Pengantar
Statistik Inferensial
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Pertemuan 2
STATISTIKA
Statistika (Harun Al Rasyid) adalah seperangkat metode
yang membahas:
1. Bagaimana cara mengumpulkan data yang dapat
memberikan informasi optimal.
2. Bagaimana cara meringkas, mengolah dan menyajikan
data,
3. Bagaimana cara melakukan analisis terhadap
sekumpulan data, sehingga dari analisis itu timbul
strategi-strategi tertentu.
4. Bagaimana cara mengambil kesimpulan dan
menyarankan keputusan yang sebaiknya diambil
berdasarkan strategi yang ada.
5. Bagaimana menentukan besarnya resiko kekeliruan
dalam mengambil keputusan atas dasar strategi tersebut.
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
STATISTIK INFERENSIAL
Walpole (1995:5) : Statistik inferensial yaitu
mencakup semua metode yang berhubungan
dengan analisis sebagian data untuk peramalan
atau penarikan kesimpulan mengenai
keseluruhan gugus data induknya.
Subana (2005:12) : statistik inferensial adalah
statistik yang berhubungan dengan penarikan
kesimpulan yang bersifat umum dari data yang
telah disusun dan diolah.
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
STATISTIK INFERENSIAL
Secara ringkas Statistik inferensial yaitu
statistik yang digunakan untuk menggene-
ralisasikan data sampel terhadap populasi.
Berdasarkan parameternya, Statistik
inferensial dibagi dua, yaitu :
1. Statistik parametrik
2. Statistik nonparametrik.
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Statistik parametrik : yaitu bagian dari statistik
inferensial yang mempertimbangkan nilai dari
satu atau lebih parameter populasi dan
digunakan untuk menguji hipotesis yang
variabelnya terukur.
Contoh :
“Berapa menit rata-rata tayangan iklan di TV?“
Variabel waktu tayangan iklan dapat terukur
dalam menit (ada standar)
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
STATISTIK PARAMETRIK
Statistik parametrik digunakan untuk menganalisis data
interval dan rasio, dengan syarat data harus berdistribusi
normal, varians homogen, berpola linear dan data
diambil secara random sampling. Ukuran uji dalam
statistik parametrik antara lain:
 T-test (one sample t-test, independent t-test, paired
t-test)
 Analysis of Varian (anova)
 Korelasi dan Regresi
 dll
STATISTIK PARAMETRIK
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Contoh (1):
Rumusan masalah: berapa lama
rata-rata penayangan iklan di TV ?
Hipotesis: rata-rata penayangan
iklan di TV paling lama 120 menit.
Statistik uji hipotesis: t-test atau
z-test
STATISTIK PARAMETRIK
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Contoh (2) :
Rumusan masalah : Apakah ada pengaruh yang
signifikan antara lamanya penayangan iklan di TV
terhadap omset penjualan produk x ?
Hipotesis : terdapat pengaruh yang signifikan
antara lamanya penayangan iklan di TV terhadap
omset penjualan produk x
Statistik uji hipotesis : korelasi product
moment/rho, uji–t, Koefisien Penentu dan
Regresi Linear Sederhana.
STATISTIK PARAMETRIK
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Contoh (3) :
Rumusan masalah : apakah ada perbedan hasil belajar
matematika menggunakan metode pembelajaran A, B dan
C ?
Hipotesis :
1. Apakah ada perbedan hasil belajar matematika
menggunakan metode pembelajaran A dan B ?
2. Apakah ada perbedan hasil belajar matematika
menggunakan metode pembelajaran A dan C ?
3. Apakah ada perbedan hasil belajar matematika
menggunakan metode pembelajaran A, B dan C ?
Statistik uji hypotesis : Independent Sample t-test
Analisis of Varians (anova).
STATISTIK PARAMETRIK
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Statistik Nonparametrik adalah bagian
statistik inferensial yang digunakan untuk
menguji hipotesis yang variabelnya tidak
memiliki kepastian (standar)
Contoh:
“Berapa besar kepuasan pasien terhadap
pelayanan RS. X ?“
Variabel kepuasan tidak memiliki standar
pasti.
STATISTIK NONPARAMETRIK
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
PEDOMAN PEMILIHAN STATISTIK
MULAI
Jumlah
Variabel
?
Analisis
Univariat
Analisis
Multivariat
Jenis
Data?
