001
0.002
31 / 46
Time-Frequency Correlation Function
Comparison of Approximate Closed-From Expression and Monte Carlo Simulation
Approximate closed-form expression
2 3
Time t [s]
−50
0
50
Frequencyƒ[MHz]
0
0.001
0.002
4.9 5 5.1
Time t [s]
−50
0
50
Frequencyƒ[MHz]
0
0.03
0.06
0.09
0.12
Monte Carlo Simulation (K = 1000)
2 3
Time t [s]
−50
0
50
Frequencyƒ[MHz]
0
0.001
0.002
Rx far away: t = 2.5 s, ƒ = 0 MHz
4.9 5 5.1
Time t [s]
−50
0
50
Frequencyƒ[MHz]
0
0.03
0.06
0.09
0.12
Rx close: t = 5 s, ƒ = 0 MHz
32 / 46
Time-Frequency Correlation Function vs. Transfer Function
Correlation Function R Reveals Characteristics of Hs(t, ƒ)
Hs(t, ƒ):
1 2 3 4 5 6 7 8
Time t [s]
−50
0
50
Frequencyƒ[MHz]
−30
−20
−10
0
Power[dB]
➀ ➁ ➂
R(ƒ, ƒ = 0, t, t = const):
Πt = 2.5 s
2 2.5 3
Time t [s]
0
0.001
0.002
−50
0
50
Frequencyƒ[MHz]
 t = 5 s
4.9 5 5.1
Time t [s]
0
0.03
0.06
0.09
0.12
−50
0
50
Ž t = 7.5 s
7 7.5 8
Time t [s]
0
0.001
0.002
−50
0
50
33 / 46
Time-Frequency Correlation Function vs. Transfer Function
Correlation Function R Reveals Characteristics of Hs(t, ƒ)
Hs(t, ƒ):
4.9 5 5.1
Time t [s]
−50
0
50
Frequencyƒ[MHz]
−30
−20
−10
0
Power[dB]
➁
R(ƒ, ƒ = 0, t, t = const):
Πt = 2.5 s
2 2.5 3
Time t [s]
0
0.001
0.002
−50
0
50
Frequencyƒ[MHz]
 t = 5 s
4.9 5 5.1
Time t [s]
0
0.03
0.06
0.09
0.12
−50
0
50
Ž t = 7.5 s
7 7.5 8
Time t [s]
0
0.001
0.002
−50
0
50
33 / 46
Time-Frequency Correlation Function
Approximate Closed-From Expr. R(ƒ, ƒ , t, t ) Is Stationary With Respect to ƒ for t = t
R(ƒ, ƒ , t, t ) shows: the process Hs(t, ƒ) is non-stationary
For t = t : Hs(t, ƒ) becomes stationary
→ R(ƒ, ƒ , t, t) = R(Δƒ, t), Δƒ = ƒ − ƒ
R(ƒ, ƒ , t, t ) , t = 2.5 s, ƒ = 0 Hz:
2 3
Time t [s]
−100
−50
0
50
100
Frequencyƒ[MHz]
0
0.001
0.002
R(ƒ, ƒ , t, t ) t=t =2.5 s
→ R(Δƒ, t = 2.5 s)
→ How well do the approximations
work?
R(Δƒ, t) :
4 5 6
Time t = t′
[s]
−100
−50
0
50
100
Frequencyă[MHz]
0
0.03
0.06
0.09
0.12
Stationarity with respect to ƒ:
symmetry along ƒ = 0 MHz
34 / 46
Time-Frequency Correlation Function
Approximate Closed-From Expr. R(ƒ, ƒ , t, t ) Is Stationary With Respect to ƒ for t = t
far: t = 2.5 s, ƒ = 0 MHz
2 3
Time t [s]
−100
−50
0
50
100
Frequencyƒ[MHz]
0
0.001
0.002
close: t = 5 s, ƒ = 0 MHz
4.9 5 5.1
Time t [s]
−100
−50
0
50
100
Frequencyƒ[MHz]
0
0.03
0.06
0.09
0.12
Stationary for t = t = 2.5 s, ƒ = 0 MHz:
0
0.001
0.002
−100 0 100
Frequency ƒ [MHz]
≈ R(·)
MC
t = t = 5 s, ƒ = 0 MHz:
0
0.03
0.06
0.09
0.12
−100 0 100
Frequency ƒ [MHz]
≈ R(·)
MC
Comparison with Monte Carlo Sim. (K = 100000)
35 / 46
Future Application of Time-Frequency Correlation Function I
Power Delay Profiles, S(τ, t) = FΔƒ→τ {R(Δƒ, t)}
−100 −80 −60 −40 −20 0 20 40 60 80 100
−70
−60
−50
−40
−30
−20
−10
PDP of scattered part, RC_LOW_C, tree01
Delay [ns]
Power[dB]
−100 −80 −60 −40 −20 0 20 40 60 80 100
−40
−35
−30
−25
−20
−15
−10
−5
0
5
PDP of scattered part, scaled to distance, RC_LOW_C, tree01
Delay [ns]
Power[dB]
36 / 46
Future Application of Time-Frequency Correlation Function II
Bayesian Receiver Algorithms
Receivers are unlikely to
generate virtual scenarios
Correlation function of
scattered part provides
average channel
characteristics
Krach et al. (2010), “An Efficient Two-Fold
Marginalized Bayesian Filter for Multipath
Estimation in Satellite Navigation
Receivers”
37 / 46
Several Scattering Volumes
So far: only single scattering volume considered
Now: several scattering volumes
→ Extend model to cover attenuation of direct component
hd(t, τ) = 10−d,dB(t)/10
attenuation
exp −j
2π
λ
dd(t)
phase
δ(τ − τd(t))
delay
τd(t) = dd(t)/c0
d,dB(t) = ηdp(T, V, t)
η is specific attenuation in dB/m
Goal: geometric-stochastic
channel model
Definition of scenery needed
deterministic
stochastic
0
(t)
V
r
T
d1(r)
d2(t, r)
dd(t)
dp(T,V, t)
38 / 46
Several Scattering Volumes
Deterministic Definition of Scenery
©Google
Define locations of trees with a GIS
tool (e.g. Google Earth)
Convert long., lat., alt. coordinates to
Cartesian
Transform coordinates: vehicle starts
in origin and moves in z = 0 plane
Define trajectory by points and
interpolate it with cubic splines
39 / 46
Several Scattering Volumes
Deterministic Definition of Scenery, Comparison of Measurement and Model
©Google
Measurement
Model
40 / 46
Several Scattering Volumes
Stochastic Generation of Scenery
1. Define trajectory
2. Draw forward df and sideward ds
displacements for each street side
constant
uniform, exponential, or Gaussian
distributions
3. Draw tree shape and dimensions
(t)

O
y
dfr,0
dsr,0
bt,0
dfr,1
dsr,1
bt,1
dfr,2
dsr,2
bt,2
dfl,0
dsl,0
bt,3
dfl,1
dsl,1
bt,4
dfl,2
dsl,2
bt,5
Example
Winding trajectory
Four different segments
41 / 46
Several Scattering Volumes
Stochastic Generation of Scenery
1. Define trajectory
2. Draw forward df and sideward ds
displacements for each street side
constant
uniform, exponential, or Gaussian
distributions
3. Draw tree shape and dimensions
Example
Winding trajectory
Four different segments
41 / 46
Channel Model C++ Implementation
Input Files, Output Files, Processing, External Tools
Receiver parameters
Vehicle speed
Trajectory
Antenna pattern
Scenery definitions
Stochastic
Scenery Generator
Scenery parameters
Trees, forests
Geometry
Avg. # of scat.
(t)

