SlideShare a Scribd company logo
 
Nuclear Reactions ,[object Object]
 
 
Radioactivity ,[object Object],– +    Lead block Radioactive substance
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Nuclear Equations ,[object Object],[object Object],[object Object],[object Object]
Balancing Nuclear Equations ,[object Object],The sum of protons plus neutrons in the products must equal the sum of protons plus neutrons in the reactants. 235 + 1 = 138 + 96 + 2x1 ,[object Object],The sum of nuclear charges in the products must equal the sum of nuclear charges in the reactants. 92 + 0 = 55 + 37 + 2x0 23.1 1 n 0 U 235 92 + Cs 138 55 Rb 96 37 1 n 0 + + 2 1 n 0 U 235 92 + Cs 138 55 Rb 96 37 1 n 0 + + 2
Three Types of Radiation ,[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
Types of Radioactive decay
[object Object],[object Object],[object Object],[object Object]
 
Strong Nuclear Force ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],23.2 n/p too large beta decay X n/p too small positron decay or electron capture Y
 
 
Predicting  the mode of decay ,[object Object],[object Object],[object Object]
Rate of Radioactive Decay ,[object Object],[object Object],[object Object],[object Object]
Nuclear Transmutations ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Transuranium elements ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],c.  4 He 2 Pu 239 94 + Cm 242 96 1 n 0 + 1 n 0 U 238 92 + U 239 92 0  e -1 Pu 239 94 + Np 239 93 +  0 -1  e 14 N 7 U 238 92 + Es 247 99 1 n 0 + 5
Nuclear Energy Recall: Nucleus is composed of proton and neutron Then, is the mass of an atom equal to the total mass of all the proton plus the total mass of all the neutron? Example for a He atom: Total mass of the subatomic particles = mass of 2 p +  + mass of 2n 0 = 2 ( 1.00728 amu ) + 2 (1.00867 amu) = 4.03190 amu And atomic weight of He-4 is 4.00150 Why does the mass differ if the atomic mass = number of protons + number of neutrons?
Mass defect -mass difference due to the release of energy -this mass can be calculated using Einstein’s equation E =mc 2 2  1 1  H  + 2  2 0  H ->  4 2  He + energy Therefore: -energy is released upon the formation of a nucleus from the constituent protons and neutrons -the nucleus is lower in energy than the component parts. -The energy released is a measure of the stability of the nucleus. Taking the reverse of the equation: 4 2  He + energy -> 2  1 1  H  + 2  2 0  n
Therefore, -energy is released to break up the nucleus into its component parts. This is called the nuclear binding energy. -the higher the binding energy, the stable the nuclei. -isotopes with high binding energy and most stable are those in the mass range 50-60.
Nuclear binding energy per nucleon vs Mass number 23.2 nuclear binding energy nucleon nuclear stability
-The plot shows the use of nuclear reactions as source of energy. -energy is released in a process which goes from a higher energy state (less stable, low binding energy) to a low energy state (more stable, high binding energy). -Using the plot, there are two ways in which energy can be released in nuclear reactions: a. Fission – splitting of a heavy nucleus into smaller nuclei b. Fusion – combining of two light nuclei to form a heavier, more stable nucleus.
Nuclear binding energy (BE)  is the energy required to break up a nucleus into its component protons and neutrons. BE = 9 x (p mass) + 10 x (n mass) –  19 F mass E = mc 2 BE (amu)  = 9 x 1.007825 + 10 x 1.008665 – 18.9984 BE = 0.1587 amu 1 amu = 1.49 x 10 -10  J BE = 2.37 x 10 -11 J = 1.25 x 10 -12  J 23.2 BE +  19 F  9 1 p + 10 1 n 9 1 0 binding energy per nucleon =  binding energy number of nucleons =  2.37 x 10 -11  J 19 nucleons
23.3
Radiocarbon Dating t ½  = 5730 years Uranium-238 Dating t ½  = 4.51 x 10 9  years 23.3 14 N +  1 n  14 C +  1 H 7 1 6 0 14 C  14 N +  0   +   6 7 -1 238 U  206 Pb + 8  4   + 6  0  92 -1 82 2
Nuclear Transmutation 23.4 Cyclotron Particle Accelerator 14 N +  4    17 O +  1 p 7 2 8 1 27 Al +  4    30 P +  1 n 13 2 15 0 14 N +  1 p  11 C +  4  7 1 6 2
Nuclear Transmutation 23.4
Nuclear Fission 23.5 Energy = [mass  235 U + mass n – (mass  90 Sr + mass  143 Xe + 3 x mass n )] x c 2 Energy = 3.3 x 10 -11 J per  235 U = 2.0 x 10 13  J per mole  235 U Combustion of 1 ton of coal = 5 x 10 7  J 235 U +  1 n  90 Sr +  143 Xe + 3 1 n + Energy 92 54 38 0 0
Nuclear Fission 23.5 Representative  fission reaction 235 U +  1 n  90 Sr +  143 Xe + 3 1 n + Energy 92 54 38 0 0
Nuclear Fission 23.5 Nuclear chain reaction  is a self-sustaining sequence of nuclear fission reactions. The minimum mass of fissionable material required to generate a self-sustaining nuclear chain reaction is the  critical mass . Non-critical Critical
Nuclear Fission 23.5 Schematic diagram of a nuclear fission reactor
Annual Waste Production 23.5 Nuclear Fission 35,000 tons SO 2 4.5 x 10 6  tons CO 2 1,000 MW coal-fired power plant 3.5 x 10 6  ft 3  ash 1,000 MW nuclear power plant 70 ft 3  vitrified waste
23.5 Nuclear Fission Hazards of the radioactivities in spent fuel compared to uranium ore From “Science, Society and America’s Nuclear Waste,” DOE/RW-0361 TG
23.6 Nuclear Fusion Fusion Reaction Energy Released 6.3 x 10 -13  J 2.8 x 10 -12  J 3.6 x 10 -12  J Tokamak magnetic plasma confinement 2 H +  2 H  3 H +  1 H 1 1 1 1 2 H +  3 H  4 He +  1 n 1 1 2 0 6 Li +  2 H  2  4 He 3 1 2
23.7 Radioisotopes in Medicine ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Brain images with  123 I-labeled compound
Geiger-M ü ller Counter 23.7
23.8 Biological Effects of Radiation R adiation  a bsorbed  d ose ( rad ) 1 rad = 1 x 10 -5  J/g of material R oentgen  e quivalent for  m an ( rem ) 1 rem = 1 rad x Q Q uality Factor  -ray = 1    = 1    = 20
Chemistry In Action:  Food Irradiation Dosage Effect Up to 100 kilorad Inhibits sprouting of potatoes, onions, garlics. Inactivates trichinae in pork. Kills or prevents insects from reproducing in grains, fruits, and vegetables. 100 – 1000 kilorads  Delays spoilage of meat poultry and fish. Reduces salmonella. Extends shelf life of some fruit. 1000 to 10,000 kilorads Sterilizes meat, poultry and fish. Kills insects and microorganisms in spices and seasoning.