Statistik
Parametrik
Statistik
Nonparametrik
SATU LEBIH dari DUA
INTERVAL
RASIO
NOMINAL
ORDINAL
Analisis
Bivariat
DUA
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Tingkat kepercayaan atau disebut juga confidence
interval atau risk level didasarkan pada gagasan yang
berasal dariTeorema Batas Sentral (Central Limit
Theorem).
Berdasarkan teorema tersebut: apabila suatu
populasi secara berulang-ulang ditarik sampel,
maka nilai rata-rata atribut yang diperoleh dari
sampel-sampel tersebut sejajar dengan nilai
populasi yang sebenarnya.
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Nilai-nilai yang diperoleh tersebut yang berasal
dari sampel-sampel yang sudah ditarik
didistribusikan secara normal dalam bentuk nilai
benar/ nyata.
Bentuk nilai-nilai tersebut akan menjadi nilai-nilai
sampel yang lebih tinggi atau lebih rendah jika
dibandingkan dengan nilai populasinya.
Handout_P2_Statistik Inferensial
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Dalam suatu distribusi normal, sekitar 95% nilai-nilai sampel
berada dalam dua simpangan baku (standard deviation) dari nilai
populasi sebenarnya. Jika tingkat kepercayaan sebesar 95%
dipilih, maka 95 dari 100 sampel akan mempunyai nilai populasi
yang sebenarnya dalam jangkauan ketepatan sebagaimana sudah
dispesifikasi sebelumnya.
Ada kalanya bahwa sampel yang di peroleh tidak mewakili nilai
populasi yang sebenarnya.Tingkat kepercayaan berkisar antara
99% yang tertinggi dan 90% yang terendah. Dalam SPSS tingkat
kepercayaan secara default diisi 95%.
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Signifikansi merupakan tingkat ketepatan (presisi) dalam
kaitannya dengan kesalahan pengambilan sampel (sampling
error), merupakan jangkauan di mana nilai populasi yang
tepat diperkirakan.
Signifikansi diekspresikan persentase, misalnya 1% atau 5%.
Oleh karena itu jika seorang peneliti menemukan bahwa
60% pegawai perusahaan tertentu yang digunakan sebagai
sampel sudah mengadopsi suatu metode bekerja yang
direkomendasikan dengan tingkat ketepatan sebesar ±1%,
maka peneliti tersebut dapat menyimpulkan bahwa antara
59% dan 61% dari pegawai perusahaan tersebut yang
menjadi populasi sudah mengadopsi metode tersebut.
Dalam SPSS signifikansi ditulis secara default sebagai 0,05
(5%).
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Pada pengujian hipotesis bahwa peluang
membuat kesalahan tipe I dinyatakan sebagai α,
maka dalam pemakaiannya α disebut taraf
(derajat) signifikansi atau taraf keberartian atau
taraf nyata. Karena derajat signifikansi
ditentukan oleh peluang yang diambil, semakin
kecil tingkat peluang kekeliruannya semakin
tinggi keberartiannya.
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Jika hasil perhitungan perbedaan dua rata-rata
adalah signifikan pada α = 0,001 hal ini akan
sangat berarti dibandingkan dengan α = 0,05. Ini
karena untuk α = 0,001 kedua rata-rata itu
betul-betul berbeda karena dari 1000 kali
pengamatan (percobaan) hanya satu kali terjadi
kemelesetan, sedangkan pada α = 0,05 dari
seratus pengamatan terjadi 5 kali kemelesetan.
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Besarnya taraf signifikansi biasanya sudah
ditentukan sebelumnya, yaitu : 0,15, 0,05, 0,01,
0,005 atau 0,001. untuk penelitian pendidikan
biasanya digunakan taraf 0,05 atau 0,01 sedangkan
untuk bidang yang beresiko tinggi akibat penarikan
kesimpulannya, seperti bidang kesehatan biasanya
digunakan taraf 0,005 atau 0,001.
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Jika peneliti menetapkan kesalahan 5 %, hal ini
sama saja dengan menyebut bahwa peneliti
telah menolak hipotesis pada tingkat
kepercayaan 95 %.Artinya, apabila kesimpulan
hasil penelitian diterapkan pada populasi
sejumlah 100 orang, penelitian tersebut hanya
sesuai untuk 95 orang. Sedangkan pada 5 orang
sisanya terjadi penyimpangan.