O
y
dfr,0
dsr,0
bt,0
dfr,1
dsr,1
bt,1
dfr,2
dsr,2
bt,2
dfl,0
dsl,0
bt,3
dfl,1
dsl,1
bt,4
dfl,2
dsl,2
bt,5
Channel Model Engine
Transmitter parame-
ters
Position
Frequency
calculates time-variant response
h(t, τ) = hd(t, τ) + hs(t, τ)
for all simulation times
Channel Response
Process with SNACS,
MATLAB, Python
Scene description files
POV-Ray: Images
FFmpeg: Videos
42 / 46
SNACS Simulation of Channel Model Result
Combination of Part I & II
C/A code, 1 chip
spacing, 45 dBHz
Scenery stochastically
generated
Comparison with an
actual scenario
requires model
calibration
Scattered energy
Treetops’ specific
attenuations
43 / 46
Conclusions
Part II – Model of Scattering Volumes
Observations Conclusions
Comparison of derived
channel system functions
and measurements: good
fit
Model based on point-source scatterers is realistic
Derivation of
time-frequency
correlation function of the
scattered part
Derivation of closed-form expression is possible
Tools of the theory of point processes permit
rigorous derivations
Identification of stationarity regions
Comparisons with Monte
Carlo simulations: good fit
Indication: assumptions can be justified
Geometric channel
models require scenery
definition
Stochastic generation of scenery: convenient
generation of many trees
44 / 46
Outlook
Improve model
downsides
Multiple scattering, non-isotropic scattering
Scatterers are static
Diffraction effects, building–tree interactions
Model calibration Determine scattering coefficients from
measurements
Directional dependencies
Make use of
R(ƒ, ƒ , t, t )
Measurement processing, power delay profiles
Bayesian receiver algorithms
Cheffena & Ekman (2008), “Modeling the
Dynamic Effects of Vegetation on Radiowave
Propagation”
45 / 46
Outlook
Improve model
downsides
Multiple scattering, non-isotropic scattering
Scatterers are static
Diffraction effects, building–tree interactions
Model calibration Determine scattering coefficients from
measurements
Directional dependencies
Make use of
R(ƒ, ƒ , t, t )
Measurement processing, power delay profiles
Bayesian receiver algorithms
Enhance GNSS
simulation
SNACS is open-source software
Research, Academics
Compare SNACS simulations of
Channel measurements
Developed Model
→ Requires model calibration
Ranging to multiple satellites, position domain
45 / 46
Scattering Model for Vegetation Canopies and Simulation of
Satellite Navigation Channels
Thank you very much for your attention!
3 4 5 6 7
Time t [s]
4300
4350
4400
4450
Delayτ[ns]
τd(t)
−30
−20
−10
0
Power[dB]
46 / 46
Scattering Model for Vegetation Canopies and Simulation of
Satellite Navigation Channels
Additional Slides
Wave Equations
Derivation of Second Moment
SNACS Implementation
SNACS Signal Generation
C/N0 Estimation Method
DLR Measurement Campaign
SINC Interpolation
Acronyms
47 / 46
Wave Propagation
0
(t) = 0 + t
Vr
T
dd(t)
d1(r)
d2(t, r)
Wave propagation is described by Maxwell’s equations, possible
solutions are
Spherical wave, assumed along d2(t, r):
˜sr(, t) = Re
β
r − 
exp −j
2π
λc
r − 
sr(t)
exp(j2πƒct)
Plane wave, assumed along d1(r) and dd(t):
˜sr(, t) = Re{β exp(−jk)
sr(t)
exp(j2πƒct)}
ƒc: carrier frequency, λc: wave length, wave vector: k = 2π
λc
ek
received signal: ˜sr(, t) is bandpass version of low-pass sr(t)
48 / 46
First- and Second-Order Characterization of the Channel
Mean and Time-Frequency Correlation Function
Hs(t, ƒ) = r∈
βr
d2(t,r)
exp −j2π(ƒc + ƒ)
ds(t,r)
c0
Hs(t, ƒ) has zero mean
E {Hs(t, ƒ)} = 0
Time-frequency correlation function, autocorrelation function (acf)
R(ƒ, ƒ , t, t ) = E Hs(t, ƒ)Hs
∗
(t , ƒ )
R(·) = E r∈
Q(r)
d2(t,r)d2(t ,r)
exp
j2π
c0
(ƒc + ƒ)ds(t, r) − (ƒc + ƒ )ds(t , r)
Campbell’s Theorem
E r∈ ƒ(r) = R3 ƒ(r)ϱ(r) dr
R(·) = V
Q(r)ϱ(r)
d2(t,r)d2(t ,r)
exp
j2π
c0
(ƒc + ƒ)ds(t, r) − (ƒc + ƒ )ds(t , r) dr
We define the pdf
γ(r) −1Q(r)ϱ(r),  = Q(r)ϱ(r) dr < ∞
R(·) = Eγ
1
d2(t,r)d2(t ,r)
exp
j2π
c0
d1(r), d2(t, r), d2(t , r) · ¯ƒ
¯ƒ ƒ − ƒ , ƒ + ƒc, −(ƒ + ƒc)
T
49 / 46
Time-Frequency Correlation Function
Approximation, Closed-Form Solution
R(·) = E Hs(t, ƒ)Hs
∗(t , ƒ ) = Eγ
1
d2(t,r)d2(t ,r)
exp
j2π
c0
d1(r), d2(t, r), d2(t , r) · ¯ƒ
γ(r) −1Q(r)ϱ(r),  = Q(r)ϱ(r) dr, ¯ƒ ƒ − ƒ , ƒ + ƒc, −(ƒ + ƒc)
T
R(·) ≈  Eγ
1
d2(t, r)d2(t , r)
E1
Eγ exp
j2π
c0
d1(r), d2(t, r), d2(t , r) · ¯ƒ
E2
R(·) ≈ 
1
d,μ(t)d,μ(t )
1 +
e((t), μγ)Tγe((t ), μγ)
d,μ(t)d,μ(t )
≈E1
exp
j2π
c0
dT,μ, d,μ(t), d,μ(t ) · ¯ƒ  ()
≈E2
Center of gravity: μγ = Eγ {r} = R3 rγ(r) dr
Covariance matrix: γ = Eγ ˜r ˜rT
 (t, t , ƒ, ƒ ) = c−1
0 [e(T, μγ)(ƒ − ƒ ) +
e((t), μγ)(ƒ + ƒc) − e((t ), μγ)(ƒ + ƒc)]
() Eγ {exp(j2π ˜r · )} = R3 exp(j2π ˜r · )γ(˜r) d˜r
0
(t)
Vr
T
d1(r)
d2(t, r)
μγ
d,μ(t)
˜r
dT,μ
e(T, μγ)
e((t), μγ)
50 / 46
Time-Frequency Correlation Function
Closed-Form Expression, Approximation
R(·) = E Hs(t, ƒ)Hs
∗
(t , ƒ ) =
Eγ g1(t, t , ƒ, ƒ , r, ƒc, c0)
γ(r) −1Q(r)ϱ(r),
 = Q(r)ϱ(r) dr
R(·) ≈ g2(t, t , ƒ, ƒ , ƒc, c0)
Center of gravity:
μγ = Eγ {r} = R3 rγ(r) dr
Plane wave approximations
d1(r) ≈ dT,μ + e(T, μγ) · ˜r
d2(t, r) ≈ d,μ(t) + e((t), μγ) · ˜r
R(·) ≈ g3(t, t , ƒ, ƒ , ƒc, c0)
0
(t)
Vr
T
d1(r)
d2(t, r)
μγ
d,μ(t)
˜r
dT,μ
e(T, μγ)
e((t), μγ)
Approx. closed-form expr. of R(·):
2 3
Time t [s]
−50
0
50
Frequencyƒ[MHz]
0
0.001
0.002
51 / 46
SNACS Implementation
Software Structure
Modular object-oriented approach, written in C++
Parallel processing, pipeline approach
Every processing module runs as its own thread
Convolution and correlation expand to multiple threads
Modules are connected with circular buffers for asynchronous access
52 / 46
SNACS Implementation
GNSS Signal Generation
53 / 46
A New C/N0 Estimation Method
Comparison of Standard Method and New Approach
Standard method by van Dierendonck
(?)
Proposed method
SNRW,k =
M
=1
(2

+ Q2

)
k
SNRN,k =
M
=1

2
k
+
M
=1
Q
2
k
SNRW,k =
M
=1
| + jQ| − π
2
2
k
SNRN,k =
M
=1
| + jQ| − π
2
2
k
Common calculation of C/N0:
M = 10, K = 50
μP = 1
K
K
k=1
SNRW,k
SNRN,k
C/N0 = 10 log10
1
Tc
μP−1
M−μP
54 / 46
A New C/N0 Estimation Method
Simulation Results
Channel response C/N0 simulation result
10 15 20 25 30 35
15
20
25
30
35
40
C/N0 Estimation Results
C/N0[dB-Hz]
standard method
new method
10 15 20 25 30 35
-10
-5
0
5
10
Reference Trajectory, Speed
Time [s]
ReferenceSpeed[m/s]
GPS C/A code
0.1 chip spacing
AWGN: 35 dbHz
New C/N0 estimation method is
less susceptible to Doppler
55 / 46
DLR Land Mobile Satellite Channel Model
Measurement campaign
Multipath reception cause errors
in GNSS receivers
Perform channel sounding
measurements
DLR conducted measurements in
2002 for urban, sub-urban, rural,
and pedestrian scenarios
frequency: 1460 − 1560 MHz
(L-band)
bandwidth: 100 Mhz
power: 10 W (EIRP)
56 / 46
Time-Variant Channel Impulse Responses (CIR)
Using channel model data: CIR → FIR coefficients interpolation
−1 0 1 2 3 4 5 6
x 10
−8
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
delay τ [s]
magnitude
CIR impulses
sinc for CIR impulse 1
sinc for CIR impulse 2
sum of sinc functions
FIR coefficients
Time-continuous CIR impulses
must be interpolated to
time-discrete FIR coefficients
Low-pass interpolation:
FR(t) =
m
k=0
αk ·
sin[ωmax(t − τk )]
ωmax(t − τk )
ωmax = 2π
ƒsmpl
2
Example: ƒsmpl = 100 MHz
57 / 46
Acronyms
acf autocorrelation function
GSCM geometric-stochastic channel model
SNACS Satellite Navigation Channel Signal Simulator
pdf probability density function
58 / 46

More Related Content

What's hot

Radio propagation
Radio propagationRadio propagation
Radio propagation
Nguyen Minh Thu
 
Synthetic aperture radar
Synthetic aperture radar Synthetic aperture radar
Synthetic aperture radar
Cigi Cletus
 
IR UWB TOA Estimation Techniques and Comparison
IR UWB TOA Estimation Techniques and ComparisonIR UWB TOA Estimation Techniques and Comparison
IR UWB TOA Estimation Techniques and Comparison
inventionjournals
 
Strategies to Combat Pilot Contamination in Massive MIMO Systems
Strategies to Combat Pilot Contamination in Massive MIMO SystemsStrategies to Combat Pilot Contamination in Massive MIMO Systems
Strategies to Combat Pilot Contamination in Massive MIMO Systems
CPqD
 
Signal propagation. path loss models
Signal propagation. path loss modelsSignal propagation. path loss models
Signal propagation. path loss models
Nguyen Minh Thu
 
Introduction to sar-marjolaine_rouault
Introduction to sar-marjolaine_rouaultIntroduction to sar-marjolaine_rouault
Introduction to sar-marjolaine_rouault
Naivedya Mishra
 