More Related Content

What's hot

B sc_I_General chemistry U-I Nuclear chemistry
B sc_I_General chemistry U-I Nuclear chemistry B sc_I_General chemistry U-I Nuclear chemistry
B sc_I_General chemistry U-I Nuclear chemistry
Rai University
 
NUCLEAR MODELS
NUCLEAR MODELSNUCLEAR MODELS
NUCLEAR MODELS
KC College
 
13 nuclear reactions
13 nuclear reactions13 nuclear reactions
13 nuclear reactions
mrtangextrahelp
 
Nuclear chemistry
Nuclear chemistry Nuclear chemistry
Nuclear chemistry
swapnil jadhav
 
6563.nuclear models
6563.nuclear models6563.nuclear models
6563.nuclear modelsakshay garg
 
Nuclear chemistry B Sc III-SEM-VI
 Nuclear chemistry B Sc III-SEM-VI Nuclear chemistry B Sc III-SEM-VI
Nuclear chemistry B Sc III-SEM-VI
Shri Shivaji Science College Amravati
 
5.9 Fission vs Fusion and Nuclear Energy
5.9 Fission vs Fusion and Nuclear Energy5.9 Fission vs Fusion and Nuclear Energy
5.9 Fission vs Fusion and Nuclear Energy
casteelj
 
Nuclear physics
Nuclear physicsNuclear physics
Nuclear physics
Mustafa Gamal
 
Alpha decay - physical background and practical applications
Alpha decay - physical background and practical applicationsAlpha decay - physical background and practical applications
Alpha decay - physical background and practical applications
Andrii Sofiienko
 
Nuclear reactions
Nuclear  reactionsNuclear  reactions
Nuclear reactions
Abhay Pratap Singh
 
Ch 31 Nuclear Physics and Radioactivity
Ch 31 Nuclear Physics and RadioactivityCh 31 Nuclear Physics and Radioactivity
Ch 31 Nuclear Physics and RadioactivityScott Thomas
 
Liquid drop model
Liquid drop modelLiquid drop model
Liquid drop model
Shraddha Madghe
 
Nuclear force
Nuclear forceNuclear force
Nuclear force
Vishal Jangid
 
nuclear shell model.pptx
nuclear shell model.pptxnuclear shell model.pptx
nuclear shell model.pptx
Hassan Yousaf
 
nuclear binding energy
 nuclear binding energy nuclear binding energy
nuclear binding energy
Zeeshan Khalid
 