Signifikansi
dan Tingkat Kepercayaan
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Dengan kata lain, peluang terjadinya kemelesetan
setiap 100 kali pengamatan adalah 5 kali.
Selayaknya, 95% tersebut dinamakan tingkat
kepercayaan. Jadi, tingkat kepercayaan adalah
ukuran keyakinan sang peneliti yang
dinyatakan dalam persentase bahwa ia
sanggup mengambil resiko bahwa sesuatu itu
dapat terjadi, apakah 95%, 99% dan lain-lain.
Signifikansi
dan Tingkat Kepercayaan
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Handout_P2_Statistik Inferensial
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Derajat kebebasan merupakan tingkat kebebasan untuk
bervariasi sehingga tidak terjadi kekeliruan dalam
penafsiran.
Derajat kebebasan juga sebagai patokan membaca tabel
statistik berkenaan dengan batas rasio penolakan
(daerah kritis) yaitu suatu batas saat suatu hasil
perhitungan statistik dapat disebut signifikan. Rumus
derajat kebebasan (dk) atau degree of freedom (df)
bergantung kepada jenis statistik yang digunakan.
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Istilah angka derajat kebebasan (degrees of
freedom) diartikan sebagai banyaknya pengamatan
bebas dari total pengamatan n.
Sehingga rumus umum untuk menentukan derajat
kebebasan (db/dk/df) adalah total pengamatan (n)
dikurangi banyaknya parameter yang ditaksir atau df
= n – banyaknya parameter yang ditaksir (k).
(Gujarati, 1978).
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Rumus derajat kebebasan akan berbeda untuk kasus
pengamatan yang satu dengan kasus pengamatan
yang lainnya, perbedaannya tergantung dari
banyaknya parameter yang ditaksir. Rumus derajat
kebebasannya bisa ditulis sebagai : db = n – 2 atau db
= n -3 tergantung dari banyaknya parameter (variabel)
yang ditaksirnya tadi. Contoh, jika kita hendak
meneliti dua variabel, maka derajat kebebasanya
adalah db = n – 2. Kenapa n – 2, karena ada dua
variabel.
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Hal lain yang perlu dipahami dalam kajian
tentang derajat bebas adalah berkaitan
dengan penelitian sampel. Ide dasarnya
adalah tiap kali kita mengestimasi
parameter (karakteristik populasi), kita
akan kehilangan satu derajat kebebasan.
Oleh karena itu derajat bebas akan selalu
n – k, bukan n.
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Untuk memahami hal tersebut perhatikan
penjelasan berikut:
Misalnya ada sebuah populasi dengan rata-
rata (mean) sebesar 10. Selanjutnya kita
diijinkan untuk mengambil sampel sebanyak
10 orang dari populasi tersebut.
Pertanyaannya adalah berapa banyak orang
yang dapat kita ambil dengan bebas?
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Misalnya kita ambil orang pertama secara bebas, ia
memiliki skor 14. Orang kedua masih dengan bebas,
ia memiliki skor 8. Kemudian berturut-turut orang
ketiga sampai orang ke sembilan diambil secara
bebas dengan skor: 15, 6, 11, 14, 8, 6 dan 5.
Bagaimana dengan orang kesepuluh? Apakah diambil
secara bebas? Tentu jawabannya adalah tidak. Orang
kesepuluh tidak dapat diambil secara bebas lagi. Jika
sudah ada 9 angka, angka ke sepuluh tidak lagi dapat
ditentukan dengan bebas agar mendapat estimasi
yang sama (yaitu mean = 10).
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Misalnya jumlah skor-skor dari sembilan orang
tadi adalah 87. Agar estimasi yang kita
dapatkan sama, yaitu mean = 10, orang
kesepuluh harus ditentukan sebesar 13.
Dengan demikian dapat dikatakan kita
kehilangan satu derajat kebebasan. Nah derajat
bebas inilah yang kemudian digunakan untuk
melihat nilai tabel tertentu, misalnya tabel t.
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Dalam perhitungan tadi, kita hanya
mengestimasi atau menaksir satu
parameter. Oleh karena itu kita
hanya kehilangan satu derajat
kebebasan, sehingga derajat bebas
yang kita miliki adalah N – 1, yaitu
10 – 1 = 9.