Synthetic aperture radar
Synthetic aperture radarSynthetic aperture radar
Synthetic aperture radar
Mahesh pawar
 
MIMO System Performance Evaluation for High Data Rate Wireless Networks usin...
MIMO System Performance Evaluation for High Data Rate  Wireless Networks usin...MIMO System Performance Evaluation for High Data Rate  Wireless Networks usin...
MIMO System Performance Evaluation for High Data Rate Wireless Networks usin...
IJMER
 
Synthetic aperture radar_advanced
Synthetic aperture radar_advancedSynthetic aperture radar_advanced
Synthetic aperture radar_advanced
Naivedya Mishra
 
MIRAS: The SMOS Instrument
MIRAS: The SMOS InstrumentMIRAS: The SMOS Instrument
MIRAS: The SMOS Instrument
adrianocamps
 
MIRAS: the instrument aboard SMOS
MIRAS: the instrument aboard SMOSMIRAS: the instrument aboard SMOS
MIRAS: the instrument aboard SMOS
adrianocamps
 
An Overview of Array Signal Processing and Beam Forming TechniquesAn Overview...
An Overview of Array Signal Processing and Beam Forming TechniquesAn Overview...An Overview of Array Signal Processing and Beam Forming TechniquesAn Overview...
An Overview of Array Signal Processing and Beam Forming TechniquesAn Overview...
Editor IJCATR
 
Radio propagation models in wireless
Radio propagation models in wirelessRadio propagation models in wireless
Radio propagation models in wireless
IJCNCJournal
 
DPCA_SAR Imaging Based on CS.ppt
DPCA_SAR Imaging Based on CS.pptDPCA_SAR Imaging Based on CS.ppt
DPCA_SAR Imaging Based on CS.ppt
grssieee
 
Seismic geometric corrections
Seismic geometric correctionsSeismic geometric corrections
Seismic geometric corrections
Ali Ahmad Saddat
 
Sparse channel estimation for underwater acoustic communication using compres...
Sparse channel estimation for underwater acoustic communication using compres...Sparse channel estimation for underwater acoustic communication using compres...
Sparse channel estimation for underwater acoustic communication using compres...
IAEME Publication
 
Radar 2009 a 5 propagation effects
Radar 2009 a 5 propagation effectsRadar 2009 a 5 propagation effects
Radar 2009 a 5 propagation effects
Forward2025
 
FIRST BISTATIC SPACEBORNE SAR EXPERIMENTS WITH TANDEM-X.ppt
FIRST BISTATIC SPACEBORNE SAR EXPERIMENTS WITH TANDEM-X.pptFIRST BISTATIC SPACEBORNE SAR EXPERIMENTS WITH TANDEM-X.ppt
FIRST BISTATIC SPACEBORNE SAR EXPERIMENTS WITH TANDEM-X.ppt
grssieee
 
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERSMO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
grssieee
 
Large scale path loss 1
Large scale path loss 1Large scale path loss 1
Large scale path loss 1
Vrince Vimal
 

What's hot (20)

Radio propagation
Radio propagationRadio propagation
Radio propagation
 
Synthetic aperture radar
Synthetic aperture radar Synthetic aperture radar
Synthetic aperture radar
 
IR UWB TOA Estimation Techniques and Comparison
IR UWB TOA Estimation Techniques and ComparisonIR UWB TOA Estimation Techniques and Comparison
IR UWB TOA Estimation Techniques and Comparison
 
Strategies to Combat Pilot Contamination in Massive MIMO Systems
Strategies to Combat Pilot Contamination in Massive MIMO SystemsStrategies to Combat Pilot Contamination in Massive MIMO Systems
Strategies to Combat Pilot Contamination in Massive MIMO Systems
 
Signal propagation. path loss models
Signal propagation. path loss modelsSignal propagation. path loss models
Signal propagation. path loss models
 
Introduction to sar-marjolaine_rouault
Introduction to sar-marjolaine_rouaultIntroduction to sar-marjolaine_rouault
Introduction to sar-marjolaine_rouault
 
Synthetic aperture radar
Synthetic aperture radarSynthetic aperture radar
Synthetic aperture radar
 
MIMO System Performance Evaluation for High Data Rate Wireless Networks usin...
MIMO System Performance Evaluation for High Data Rate  Wireless Networks usin...MIMO System Performance Evaluation for High Data Rate  Wireless Networks usin...
MIMO System Performance Evaluation for High Data Rate Wireless Networks usin...
 
Synthetic aperture radar_advanced
Synthetic aperture radar_advancedSynthetic aperture radar_advanced
Synthetic aperture radar_advanced
 
MIRAS: The SMOS Instrument
MIRAS: The SMOS InstrumentMIRAS: The SMOS Instrument
MIRAS: The SMOS Instrument
 
MIRAS: the instrument aboard SMOS
MIRAS: the instrument aboard SMOSMIRAS: the instrument aboard SMOS
MIRAS: the instrument aboard SMOS
 
An Overview of Array Signal Processing and Beam Forming TechniquesAn Overview...
An Overview of Array Signal Processing and Beam Forming TechniquesAn Overview...An Overview of Array Signal Processing and Beam Forming TechniquesAn Overview...
An Overview of Array Signal Processing and Beam Forming TechniquesAn Overview...
 
Radio propagation models in wireless
Radio propagation models in wirelessRadio propagation models in wireless
Radio propagation models in wireless
 
DPCA_SAR Imaging Based on CS.ppt
DPCA_SAR Imaging Based on CS.pptDPCA_SAR Imaging Based on CS.ppt
DPCA_SAR Imaging Based on CS.ppt
 
Seismic geometric corrections
Seismic geometric correctionsSeismic geometric corrections
Seismic geometric corrections
 
Sparse channel estimation for underwater acoustic communication using compres...
Sparse channel estimation for underwater acoustic communication using compres...Sparse channel estimation for underwater acoustic communication using compres...
Sparse channel estimation for underwater acoustic communication using compres...
 
Radar 2009 a 5 propagation effects
Radar 2009 a 5 propagation effectsRadar 2009 a 5 propagation effects
Radar 2009 a 5 propagation effects
 
FIRST BISTATIC SPACEBORNE SAR EXPERIMENTS WITH TANDEM-X.ppt
FIRST BISTATIC SPACEBORNE SAR EXPERIMENTS WITH TANDEM-X.pptFIRST BISTATIC SPACEBORNE SAR EXPERIMENTS WITH TANDEM-X.ppt
FIRST BISTATIC SPACEBORNE SAR EXPERIMENTS WITH TANDEM-X.ppt
 
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERSMO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS
 
Large scale path loss 1
Large scale path loss 1Large scale path loss 1
Large scale path loss 1
 

Viewers also liked

第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
Computational Materials Science Initiative
 
GPS Signals (1)
GPS Signals (1)GPS Signals (1)
Gps-signal
Gps-signalGps-signal
Gps-signal
Kutubuddin ANSARI
 
RT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RT
RT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RTRT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RT
RT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RT
OPAL-RT TECHNOLOGIES
 
Mural catedral metropolitana
Mural catedral metropolitanaMural catedral metropolitana
Mural catedral metropolitana
Joaquin Gonzalez Miranda
 
Electronics and telecommunications
Electronics and telecommunicationsElectronics and telecommunications
Electronics and telecommunications
CMR WORLD TECH
 
Masterplan Portal Sekolah Tinggi Teknologi Jakarta (STTJ)
Masterplan Portal Sekolah Tinggi Teknologi Jakarta (STTJ)Masterplan Portal Sekolah Tinggi Teknologi Jakarta (STTJ)
Masterplan Portal Sekolah Tinggi Teknologi Jakarta (STTJ)
Wildan Maulana
 
Pavana Gijon
Pavana GijonPavana Gijon
Pavana Gijon
pavanagijon
 
Presentación observatorio de políticas culturales santiago de chile - mayo ...
Presentación observatorio de políticas culturales   santiago de chile - mayo ...Presentación observatorio de políticas culturales   santiago de chile - mayo ...
Presentación observatorio de políticas culturales santiago de chile - mayo ...
Enrique Avogadro
 
Irakasle baten motibazioak
Irakasle baten motibazioakIrakasle baten motibazioak
Irakasle baten motibazioak
Josu Bilbao Villasante
 
The quest for a more sustainable urban mobility in Brazil
The quest for a more sustainable urban mobility in BrazilThe quest for a more sustainable urban mobility in Brazil
The quest for a more sustainable urban mobility in Brazil
WRI Ross Center for Sustainable Cities
 
Victimsoflaw net attynews
Victimsoflaw net attynewsVictimsoflaw net attynews
Victimsoflaw net attynews
Danielle R. Walsh
 
Presentacion
PresentacionPresentacion
Presentacion
Maryela Morales
 
Los chakras leadbeater-charles
Los chakras   leadbeater-charlesLos chakras   leadbeater-charles
Los chakras leadbeater-charles
tichap
 
EnviGuard_Oceanology International 2016
EnviGuard_Oceanology International 2016EnviGuard_Oceanology International 2016
EnviGuard_Oceanology International 2016
Ángela Magno Malagón
 
Ali CV update
Ali  CV updateAli  CV update
Ali CV update
Gleza Ali
 
Aeic segovia
Aeic segoviaAeic segovia
Aeic segovia
Hipólito Vivar
 
Facebook redes sociales
Facebook redes socialesFacebook redes sociales
Facebook redes sociales
Hector Maida
 
19 de noviembre
19 de noviembre19 de noviembre

Viewers also liked (20)

第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
 
GPS Signals (1)
GPS Signals (1)GPS Signals (1)
GPS Signals (1)
 
Gps-signal
Gps-signalGps-signal
Gps-signal
 
RT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RT
RT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RTRT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RT
RT15 Berkeley | Real-time simulation as a prime tool for Cybersecurity - OPAL-RT
 
Mural catedral metropolitana
Mural catedral metropolitanaMural catedral metropolitana
Mural catedral metropolitana
 
Electronics and telecommunications
Electronics and telecommunicationsElectronics and telecommunications
Electronics and telecommunications
 
Masterplan Portal Sekolah Tinggi Teknologi Jakarta (STTJ)
Masterplan Portal Sekolah Tinggi Teknologi Jakarta (STTJ)Masterplan Portal Sekolah Tinggi Teknologi Jakarta (STTJ)
Masterplan Portal Sekolah Tinggi Teknologi Jakarta (STTJ)
 
Pavana Gijon
Pavana GijonPavana Gijon
Pavana Gijon
 
Presentación observatorio de políticas culturales santiago de chile - mayo ...
Presentación observatorio de políticas culturales   santiago de chile - mayo ...Presentación observatorio de políticas culturales   santiago de chile - mayo ...
Presentación observatorio de políticas culturales santiago de chile - mayo ...
 