5 nuclear stability and radioactive decay
5 nuclear stability and radioactive decay5 nuclear stability and radioactive decay
5 nuclear stability and radioactive decayMissingWaldo
 
Nuclear Shell models
Nuclear Shell modelsNuclear Shell models
Nuclear Shell models
NumanUsama
 
nuclear physics,unit 6
nuclear physics,unit 6nuclear physics,unit 6
nuclear physics,unit 6Kumar
 

What's hot (20)

Radioactive decay
Radioactive decayRadioactive decay
Radioactive decay
 
B sc_I_General chemistry U-I Nuclear chemistry
B sc_I_General chemistry U-I Nuclear chemistry B sc_I_General chemistry U-I Nuclear chemistry
B sc_I_General chemistry U-I Nuclear chemistry
 
NUCLEAR MODELS
NUCLEAR MODELSNUCLEAR MODELS
NUCLEAR MODELS
 
Nuclear reaction
Nuclear reactionNuclear reaction
Nuclear reaction
 
13 nuclear reactions
13 nuclear reactions13 nuclear reactions
13 nuclear reactions
 
Nuclear chemistry
Nuclear chemistry Nuclear chemistry
Nuclear chemistry
 
6563.nuclear models
6563.nuclear models6563.nuclear models
6563.nuclear models
 
Nuclear chemistry B Sc III-SEM-VI
 Nuclear chemistry B Sc III-SEM-VI Nuclear chemistry B Sc III-SEM-VI
Nuclear chemistry B Sc III-SEM-VI
 
5.9 Fission vs Fusion and Nuclear Energy
5.9 Fission vs Fusion and Nuclear Energy5.9 Fission vs Fusion and Nuclear Energy
5.9 Fission vs Fusion and Nuclear Energy
 
Nuclear physics
Nuclear physicsNuclear physics
Nuclear physics
 
Alpha decay - physical background and practical applications
Alpha decay - physical background and practical applicationsAlpha decay - physical background and practical applications
Alpha decay - physical background and practical applications
 
Nuclear reactions
Nuclear  reactionsNuclear  reactions
Nuclear reactions
 
Ch 31 Nuclear Physics and Radioactivity
Ch 31 Nuclear Physics and RadioactivityCh 31 Nuclear Physics and Radioactivity
Ch 31 Nuclear Physics and Radioactivity
 
Liquid drop model
Liquid drop modelLiquid drop model
Liquid drop model
 
Nuclear force
Nuclear forceNuclear force
Nuclear force
 
nuclear shell model.pptx
nuclear shell model.pptxnuclear shell model.pptx
nuclear shell model.pptx
 
nuclear binding energy
 nuclear binding energy nuclear binding energy
nuclear binding energy
 
5 nuclear stability and radioactive decay
5 nuclear stability and radioactive decay5 nuclear stability and radioactive decay
5 nuclear stability and radioactive decay
 
Nuclear Shell models
Nuclear Shell modelsNuclear Shell models
Nuclear Shell models
 
nuclear physics,unit 6
nuclear physics,unit 6nuclear physics,unit 6
nuclear physics,unit 6
 

Viewers also liked

Lecture 25.2- Nuclear Transformations
Lecture 25.2- Nuclear TransformationsLecture 25.2- Nuclear Transformations
Lecture 25.2- Nuclear Transformations
Mary Beth Smith
 
Synchrotron
SynchrotronSynchrotron
Synchrotron
vidwan pandey
 
Chapter 22.2 : Radioactive Decay
Chapter 22.2 : Radioactive DecayChapter 22.2 : Radioactive Decay
Chapter 22.2 : Radioactive DecayChris Foltz
 
CHARGE PARTICLE ACCELERATORCharge particle accelerator
CHARGE PARTICLE ACCELERATORCharge particle acceleratorCHARGE PARTICLE ACCELERATORCharge particle accelerator
CHARGE PARTICLE ACCELERATORCharge particle accelerator
SYED SHAHEEN SHAH
 
Particle accelerator
Particle accelerator Particle accelerator
Particle accelerator
Bisma Princezz
 
Van de graff ppt
Van de graff pptVan de graff ppt
Van de graff ppt
Kinjal Jain
 
Van de graaff
Van de graaffVan de graaff
Van de graaff
Abdul Wadood Khan
 
Particle accelerator
Particle acceleratorParticle accelerator
Particle acceleratorChen Siyuan
 
Nuclear Chemistry Powerpoint
Nuclear Chemistry PowerpointNuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
jeksespina
 