Pengantar Statistik Inferensial_M. Jainuri, M.Pd
Tengkiyu...

P2_Pengantar Statistika Inferensial

  • 1.
    Pengantar Statistik Inferensial Pengantar StatistikInferensial_M. Jainuri, M.Pd Pertemuan 2
  • 2.
    STATISTIKA Statistika (Harun AlRasyid) adalah seperangkat metode yang membahas: 1. Bagaimana cara mengumpulkan data yang dapat memberikan informasi optimal. 2. Bagaimana cara meringkas, mengolah dan menyajikan data, 3. Bagaimana cara melakukan analisis terhadap sekumpulan data, sehingga dari analisis itu timbul strategi-strategi tertentu. 4. Bagaimana cara mengambil kesimpulan dan menyarankan keputusan yang sebaiknya diambil berdasarkan strategi yang ada. 5. Bagaimana menentukan besarnya resiko kekeliruan dalam mengambil keputusan atas dasar strategi tersebut. Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 3.
    STATISTIK INFERENSIAL Walpole (1995:5): Statistik inferensial yaitu mencakup semua metode yang berhubungan dengan analisis sebagian data untuk peramalan atau penarikan kesimpulan mengenai keseluruhan gugus data induknya. Subana (2005:12) : statistik inferensial adalah statistik yang berhubungan dengan penarikan kesimpulan yang bersifat umum dari data yang telah disusun dan diolah. Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 4.
    STATISTIK INFERENSIAL Secara ringkasStatistik inferensial yaitu statistik yang digunakan untuk menggene- ralisasikan data sampel terhadap populasi. Berdasarkan parameternya, Statistik inferensial dibagi dua, yaitu : 1. Statistik parametrik 2. Statistik nonparametrik. Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 5.
    Statistik parametrik :yaitu bagian dari statistik inferensial yang mempertimbangkan nilai dari satu atau lebih parameter populasi dan digunakan untuk menguji hipotesis yang variabelnya terukur. Contoh : “Berapa menit rata-rata tayangan iklan di TV?“ Variabel waktu tayangan iklan dapat terukur dalam menit (ada standar) Pengantar Statistik Inferensial_M. Jainuri, M.Pd STATISTIK PARAMETRIK
  • 6.
    Statistik parametrik digunakanuntuk menganalisis data interval dan rasio, dengan syarat data harus berdistribusi normal, varians homogen, berpola linear dan data diambil secara random sampling. Ukuran uji dalam statistik parametrik antara lain:  T-test (one sample t-test, independent t-test, paired t-test)  Analysis of Varian (anova)  Korelasi dan Regresi  dll STATISTIK PARAMETRIK Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 7.
    Contoh (1): Rumusan masalah:berapa lama rata-rata penayangan iklan di TV ? Hipotesis: rata-rata penayangan iklan di TV paling lama 120 menit. Statistik uji hipotesis: t-test atau z-test STATISTIK PARAMETRIK Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 8.
    Contoh (2) : Rumusanmasalah : Apakah ada pengaruh yang signifikan antara lamanya penayangan iklan di TV terhadap omset penjualan produk x ? Hipotesis : terdapat pengaruh yang signifikan antara lamanya penayangan iklan di TV terhadap omset penjualan produk x Statistik uji hipotesis : korelasi product moment/rho, uji–t, Koefisien Penentu dan Regresi Linear Sederhana. STATISTIK PARAMETRIK Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 9.
    Contoh (3) : Rumusanmasalah : apakah ada perbedan hasil belajar matematika menggunakan metode pembelajaran A, B dan C ? Hipotesis : 1. Apakah ada perbedan hasil belajar matematika menggunakan metode pembelajaran A dan B ? 2. Apakah ada perbedan hasil belajar matematika menggunakan metode pembelajaran A dan C ? 3. Apakah ada perbedan hasil belajar matematika menggunakan metode pembelajaran A, B dan C ? Statistik uji hypotesis : Independent Sample t-test Analisis of Varians (anova). STATISTIK PARAMETRIK Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 10.
    Statistik Nonparametrik adalahbagian statistik inferensial yang digunakan untuk menguji hipotesis yang variabelnya tidak memiliki kepastian (standar) Contoh: “Berapa besar kepuasan pasien terhadap pelayanan RS. X ?“ Variabel kepuasan tidak memiliki standar pasti. STATISTIK NONPARAMETRIK Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 11.