Irakasle baten motibazioak
Irakasle baten motibazioakIrakasle baten motibazioak
Irakasle baten motibazioak
 
The quest for a more sustainable urban mobility in Brazil
The quest for a more sustainable urban mobility in BrazilThe quest for a more sustainable urban mobility in Brazil
The quest for a more sustainable urban mobility in Brazil
 
Victimsoflaw net attynews
Victimsoflaw net attynewsVictimsoflaw net attynews
Victimsoflaw net attynews
 
Presentacion
PresentacionPresentacion
Presentacion
 
Reunio p5
Reunio p5Reunio p5
Reunio p5
 
Los chakras leadbeater-charles
Los chakras   leadbeater-charlesLos chakras   leadbeater-charles
Los chakras leadbeater-charles
 
EnviGuard_Oceanology International 2016
EnviGuard_Oceanology International 2016EnviGuard_Oceanology International 2016
EnviGuard_Oceanology International 2016
 
Ali CV update
Ali  CV updateAli  CV update
Ali CV update
 
Aeic segovia
Aeic segoviaAeic segovia
Aeic segovia
 
Facebook redes sociales
Facebook redes socialesFacebook redes sociales
Facebook redes sociales
 
19 de noviembre
19 de noviembre19 de noviembre
19 de noviembre
 

Similar to Scattering Model for Vegetation Canopies and Simulation of Satellite Navigation Channels

Pilot based channel estimation improvement in orthogonal frequency-division m...
Pilot based channel estimation improvement in orthogonal frequency-division m...Pilot based channel estimation improvement in orthogonal frequency-division m...
Pilot based channel estimation improvement in orthogonal frequency-division m...
IJECEIAES
 
J0412261066
J0412261066J0412261066
J0412261066
IOSR-JEN
 
Mimo radar detection in compound gaussian clutter using orthogonal discrete f...
Mimo radar detection in compound gaussian clutter using orthogonal discrete f...Mimo radar detection in compound gaussian clutter using orthogonal discrete f...
Mimo radar detection in compound gaussian clutter using orthogonal discrete f...
ijma
 
wireless communications
wireless communications wireless communications
wireless communications
faisalsaad18
 
Final ppt
Final pptFinal ppt
Final ppt
Barnali Dey
 
CHAP5.ppt
CHAP5.pptCHAP5.ppt
CHAP5.ppt
Miladrazi1
 
2_prats_IGARSS2011_distributed_imaging_v4.ppt
2_prats_IGARSS2011_distributed_imaging_v4.ppt2_prats_IGARSS2011_distributed_imaging_v4.ppt
2_prats_IGARSS2011_distributed_imaging_v4.ppt
grssieee
 
teh presentation
teh presentationteh presentation
teh presentation
Vasilis Papamichael
 
Mobile Radio Propagations
Mobile Radio PropagationsMobile Radio Propagations
Mobile Radio Propagations
METHODIST COLLEGE OF ENGG & TECH
 
Ofdm
OfdmOfdm
Ofdm
anupmath
 
Sparsity based Joint Direction-of-Arrival and Offset Frequency Estimator
Sparsity based Joint Direction-of-Arrival and Offset Frequency EstimatorSparsity based Joint Direction-of-Arrival and Offset Frequency Estimator
Sparsity based Joint Direction-of-Arrival and Offset Frequency Estimator
Jason Fernandes
 
RADAR MEASUREMENTS LECTURE EECS BERKELY!
RADAR MEASUREMENTS LECTURE EECS BERKELY!RADAR MEASUREMENTS LECTURE EECS BERKELY!
RADAR MEASUREMENTS LECTURE EECS BERKELY!
nagatic941
 
beamformingantennas1-150723193911-lva1-app6892.pdf
beamformingantennas1-150723193911-lva1-app6892.pdfbeamformingantennas1-150723193911-lva1-app6892.pdf
beamformingantennas1-150723193911-lva1-app6892.pdf
FirstknightPhyo
 
17
1717
Subsystems of radar and signal processing
Subsystems of radar and signal processing Subsystems of radar and signal processing
Subsystems of radar and signal processing
Ronak Vyas
 
Channel Models for Massive MIMO
Channel Models for Massive MIMOChannel Models for Massive MIMO
Channel Models for Massive MIMO
CPqD
 
Radar 2009 a 4 radar equation
Radar 2009 a  4 radar equationRadar 2009 a  4 radar equation
Radar 2009 a 4 radar equation
Vi Binh Q. Le
 
Radar 2009 a 4 radar equation
Radar 2009 a  4 radar equationRadar 2009 a  4 radar equation
Radar 2009 a 4 radar equation
Forward2025
 
Rappaport Chapter5-smallscalefading.pdf
Rappaport Chapter5-smallscalefading.pdfRappaport Chapter5-smallscalefading.pdf
Rappaport Chapter5-smallscalefading.pdf
RasheedKhan69
 
Small scale fading
Small scale fading Small scale fading
Small scale fading
Hardik_Tank
 

Similar to Scattering Model for Vegetation Canopies and Simulation of Satellite Navigation Channels (20)

Pilot based channel estimation improvement in orthogonal frequency-division m...
Pilot based channel estimation improvement in orthogonal frequency-division m...Pilot based channel estimation improvement in orthogonal frequency-division m...
Pilot based channel estimation improvement in orthogonal frequency-division m...
 
J0412261066
J0412261066J0412261066
J0412261066
 
Mimo radar detection in compound gaussian clutter using orthogonal discrete f...
Mimo radar detection in compound gaussian clutter using orthogonal discrete f...Mimo radar detection in compound gaussian clutter using orthogonal discrete f...
Mimo radar detection in compound gaussian clutter using orthogonal discrete f...
 
wireless communications
wireless communications wireless communications
wireless communications
 
Final ppt
Final pptFinal ppt
Final ppt
 
CHAP5.ppt
CHAP5.pptCHAP5.ppt
CHAP5.ppt
 
2_prats_IGARSS2011_distributed_imaging_v4.ppt
2_prats_IGARSS2011_distributed_imaging_v4.ppt2_prats_IGARSS2011_distributed_imaging_v4.ppt
2_prats_IGARSS2011_distributed_imaging_v4.ppt
 
teh presentation
teh presentationteh presentation
teh presentation
 
Mobile Radio Propagations
Mobile Radio PropagationsMobile Radio Propagations
Mobile Radio Propagations
 
Ofdm
OfdmOfdm
Ofdm
 
Sparsity based Joint Direction-of-Arrival and Offset Frequency Estimator
Sparsity based Joint Direction-of-Arrival and Offset Frequency EstimatorSparsity based Joint Direction-of-Arrival and Offset Frequency Estimator
Sparsity based Joint Direction-of-Arrival and Offset Frequency Estimator
 
RADAR MEASUREMENTS LECTURE EECS BERKELY!
RADAR MEASUREMENTS LECTURE EECS BERKELY!RADAR MEASUREMENTS LECTURE EECS BERKELY!
RADAR MEASUREMENTS LECTURE EECS BERKELY!
 
beamformingantennas1-150723193911-lva1-app6892.pdf
beamformingantennas1-150723193911-lva1-app6892.pdfbeamformingantennas1-150723193911-lva1-app6892.pdf
beamformingantennas1-150723193911-lva1-app6892.pdf
 
17
1717
17
 
Subsystems of radar and signal processing
Subsystems of radar and signal processing Subsystems of radar and signal processing
Subsystems of radar and signal processing
 
Channel Models for Massive MIMO
Channel Models for Massive MIMOChannel Models for Massive MIMO
Channel Models for Massive MIMO
 
Radar 2009 a 4 radar equation
Radar 2009 a  4 radar equationRadar 2009 a  4 radar equation
Radar 2009 a 4 radar equation
 
Radar 2009 a 4 radar equation
Radar 2009 a  4 radar equationRadar 2009 a  4 radar equation
Radar 2009 a 4 radar equation
 
Rappaport Chapter5-smallscalefading.pdf
Rappaport Chapter5-smallscalefading.pdfRappaport Chapter5-smallscalefading.pdf
Rappaport Chapter5-smallscalefading.pdf
 
Small scale fading
Small scale fading Small scale fading
Small scale fading
 

Recently uploaded

Summary Of transcription and Translation.pdf
Summary Of transcription and Translation.pdfSummary Of transcription and Translation.pdf
Summary Of transcription and Translation.pdf
vadgavevedant86
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR
 