    PEDOMAN PEMILIHAN STATISTIK MULAI Jumlah Variabel ? Analisis Univariat Analisis Multivariat Jenis Data? Statistik Parametrik Statistik Nonparametrik SATULEBIH dari DUA INTERVAL RASIO NOMINAL ORDINAL Analisis Bivariat DUA Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 12.
  • 13.
    Tingkat kepercayaan ataudisebut juga confidence interval atau risk level didasarkan pada gagasan yang berasal dariTeorema Batas Sentral (Central Limit Theorem). Berdasarkan teorema tersebut: apabila suatu populasi secara berulang-ulang ditarik sampel, maka nilai rata-rata atribut yang diperoleh dari sampel-sampel tersebut sejajar dengan nilai populasi yang sebenarnya. Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 14.
    Nilai-nilai yang diperolehtersebut yang berasal dari sampel-sampel yang sudah ditarik didistribusikan secara normal dalam bentuk nilai benar/ nyata. Bentuk nilai-nilai tersebut akan menjadi nilai-nilai sampel yang lebih tinggi atau lebih rendah jika dibandingkan dengan nilai populasinya. Handout_P2_Statistik Inferensial Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 15.
    Dalam suatu distribusinormal, sekitar 95% nilai-nilai sampel berada dalam dua simpangan baku (standard deviation) dari nilai populasi sebenarnya. Jika tingkat kepercayaan sebesar 95% dipilih, maka 95 dari 100 sampel akan mempunyai nilai populasi yang sebenarnya dalam jangkauan ketepatan sebagaimana sudah dispesifikasi sebelumnya. Ada kalanya bahwa sampel yang di peroleh tidak mewakili nilai populasi yang sebenarnya.Tingkat kepercayaan berkisar antara 99% yang tertinggi dan 90% yang terendah. Dalam SPSS tingkat kepercayaan secara default diisi 95%. Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 16.
    Signifikansi merupakan tingkatketepatan (presisi) dalam kaitannya dengan kesalahan pengambilan sampel (sampling error), merupakan jangkauan di mana nilai populasi yang tepat diperkirakan. Signifikansi diekspresikan persentase, misalnya 1% atau 5%. Oleh karena itu jika seorang peneliti menemukan bahwa 60% pegawai perusahaan tertentu yang digunakan sebagai sampel sudah mengadopsi suatu metode bekerja yang direkomendasikan dengan tingkat ketepatan sebesar ±1%, maka peneliti tersebut dapat menyimpulkan bahwa antara 59% dan 61% dari pegawai perusahaan tersebut yang menjadi populasi sudah mengadopsi metode tersebut. Dalam SPSS signifikansi ditulis secara default sebagai 0,05 (5%). Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 17.
    Pada pengujian hipotesisbahwa peluang membuat kesalahan tipe I dinyatakan sebagai α, maka dalam pemakaiannya α disebut taraf (derajat) signifikansi atau taraf keberartian atau taraf nyata. Karena derajat signifikansi ditentukan oleh peluang yang diambil, semakin kecil tingkat peluang kekeliruannya semakin tinggi keberartiannya. Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 18.
    Jika hasil perhitunganperbedaan dua rata-rata adalah signifikan pada α = 0,001 hal ini akan sangat berarti dibandingkan dengan α = 0,05. Ini karena untuk α = 0,001 kedua rata-rata itu betul-betul berbeda karena dari 1000 kali pengamatan (percobaan) hanya satu kali terjadi kemelesetan, sedangkan pada α = 0,05 dari seratus pengamatan terjadi 5 kali kemelesetan. Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 19.
    Besarnya taraf signifikansibiasanya sudah ditentukan sebelumnya, yaitu : 0,15, 0,05, 0,01, 0,005 atau 0,001. untuk penelitian pendidikan biasanya digunakan taraf 0,05 atau 0,01 sedangkan untuk bidang yang beresiko tinggi akibat penarikan kesimpulannya, seperti bidang kesehatan biasanya digunakan taraf 0,005 atau 0,001. Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 20.
    Jika peneliti menetapkankesalahan 5 %, hal ini sama saja dengan menyebut bahwa peneliti telah menolak hipotesis pada tingkat kepercayaan 95 %.Artinya, apabila kesimpulan hasil penelitian diterapkan pada populasi sejumlah 100 orang, penelitian tersebut hanya sesuai untuk 95 orang. Sedangkan pada 5 orang sisanya terjadi penyimpangan. Signifikansi dan Tingkat Kepercayaan Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 21.
    Dengan kata lain,peluang terjadinya kemelesetan setiap 100 kali pengamatan adalah 5 kali. Selayaknya, 95% tersebut dinamakan tingkat kepercayaan. Jadi, tingkat kepercayaan adalah ukuran keyakinan sang peneliti yang dinyatakan dalam persentase bahwa ia sanggup mengambil resiko bahwa sesuatu itu dapat terjadi, apakah 95%, 99% dan lain-lain. Signifikansi dan Tingkat Kepercayaan Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 22.
  • 23.
    Derajat kebebasan merupakantingkat kebebasan untuk bervariasi sehingga tidak terjadi kekeliruan dalam penafsiran. Derajat kebebasan juga sebagai patokan membaca tabel statistik berkenaan dengan batas rasio penolakan (daerah kritis) yaitu suatu batas saat suatu hasil perhitungan statistik dapat disebut signifikan. Rumus derajat kebebasan (dk) atau degree of freedom (df) bergantung kepada jenis statistik yang digunakan. Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 24.
    Istilah angka derajatkebebasan (degrees of freedom) diartikan sebagai banyaknya pengamatan bebas dari total pengamatan n. Sehingga rumus umum untuk menentukan derajat kebebasan (db/dk/df) adalah total pengamatan (n) dikurangi banyaknya parameter yang ditaksir atau df = n – banyaknya parameter yang ditaksir (k). (Gujarati, 1978). Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 25.
    Rumus derajat kebebasanakan berbeda untuk kasus pengamatan yang satu dengan kasus pengamatan yang lainnya, perbedaannya tergantung dari banyaknya parameter yang ditaksir. Rumus derajat kebebasannya bisa ditulis sebagai : db = n – 2 atau db = n -3 tergantung dari banyaknya parameter (variabel) yang ditaksirnya tadi. Contoh, jika kita hendak meneliti dua variabel, maka derajat kebebasanya adalah db = n – 2. Kenapa n – 2, karena ada dua variabel. Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 26.
    Hal lain yangperlu dipahami dalam kajian tentang derajat bebas adalah berkaitan dengan penelitian sampel. Ide dasarnya adalah tiap kali kita mengestimasi parameter (karakteristik populasi), kita akan kehilangan satu derajat kebebasan. Oleh karena itu derajat bebas akan selalu n – k, bukan n. Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 27.
    Untuk memahami haltersebut perhatikan penjelasan berikut: Misalnya ada sebuah populasi dengan rata- rata (mean) sebesar 10. Selanjutnya kita diijinkan untuk mengambil sampel sebanyak 10 orang dari populasi tersebut. Pertanyaannya adalah berapa banyak orang yang dapat kita ambil dengan bebas? Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 28.
    Misalnya kita ambilorang pertama secara bebas, ia memiliki skor 14. Orang kedua masih dengan bebas, ia memiliki skor 8. Kemudian berturut-turut orang ketiga sampai orang ke sembilan diambil secara bebas dengan skor: 15, 6, 11, 14, 8, 6 dan 5. Bagaimana dengan orang kesepuluh? Apakah diambil secara bebas? Tentu jawabannya adalah tidak. Orang kesepuluh tidak dapat diambil secara bebas lagi. Jika sudah ada 9 angka, angka ke sepuluh tidak lagi dapat ditentukan dengan bebas agar mendapat estimasi yang sama (yaitu mean = 10). Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 29.
    Misalnya jumlah skor-skordari sembilan orang tadi adalah 87. Agar estimasi yang kita dapatkan sama, yaitu mean = 10, orang kesepuluh harus ditentukan sebesar 13. Dengan demikian dapat dikatakan kita kehilangan satu derajat kebebasan. Nah derajat bebas inilah yang kemudian digunakan untuk melihat nilai tabel tertentu, misalnya tabel t. Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 30.
    Dalam perhitungan tadi,kita hanya mengestimasi atau menaksir satu parameter. Oleh karena itu kita hanya kehilangan satu derajat kebebasan, sehingga derajat bebas yang kita miliki adalah N – 1, yaitu 10 – 1 = 9. Pengantar Statistik Inferensial_M. Jainuri, M.Pd
  • 31.