IMPORTANCE OF ALGAE AND ITS BENIFITS.pptx
IMPORTANCE OF ALGAE  AND ITS BENIFITS.pptxIMPORTANCE OF ALGAE  AND ITS BENIFITS.pptx
IMPORTANCE OF ALGAE AND ITS BENIFITS.pptx
OmAle5
 
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
frank0071
 
Microbiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdfMicrobiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdf
sammy700571
 
Introduction_Ch_01_Biotech Biotechnology course .pptx
Introduction_Ch_01_Biotech Biotechnology course .pptxIntroduction_Ch_01_Biotech Biotechnology course .pptx
Introduction_Ch_01_Biotech Biotechnology course .pptx
QusayMaghayerh
 
Methods of grain storage Structures in India.pdf
Methods of grain storage Structures in India.pdfMethods of grain storage Structures in India.pdf
Methods of grain storage Structures in India.pdf
PirithiRaju
 
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Leonel Morgado
 
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
ABHISHEK SONI NIMT INSTITUTE OF MEDICAL AND PARAMEDCIAL SCIENCES , GOVT PG COLLEGE NOIDA
 
2001_Book_HumanChromosomes - Genéticapdf
2001_Book_HumanChromosomes - Genéticapdf2001_Book_HumanChromosomes - Genéticapdf
2001_Book_HumanChromosomes - Genéticapdf
lucianamillenium
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
PirithiRaju
 
Physiology of Nervous System presentation.pptx
Physiology of Nervous System presentation.pptxPhysiology of Nervous System presentation.pptx
Physiology of Nervous System presentation.pptx
fatima132662
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
PirithiRaju
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
Leonel Morgado
 
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDSJAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
Sérgio Sacani
 
Alternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart AgricultureAlternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart Agriculture
International Food Policy Research Institute- South Asia Office
 
BIRDS DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
BIRDS  DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptxBIRDS  DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
BIRDS DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
goluk9330
 
Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...
Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...
Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...
Sérgio Sacani
 
Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
PirithiRaju
 
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
Sérgio Sacani
 

Recently uploaded (20)

Summary Of transcription and Translation.pdf
Summary Of transcription and Translation.pdfSummary Of transcription and Translation.pdf
Summary Of transcription and Translation.pdf
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
 
IMPORTANCE OF ALGAE AND ITS BENIFITS.pptx
IMPORTANCE OF ALGAE  AND ITS BENIFITS.pptxIMPORTANCE OF ALGAE  AND ITS BENIFITS.pptx
IMPORTANCE OF ALGAE AND ITS BENIFITS.pptx
 
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
 
Microbiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdfMicrobiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdf
 
Introduction_Ch_01_Biotech Biotechnology course .pptx
Introduction_Ch_01_Biotech Biotechnology course .pptxIntroduction_Ch_01_Biotech Biotechnology course .pptx
Introduction_Ch_01_Biotech Biotechnology course .pptx
 
Methods of grain storage Structures in India.pdf
Methods of grain storage Structures in India.pdfMethods of grain storage Structures in India.pdf
Methods of grain storage Structures in India.pdf
 
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
 
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
 
2001_Book_HumanChromosomes - Genéticapdf
2001_Book_HumanChromosomes - Genéticapdf2001_Book_HumanChromosomes - Genéticapdf
2001_Book_HumanChromosomes - Genéticapdf
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
 
Physiology of Nervous System presentation.pptx
Physiology of Nervous System presentation.pptxPhysiology of Nervous System presentation.pptx
Physiology of Nervous System presentation.pptx
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
 
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDSJAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
 
Alternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart AgricultureAlternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart Agriculture
 
BIRDS DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
BIRDS  DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptxBIRDS  DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
BIRDS DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
 
Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...
Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...
Candidate young stellar objects in the S-cluster: Kinematic analysis of a sub...
 
Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
 
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole⋆
 

Scattering Model for Vegetation Canopies and Simulation of Satellite Navigation Channels

  • 1. Scattering Model for Vegetation Canopies and Simulation of Satellite Navigation Channels Ph.D. Defense Frank M. Schubert Navigation and Communications Section Department of Electronic Systems Aalborg University September 14, 2012 1 / 46
  • 2. Ph.D. Studies Involved Institutions Aalborg University Navigation and Communications Section German Aerospace Center (DLR) Institute for Communications and Navigation in Weßling-Oberpfaffenhofen, Germany European Space Agency (ESA/ESTEC) Networking/Partnering Initiative (NPI): Establishing relations between ESA and universities/research institutes through joint supervision of Ph.D. students in Noordwijk, The Netherlands 2 / 46
  • 3. Introduction and Problem Statement Multipath Propagation Deteriorates GNSS Positioning Performance Satellite 1 Satellite 2 Satellite 3 Receiver Wave propagation GPS/GNSS receivers track radio signals transmitted by satellites 3 / 46
  • 4. Introduction and Problem Statement Multipath Propagation Deteriorates GNSS Positioning Performance Satellite 1 Receiver Wave propagation GPS/GNSS receivers track radio signals transmitted by satellites Best performance is achieved in clear sky conditions Objects like trees, forests scatter transmitted signals This multipath propagation impairs positioning performance Goals: Analyze wave scattering by trees Evaluate signal tracking in multipath-prone environments by simulation 3 / 46
  • 5. Scattering by Vegetation – Previous Work Models Covering Vegetation Scattering in L-band (1-2 GHz) Measurements/simulations of single trees Caldeirinha (2001): outdoor and indoor measurements Fortuny & Sieber (1999): SAR imaging in anechoic chamber Models for terrestrial communications de Jong & Herben (2004) Models for land-mobile satellite communications: Goldhirsh & Vogel (1989) Cheffena & Pérez-Fontán (2010) Dedicated GNSS channel models Steingaß & Lehner (2005, 2007): Vehicles/pedestrians in urban/suburban environments Koh & Sarabandi (2002): Stationary receiver in forest ©Caldeirinha ©de Jong & Herben ©Steingaß & Lehner 4 / 46
  • 6. Scattering by Vegetation – Previous Work and Motivation Summary Previous works cover Two-dimensional case (terrestrial models) Narrowband models, i.e. delay of individual components is not considered Urban/suburban environments for satellite navigation Stationary environments → We seek a non-stationary model of scattering by treetops Rural environments Moving receiver Suitable for satellite navigation applications Wideband model True propagation delays need to be reported ©Caldeirinha ©de Jong & Herben ©Steingaß & Lehner 4 / 46
  • 7. Thesis Contents Overview GNSS signal generator GNSS receiver algorithm Channel Modeling Signal Processing Chain Ionospheric scintil- lations Narrowband Channel Model × Scattering volume Tree, forest Alley Wideband Channel Model Wideband Measure- ments Alley mea- surement Small forest mea- surement Single tree mea- surement GNSS satellite Atmospheric effects Multipath propagation GNSS receiver Electromagnetic wave propagation 5 / 46
  • 8. Scattering Model for Vegetation Canopies and Simulation of Satellite Navigation Channels Contents Simulation of Satellite Navigation Channels Discriminator Function Multipath Envelope Satellite Navigation Channel Signal Simulator SNACS Simulation Examples Signal Model for Scattering Volumes Single Scattering Volume Channel System Functions Time-Frequency Correlation Function Several Scattering Volumes 6 / 46
  • 9. Scattering Model for Vegetation Canopies and Simulation of Satellite Navigation Channels Contents Simulation of Satellite Navigation Channels Discriminator Function Multipath Envelope Satellite Navigation Channel Signal Simulator SNACS Simulation Examples Signal Model for Scattering Volumes Single Scattering Volume Channel System Functions Time-Frequency Correlation Function Several Scattering Volumes 7 / 46
  • 10. Simulation Using Discriminator Function GPS C/A Code Example Satellites send spreading codes Receiver correlates rx signal with locally generated code replica Correlation function φss(τ) = 1 Tc Tc 0 c(t)(t − tsp/2 − τ)dt −1 0 1 C/A code, Prompt Code −1 0 1 Early Code 0 2 4 6 8 10 −1 0 1 Late Code Time [µs] −2 −1 0 1 2 −2 −1 0 1 2 3 C/A code ACF, chip spacing 1 Time Delay [chips] Correlation ε early−late multipath contribution 1 (τ = 0.4) multipath contribution 2 (τ = 0.7) resulting discriminator function 8 / 46
  • 11. Effects of Multipath Propagation on GNSS Receivers Two Components Model, cf. Hagerman (1973), Van Nee (1993), Braasch (1996) Receiver reads line of sight signal (LOS) one additional multipath component GPS C/A error envelope top: component in-phase bottom: out-of-phase 1 chip early-late spacing 0.5 chip spacing Δτ 61 62 63 64 65 Delay τ [ns] 0 0.5 1 Power line of sight MP component 0 500 1000 1500 Relative Delay Δτ [ns] −50 0 50 RangingError[m] Urban and rural areas: strong multipath propagation Many echoes impinge within few nanoseconds after LOS: high error → Simulation needed for performance assessment 9 / 46
  • 12. GNSS Simulation Methods “Correlation Domain“ Channel assumed stationary during integration time (correlation) e.g. Navsim, Furthner et al. (2000), ”Realization of an End-to-End Software Simulator for Navigation Systems“ “Samples domain” Software defined receivers, e.g. Borre et al. (2007), “A Software-Defined GPS and Galileo Receiver – A Single- Frequency Approach” −2 −1 0 1 2 −2 −1 0 1 2 3 C/A code ACF, chip spacing 1 Time Delay [chips] Correlation ε early−late multipath contribution 1 (τ = 0.4) multipath contribution 2 (τ = 0.7) resulting discriminator function −1 0 1 C/A code, Prompt Code −1 0 1 Early Code 0 2 4 6 8 10 −1 0 1 Late Code Time [µs] New GNSS signals: longer integration times, channel non-stationary → Samples domain simulation needed 10 / 46
  • 13. The Satellite Navigation Channel Simulator (SNACS) Overview, Inputs, Outputs Signal generation Optional: AWGN, up- conversion, quantization, low-pass filter GNSS signal acquisition and tracking GNSS signal parameters Range estimation FIR filter Interpolation Channel model/ mea- surements Parameters: scenery, tra- jectory, etc. True range Δ 11 / 46
  • 14. Alley Drive Simulation Result mean(Δ)= 28.4m rms(Δ)= 32.2m 12 / 46
  • 15. Alley Drive Simulation Result 12 / 46
  • 16. Simulation Examples DLR Urban Channel Model Lehner & Steingaß (2005), “A novel channel model for land mobile satellite navigation“ Scenery definition Trajectory definition 0 20 40 60 80 100 120 −10 0 10 20 30 40 50 60 70 80 x [m] y[m] Vehicle trajectory start vehicle position, one point per second Channel response realization 13 / 46
  • 17. Simulation Examples DLR Urban Channel Model, Noise Free Simulations Trajectory 0 20 40 60 80 100 120 −10 0 10 20 30 40 50 60 70 80 x [m] y[m] Vehicle trajectory start vehicle position, one point per second Simulation parameters GPS C/A CBOC AltBOC Sampling frequency 40 MHz 60 MHz 80 MHz Intermediate fre- quency 10 MHz 15 MHz 20 MHz Precorrelation band- width 8 MHz 10 MHz 10 MHz Correlation interval 1 ms 4 ms 1 ms Early-late spacing 1 chips 0.4 chips 0.5 chips C/A code CBOC(6,1,1/11) AltBOC(15,10) 14 / 46
  • 18. Conclusions Part I – Simulation of Satellite Navigation Channels GNSS signal simulator implementation SNACS written in C++, multi-threading faster than Matlab-based implementations Simulations of scenarios Measurements of drive through alley DLR urban channel model, drive around the block Multipath propagation in rural environments degrades positioning performance New GNSS signals Higher bandwidths: frequency-selective channels Longer integration times: non-stationary channels 15 / 46
  • 19. Scattering Model for Vegetation Canopies and Simulation of Satellite Navigation Channels Contents Simulation of Satellite Navigation Channels Discriminator Function Multipath Envelope Satellite Navigation Channel Signal Simulator SNACS Simulation Examples Signal Model for Scattering Volumes Single Scattering Volume Channel System Functions Time-Frequency Correlation Function Several Scattering Volumes 16 / 46
  • 20. Thesis Contents Overview GNSS signal generator GNSS receiver algorithm Channel Modeling Signal Processing Chain Ionospheric scintil- lations Narrowband Channel Model × Scattering volume Tree, forest Alley Wideband Channel Model Wideband Measure- ments Alley mea- surement Small forest mea- surement Single tree mea- surement GNSS satellite Atmospheric effects Multipath propagation GNSS receiver Electromagnetic wave propagation 17 / 46
  • 21. Geometric Scenery Scenery in 3D: Top view: 0 (t) = 0 + t V T = d1(r) T − r Scattering volume V Fixed transmitter in T Receiver moves on straight-line trajectory (t) = 0 + t 18 / 46
  • 22. Scattering Centers in Treetops Made Visible by SAR Imaging SAR imaging at 1-5.5 MHz of a fir tree in an anechoic chamber Distinct scattering centers inside the treetop Figures by Fortuny & Sieber (1999), “Three-dimensional synthetic aperture radar imaging of a fir tree: first results” 19 / 46
  • 23. Geometric Scenery Scenery in 3D: Top view: 0 (t) = 0 + t Vr T dd(t) = T − (t) = d1(r) T − r (t) − r = d2(t, r) Scattering volume V: filled with point-source scatterers r to model scattering centers Fixed transmitter in T Receiver moves on straight-line trajectory (t) = 0 + t Distances Transmitter–scatterer: d1(r) Scatterer–receiver: d2(t, r) Transmitter–receiver: dd(t) 20 / 46
  • 24. Point-Source Scatterers Modeled by Spatial, Marked Point Processes 0 (t) = 0 + t Vr T dd(t) d1(r) d2(t, r) Effective scatterers not directly linked to tree constituents absorb system effects, e.g. antenna pattern Scatterers are modeled by spatial point process  {(r, βr ) : r ∈ } ⊂ R3 × C: marked point process Points r, marks βr Intensity function ϱ(r) with ϱ : V → [0, ∞) Conditional power Q(r) with Q : V → [0, ∞) Marks have zero mean E {βr } = 0 Marks are mutually uncorrelated E β∗ r βr r, r = Q(r)1 r = r 21 / 46
  • 25. Transmitted and Received Signals 0 (t) = 0 + t Vr T dd(t) d1(r) d2(t, r) ds(t, r) = d1(r) + d2(t, r) τs(t, r) = ds(t, r)/c0 c0: speed of light Transmitted signal in T can be written as ˜st(t) = Re {st(t) exp(j2πƒct)} st(t): Baseband signal Received signal in (t) is modeled as sum of delayed and attenuated versions of st(t) ˜sr(t) = r∈ βr d2(t, r) mplitde ˜st(t − τs(t, r)) Spherical wave propagation is assumed along r–(t) path Wave’s amplitude dependent on distance to scatterer and its weight βr 22 / 46
  • 26. Channel System Functions Time-Variant Response Integral form of the input-output relationship for an LTV channel sr(t) = st(t − τ)h(t, τ) dτ Time-variant channel response h(t, τ) consists of direct and scattered parts h(t, τ) = hd(t, τ) + hs(t, τ) hd(t, τ) : first, no attenuation, magnitude normalized to 1 hs(t, τ) = r∈ sctterers βr d2(t, r) mpl. exp −j 2π λc ds(t, r) phse δ(τ − τs(t, r)) dely In the following: scattered part is considered ds(t, r) = d1(r) + d2(t, r) Model: Measurement: (t) Vr Tdd(t) d1(r) d2(t, r) 23 / 46
  • 27. Time-Variant Response and Doppler-Delay Spread Function Comparison of Measurements and Model, Single Tree 0 1 2 3 4 Time t [s] 0 100 200 300 400 Delayτ[ns] −100 0 100 Doppler Frequency ν [Hz] 0 100 200 300 400 Delay[ns]  t→ν 0 1 2 3 4 Time t [s] 0 100 200 300 400 Delayτ[ns] −100 0 100 Doppler Frequency ν [Hz] 0 100 200 300 400 Delay[ns] −40 −30 −20 −10 0 Power [dB] 24 / 46
  • 28. Time-Variant Response Comparison of Measurements and Model, Group of Trees Vehicle’s front camera Measured channel response Channel model visualization Modeled channel response 25 / 46
  • 29. Channel System Functions Time-Variant Transfer Function of the Scattered Part |hs(t, τ)|2 : 3 4 5 6 7 Time t [s] 4300 4350 4400 4450 Delayτ[ns] τd(t) −30 −20 −10 0 Power[dB] ¢ τ → ƒ 3 4 5 6 7 Time t [s] −50 0 50 Frequencyƒ[MHz] −30 −20 −10 0 Power[dB] Time-frequency transfer function of the scattered part: Hs(t, ƒ) = Fτ {hs(t, τ)} = r∈ βr d2(t,r) exp −j2π(ƒc + ƒ) ds(t,r) c0 26 / 46
  • 30. Channel System Functions Time-Variant Response and Transfer Function of the Scattered Part 27 / 46
  • 31. Channel System Functions Time-Variant Transfer Function of the Scattered Part, Three Phases |hs(t, τ)|2 : 3 4 5 6 7 Time t [s] 4300 4350 4400 4450 Delayτ[ns] τd(t) −30 −20 −10 0 Power[dB] ¢ τ → ƒ 3 4 5 6 7 Time t [s] −50 0 50 Frequencyƒ[MHz] −30 −20 −10 0 Power[dB] Time-frequency transfer function of the scattered part: Hs(t, ƒ) = Fτ {hs(t, τ)} = r∈ βr d2(t,r) exp −j2π(ƒc + ƒ) ds(t,r) c0 28 / 46
  • 32. First- and Second-Order Characterization of the Scattered Part Mean and Time-Frequency Correlation Function Hs(t, ƒ) has zero mean: E {Hs(t, ƒ)} = 0 Goal: time-frequency correlation function R(ƒ, ƒ , t, t ) = E Hs ∗ (t, ƒ)Hs(t , ƒ ) Numerical estimation ˆR(ƒ, ƒ , t, t ) = 1 K K−1 k=0 H∗ s,k (t, ƒ)Hs,k(t , ƒ ) Example of ˆR(ƒ, ƒ , t, t ) with K = 1000 t = 2.5 s, ƒ = 0 MHz Long computation → Derive closed-form solution of R(ƒ, ƒ , t, t ) |Hs(t, ƒ)|2 : 3 4 5 6 7 Time t [s] −50 0 50 Frequencyƒ[MHz] −30 −20 −10 0 Power[dB] ˆR(ƒ, ƒ , t, t ) : 2 3 Time t [s] −50 0 50 Frequencyƒ[MHz] 0 0.001 0.002 29 / 46
  • 33. Time-Frequency Correlation Function Closed-Form Expression of R(ƒ, ƒ , t, t ) Hs(t, ƒ) = r∈ βr d2(t,r) exp −j2π(ƒc + ƒ) ds(t,r) c0 : spatial, marked point process ϱ(r): its intensity function Goal: time-frequency correlation function R(ƒ, ƒ , t, t ) = E Hs ∗ (t, ƒ)Hs(t , ƒ ) R(·) = E r∈ Q(r)g1(r, t, t , ƒ, ƒ , ƒc, c0) Campbell’s Theorem E r∈ ƒ(r) = R3 ƒ(r)ϱ(r) dr Integral form R(·) = V Q(r)ϱ(r)g1(r, ·) dr We define the probability density function (pdf) γ(r) −1Q(r)ϱ(r),  = Q(r)ϱ(r) dr < ∞ R(·) = Eγ {g1(r, ·)} → Introduce approximations to be able to proceed Hs(t, ƒ) ↓ E {βr } = 0, E β∗ r βr r, r = Q(r)1 r = r ↓ Campbell’s Theorem ↓ R(·) 30 / 46
  • 34. Time-Frequency Correlation Function Closed-Form Expression, Approximations R(·) = E Hs(t, ƒ)Hs ∗ (t , ƒ ) = Eγ g1(r, t, t , ƒ, ƒ , ƒc, c0) γ(r) −1Q(r)ϱ(r),  = Q(r)ϱ(r) dr 1. Decouple two factors in g1(r, ·) Distance-dependent term is varying slowly Phase term is varying rapidly → R(·) ≈ Eγ {g2(r, ·)} Eγ {g3(r, ·)} 2. Assume plane wave propagation on d1(r), d2(t, r) → R(·) ≈ g4(t, t , ƒ, ƒ , ƒc, c0) 0 (t) Vr T d1(r) d2(t, r) Approx. closed-form of R(·): 2 3 Time t [s] −50 0 50 Frequencyƒ[MHz] 0 0.001 0.002 31 / 46
  • 35. Time-Frequency Correlation Function Comparison of Approximate Closed-From Expression and Monte Carlo Simulation Approximate closed-form expression 2 3 Time t [s] −50 0 50 Frequencyƒ[MHz] 0 0.001 0.002 4.9 5 5.1 Time t [s] −50 0 50 Frequencyƒ[MHz] 0 0.03 0.06 0.09 0.12 Monte Carlo Simulation (K = 1000) 2 3 Time t [s] −50 0 50 Frequencyƒ[MHz] 0 0.001 0.002 Rx far away: t = 2.5 s, ƒ = 0 MHz 4.9 5 5.1 Time t [s] −50 0 50 Frequencyƒ[MHz] 0 0.03 0.06 0.09 0.12 Rx close: t = 5 s, ƒ = 0 MHz 32 / 46
  • 36. Time-Frequency Correlation Function vs. Transfer Function Correlation Function R Reveals Characteristics of Hs(t, ƒ) Hs(t, ƒ): 1 2 3 4 5 6 7 8 Time t [s] −50 0 50 Frequencyƒ[MHz] −30 −20 −10 0 Power[dB] ➀ ➁ ➂ R(ƒ, ƒ = 0, t, t = const): Œ t = 2.5 s 2 2.5 3 Time t [s] 0 0.001 0.002 −50 0 50 Frequencyƒ[MHz]  t = 5 s 4.9 5 5.1 Time t [s] 0 0.03 0.06 0.09 0.12 −50 0 50 Ž t = 7.5 s 7 7.5 8 Time t [s] 0 0.001 0.002 −50 0 50 33 / 46
  • 37. Time-Frequency Correlation Function vs. Transfer Function Correlation Function R Reveals Characteristics of Hs(t, ƒ) Hs(t, ƒ): 4.9 5 5.1 Time t [s] −50 0 50 Frequencyƒ[MHz] −30 −20 −10 0 Power[dB] ➁ R(ƒ, ƒ = 0, t, t = const): Œ t = 2.5 s 2 2.5 3 Time t [s] 0 0.001 0.002 −50 0 50 Frequencyƒ[MHz]  t = 5 s 4.9 5 5.1 Time t [s] 0 0.03 0.06 0.09 0.12 −50 0 50 Ž t = 7.5 s 7 7.5 8 Time t [s] 0 0.001 0.002 −50 0 50 33 / 46
  • 38. Time-Frequency Correlation Function Approximate Closed-From Expr. R(ƒ, ƒ , t, t ) Is Stationary With Respect to ƒ for t = t R(ƒ, ƒ , t, t ) shows: the process Hs(t, ƒ) is non-stationary For t = t : Hs(t, ƒ) becomes stationary → R(ƒ, ƒ , t, t) = R(Δƒ, t), Δƒ = ƒ − ƒ R(ƒ, ƒ , t, t ) , t = 2.5 s, ƒ = 0 Hz: 2 3 Time t [s] −100 −50 0 50 100 Frequencyƒ[MHz] 0 0.001 0.002 R(ƒ, ƒ , t, t ) t=t =2.5 s → R(Δƒ, t = 2.5 s) → How well do the approximations work? R(Δƒ, t) : 4 5 6 Time t = t′ [s] −100 −50 0 50 100 FrequencyΔƒ[MHz] 0 0.03 0.06 0.09 0.12 Stationarity with respect to ƒ: symmetry along ƒ = 0 MHz 34 / 46
  • 39. Time-Frequency Correlation Function Approximate Closed-From Expr. R(ƒ, ƒ , t, t ) Is Stationary With Respect to ƒ for t = t far: t = 2.5 s, ƒ = 0 MHz 2 3 Time t [s] −100 −50 0 50 100 Frequencyƒ[MHz] 0 0.001 0.002 close: t = 5 s, ƒ = 0 MHz 4.9 5 5.1 Time t [s] −100 −50 0 50 100 Frequencyƒ[MHz] 0 0.03 0.06 0.09 0.12 Stationary for t = t = 2.5 s, ƒ = 0 MHz: 0 0.001 0.002 −100 0 100 Frequency ƒ [MHz] ≈ R(·) MC t = t = 5 s, ƒ = 0 MHz: 0 0.03 0.06 0.09 0.12 −100 0 100 Frequency ƒ [MHz] ≈ R(·) MC Comparison with Monte Carlo Sim. (K = 100000) 35 / 46
  • 40. Future Application of Time-Frequency Correlation Function I Power Delay Profiles, S(τ, t) = FΔƒ→τ {R(Δƒ, t)} −100 −80 −60 −40 −20 0 20 40 60 80 100 −70 −60 −50 −40 −30 −20 −10 PDP of scattered part, RC_LOW_C, tree01 Delay [ns] Power[dB] −100 −80 −60 −40 −20 0 20 40 60 80 100 −40 −35 −30 −25 −20 −15 −10 −5 0 5 PDP of scattered part, scaled to distance, RC_LOW_C, tree01 Delay [ns] Power[dB] 36 / 46
  • 41. Future Application of Time-Frequency Correlation Function II Bayesian Receiver Algorithms Receivers are unlikely to generate virtual scenarios Correlation function of scattered part provides average channel characteristics Krach et al. (2010), “An Efficient Two-Fold Marginalized Bayesian Filter for Multipath Estimation in Satellite Navigation Receivers” 37 / 46
  • 42. Several Scattering Volumes So far: only single scattering volume considered Now: several scattering volumes → Extend model to cover attenuation of direct component hd(t, τ) = 10−d,dB(t)/10 attenuation exp −j 2π λ dd(t) phase δ(τ − τd(t)) delay τd(t) = dd(t)/c0 d,dB(t) = ηdp(T, V, t) η is specific attenuation in dB/m Goal: geometric-stochastic channel model Definition of scenery needed deterministic stochastic 0 (t) V r T d1(r) d2(t, r) dd(t) dp(T,V, t) 38 / 46
  • 43. Several Scattering Volumes Deterministic Definition of Scenery ©Google Define locations of trees with a GIS tool (e.g. Google Earth) Convert long., lat., alt. coordinates to Cartesian Transform coordinates: vehicle starts in origin and moves in z = 0 plane Define trajectory by points and interpolate it with cubic splines 39 / 46
  • 44. Several Scattering Volumes Deterministic Definition of Scenery, Comparison of Measurement and Model ©Google Measurement Model 40 / 46
  • 45. Several Scattering Volumes Stochastic Generation of Scenery 1. Define trajectory 2. Draw forward df and sideward ds displacements for each street side constant uniform, exponential, or Gaussian distributions 3. Draw tree shape and dimensions (t)  O y dfr,0 dsr,0 bt,0 dfr,1 dsr,1 bt,1 dfr,2 dsr,2 bt,2 dfl,0 dsl,0 bt,3 dfl,1 dsl,1 bt,4 dfl,2 dsl,2 bt,5 Example Winding trajectory Four different segments 41 / 46
  • 46. Several Scattering Volumes Stochastic Generation of Scenery 1. Define trajectory 2. Draw forward df and sideward ds displacements for each street side constant uniform, exponential, or Gaussian distributions 3. Draw tree shape and dimensions Example Winding trajectory Four different segments 41 / 46
  • 47. Channel Model C++ Implementation Input Files, Output Files, Processing, External Tools Receiver parameters Vehicle speed Trajectory Antenna pattern Scenery definitions Stochastic Scenery Generator Scenery parameters Trees, forests Geometry Avg. # of scat. (t)  O y dfr,0 dsr,0 bt,0 dfr,1 dsr,1 bt,1 dfr,2 dsr,2 bt,2 dfl,0 dsl,0 bt,3 dfl,1 dsl,1 bt,4 dfl,2 dsl,2 bt,5 Channel Model Engine Transmitter parame- ters Position Frequency calculates time-variant response h(t, τ) = hd(t, τ) + hs(t, τ) for all simulation times Channel Response Process with SNACS, MATLAB, Python Scene description files POV-Ray: Images FFmpeg: Videos 42 / 46
  • 48. SNACS Simulation of Channel Model Result Combination of Part I & II C/A code, 1 chip spacing, 45 dBHz Scenery stochastically generated Comparison with an actual scenario requires model calibration Scattered energy Treetops’ specific attenuations 43 / 46
  • 49. Conclusions Part II – Model of Scattering Volumes Observations Conclusions Comparison of derived channel system functions and measurements: good fit Model based on point-source scatterers is realistic Derivation of time-frequency correlation function of the scattered part Derivation of closed-form expression is possible Tools of the theory of point processes permit rigorous derivations Identification of stationarity regions Comparisons with Monte Carlo simulations: good fit Indication: assumptions can be justified Geometric channel models require scenery definition Stochastic generation of scenery: convenient generation of many trees 44 / 46
  • 50. Outlook Improve model downsides Multiple scattering, non-isotropic scattering Scatterers are static Diffraction effects, building–tree interactions Model calibration Determine scattering coefficients from measurements Directional dependencies Make use of R(ƒ, ƒ , t, t ) Measurement processing, power delay profiles Bayesian receiver algorithms Cheffena & Ekman (2008), “Modeling the Dynamic Effects of Vegetation on Radiowave Propagation” 45 / 46
  • 51. Outlook Improve model downsides Multiple scattering, non-isotropic scattering Scatterers are static Diffraction effects, building–tree interactions Model calibration Determine scattering coefficients from measurements Directional dependencies Make use of R(ƒ, ƒ , t, t ) Measurement processing, power delay profiles Bayesian receiver algorithms Enhance GNSS simulation SNACS is open-source software Research, Academics Compare SNACS simulations of Channel measurements Developed Model → Requires model calibration Ranging to multiple satellites, position domain 45 / 46
  • 52. Scattering Model for Vegetation Canopies and Simulation of Satellite Navigation Channels Thank you very much for your attention! 3 4 5 6 7 Time t [s] 4300 4350 4400 4450 Delayτ[ns] τd(t) −30 −20 −10 0 Power[dB] 46 / 46
  • 53. Scattering Model for Vegetation Canopies and Simulation of Satellite Navigation Channels Additional Slides Wave Equations Derivation of Second Moment SNACS Implementation SNACS Signal Generation C/N0 Estimation Method DLR Measurement Campaign SINC Interpolation Acronyms 47 / 46
  • 54. Wave Propagation 0 (t) = 0 + t Vr T dd(t) d1(r) d2(t, r) Wave propagation is described by Maxwell’s equations, possible solutions are Spherical wave, assumed along d2(t, r): ˜sr(, t) = Re β r −  exp −j 2π λc r −  sr(t) exp(j2πƒct) Plane wave, assumed along d1(r) and dd(t): ˜sr(, t) = Re{β exp(−jk) sr(t) exp(j2πƒct)} ƒc: carrier frequency, λc: wave length, wave vector: k = 2π λc ek received signal: ˜sr(, t) is bandpass version of low-pass sr(t) 48 / 46
  • 55. First- and Second-Order Characterization of the Channel Mean and Time-Frequency Correlation Function Hs(t, ƒ) = r∈ βr d2(t,r) exp −j2π(ƒc + ƒ) ds(t,r) c0 Hs(t, ƒ) has zero mean E {Hs(t, ƒ)} = 0 Time-frequency correlation function, autocorrelation function (acf) R(ƒ, ƒ , t, t ) = E Hs(t, ƒ)Hs ∗ (t , ƒ ) R(·) = E r∈ Q(r) d2(t,r)d2(t ,r) exp j2π c0 (ƒc + ƒ)ds(t, r) − (ƒc + ƒ )ds(t , r) Campbell’s Theorem E r∈ ƒ(r) = R3 ƒ(r)ϱ(r) dr R(·) = V Q(r)ϱ(r) d2(t,r)d2(t ,r) exp j2π c0 (ƒc + ƒ)ds(t, r) − (ƒc + ƒ )ds(t , r) dr We define the pdf γ(r) −1Q(r)ϱ(r),  = Q(r)ϱ(r) dr < ∞ R(·) = Eγ 1 d2(t,r)d2(t ,r) exp j2π c0 d1(r), d2(t, r), d2(t , r) · ¯ƒ ¯ƒ ƒ − ƒ , ƒ + ƒc, −(ƒ + ƒc) T 49 / 46
  • 56. Time-Frequency Correlation Function Approximation, Closed-Form Solution R(·) = E Hs(t, ƒ)Hs ∗(t , ƒ ) = Eγ 1 d2(t,r)d2(t ,r) exp j2π c0 d1(r), d2(t, r), d2(t , r) · ¯ƒ γ(r) −1Q(r)ϱ(r),  = Q(r)ϱ(r) dr, ¯ƒ ƒ − ƒ , ƒ + ƒc, −(ƒ + ƒc) T R(·) ≈  Eγ 1 d2(t, r)d2(t , r) E1 Eγ exp j2π c0 d1(r), d2(t, r), d2(t , r) · ¯ƒ E2 R(·) ≈  1 d,μ(t)d,μ(t ) 1 + e((t), μγ)Tγe((t ), μγ) d,μ(t)d,μ(t ) ≈E1 exp j2π c0 dT,μ, d,μ(t), d,μ(t ) · ¯ƒ  () ≈E2 Center of gravity: μγ = Eγ {r} = R3 rγ(r) dr Covariance matrix: γ = Eγ ˜r ˜rT  (t, t , ƒ, ƒ ) = c−1 0 [e(T, μγ)(ƒ − ƒ ) + e((t), μγ)(ƒ + ƒc) − e((t ), μγ)(ƒ + ƒc)] () Eγ {exp(j2π ˜r · )} = R3 exp(j2π ˜r · )γ(˜r) d˜r 0 (t) Vr T d1(r) d2(t, r) μγ d,μ(t) ˜r dT,μ e(T, μγ) e((t), μγ) 50 / 46
  • 57. Time-Frequency Correlation Function Closed-Form Expression, Approximation R(·) = E Hs(t, ƒ)Hs ∗ (t , ƒ ) = Eγ g1(t, t , ƒ, ƒ , r, ƒc, c0) γ(r) −1Q(r)ϱ(r),  = Q(r)ϱ(r) dr R(·) ≈ g2(t, t , ƒ, ƒ , ƒc, c0) Center of gravity: μγ = Eγ {r} = R3 rγ(r) dr Plane wave approximations d1(r) ≈ dT,μ + e(T, μγ) · ˜r d2(t, r) ≈ d,μ(t) + e((t), μγ) · ˜r R(·) ≈ g3(t, t , ƒ, ƒ , ƒc, c0) 0 (t) Vr T d1(r) d2(t, r) μγ d,μ(t) ˜r dT,μ e(T, μγ) e((t), μγ) Approx. closed-form expr. of R(·): 2 3 Time t [s] −50 0 50 Frequencyƒ[MHz] 0 0.001 0.002 51 / 46
  • 58. SNACS Implementation Software Structure Modular object-oriented approach, written in C++ Parallel processing, pipeline approach Every processing module runs as its own thread Convolution and correlation expand to multiple threads Modules are connected with circular buffers for asynchronous access 52 / 46
  • 59. SNACS Implementation GNSS Signal Generation 53 / 46
  • 60. A New C/N0 Estimation Method Comparison of Standard Method and New Approach Standard method by van Dierendonck (?) Proposed method SNRW,k = M =1 (2  + Q2  ) k SNRN,k = M =1  2 k + M =1 Q 2 k SNRW,k = M =1 | + jQ| − π 2 2 k SNRN,k = M =1 | + jQ| − π 2 2 k Common calculation of C/N0: M = 10, K = 50 μP = 1 K K k=1 SNRW,k SNRN,k C/N0 = 10 log10 1 Tc μP−1 M−μP 54 / 46
  • 61. A New C/N0 Estimation Method Simulation Results Channel response C/N0 simulation result 10 15 20 25 30 35 15 20 25 30 35 40 C/N0 Estimation Results C/N0[dB-Hz] standard method new method 10 15 20 25 30 35 -10 -5 0 5 10 Reference Trajectory, Speed Time [s] ReferenceSpeed[m/s] GPS C/A code 0.1 chip spacing AWGN: 35 dbHz New C/N0 estimation method is less susceptible to Doppler 55 / 46
  • 62. DLR Land Mobile Satellite Channel Model Measurement campaign Multipath reception cause errors in GNSS receivers Perform channel sounding measurements DLR conducted measurements in 2002 for urban, sub-urban, rural, and pedestrian scenarios frequency: 1460 − 1560 MHz (L-band) bandwidth: 100 Mhz power: 10 W (EIRP) 56 / 46
  • 63. Time-Variant Channel Impulse Responses (CIR) Using channel model data: CIR → FIR coefficients interpolation −1 0 1 2 3 4 5 6 x 10 −8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 delay τ [s] magnitude CIR impulses sinc for CIR impulse 1 sinc for CIR impulse 2 sum of sinc functions FIR coefficients Time-continuous CIR impulses must be interpolated to time-discrete FIR coefficients Low-pass interpolation: FR(t) = m k=0 αk · sin[ωmax(t − τk )] ωmax(t − τk ) ωmax = 2π ƒsmpl 2 Example: ƒsmpl = 100 MHz 57 / 46
  • 64. Acronyms acf autocorrelation function GSCM geometric-stochastic channel model SNACS Satellite Navigation Channel Signal Simulator pdf probability density function 58 / 46