Vande graaff generator
Vande graaff generatorVande graaff generator
Vande graaff generator
Pintoo Sarkar
 
Linear Accelerator
Linear AcceleratorLinear Accelerator
Linear Accelerator
sailakshmi pullookkara
 
Panunungkulan ni Magsaysay
Panunungkulan ni MagsaysayPanunungkulan ni Magsaysay
Panunungkulan ni Magsaysay
jetsetter22
 

Viewers also liked (12)

Lecture 25.2- Nuclear Transformations
Lecture 25.2- Nuclear TransformationsLecture 25.2- Nuclear Transformations
Lecture 25.2- Nuclear Transformations
 
Synchrotron
SynchrotronSynchrotron
Synchrotron
 
Chapter 22.2 : Radioactive Decay
Chapter 22.2 : Radioactive DecayChapter 22.2 : Radioactive Decay
Chapter 22.2 : Radioactive Decay
 
CHARGE PARTICLE ACCELERATORCharge particle accelerator
CHARGE PARTICLE ACCELERATORCharge particle acceleratorCHARGE PARTICLE ACCELERATORCharge particle accelerator
CHARGE PARTICLE ACCELERATORCharge particle accelerator
 
Particle accelerator
Particle accelerator Particle accelerator
Particle accelerator
 
Van de graff ppt
Van de graff pptVan de graff ppt
Van de graff ppt
 
Van de graaff
Van de graaffVan de graaff
Van de graaff
 
Particle accelerator
Particle acceleratorParticle accelerator
Particle accelerator
 
Nuclear Chemistry Powerpoint
Nuclear Chemistry PowerpointNuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
 
Vande graaff generator
Vande graaff generatorVande graaff generator
Vande graaff generator
 
Linear Accelerator
Linear AcceleratorLinear Accelerator
Linear Accelerator
 
Panunungkulan ni Magsaysay
Panunungkulan ni MagsaysayPanunungkulan ni Magsaysay
Panunungkulan ni Magsaysay
 

Similar to Nuclear chemistry

Nuclear Chemistry Powerpoint 2003
Nuclear Chemistry Powerpoint   2003Nuclear Chemistry Powerpoint   2003
Nuclear Chemistry Powerpoint 2003
jeksespina
 
Nuclear Chemistry Powerpoint 2003
Nuclear Chemistry Powerpoint   2003Nuclear Chemistry Powerpoint   2003
Nuclear Chemistry Powerpoint 2003
Jelor Gallego
 
ch21-nuclear-chem.pptx
ch21-nuclear-chem.pptxch21-nuclear-chem.pptx
ch21-nuclear-chem.pptx
NurrohmahHhabibahOzo
 
Norman John Brodeur Nuclear Physics.pdf
Norman John Brodeur Nuclear Physics.pdfNorman John Brodeur Nuclear Physics.pdf
Norman John Brodeur Nuclear Physics.pdf
Norman John Brodeur
 
Principles of nuclear energy
Principles of nuclear energyPrinciples of nuclear energy
Principles of nuclear energy
Hashim Hasnain Hadi
 
Ch18 z7e nuclear
Ch18 z7e nuclearCh18 z7e nuclear
Ch18 z7e nuclearblachman
 
11 Nuclear
11 Nuclear11 Nuclear
11 Nuclear
Gita_Sathianathan
 
Nuclear chemistry and radiation
Nuclear chemistry and radiationNuclear chemistry and radiation
Nuclear chemistry and radiation
James H. Workman
 
Radioactivity
RadioactivityRadioactivity
RadioactivityE H Annex
 
Nuclear physics
Nuclear physicsNuclear physics
Nuclear physics
vishal947731
 
10- Nuclear and particle.pptx
10- Nuclear and particle.pptx10- Nuclear and particle.pptx
10- Nuclear and particle.pptx
FaragAtef
 
25.0 Nuclear Physics Sem 3.pptx
25.0 Nuclear Physics Sem 3.pptx25.0 Nuclear Physics Sem 3.pptx
25.0 Nuclear Physics Sem 3.pptx
ssuser955fb81
 
Nuclear fission and fusion
Nuclear fission and fusionNuclear fission and fusion
Nuclear fission and fusionYashu Chhabra
 
Radiobiology2
Radiobiology2Radiobiology2
Radiobiology2zedan
 
Chapter_23_Nuclear_Chemistry.ppt
Chapter_23_Nuclear_Chemistry.pptChapter_23_Nuclear_Chemistry.ppt
Chapter_23_Nuclear_Chemistry.ppt
Jiesel1
 
Radioactive_Decay.pptx
Radioactive_Decay.pptxRadioactive_Decay.pptx
Radioactive_Decay.pptx
ShahneelVastani2
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handoutnomio0703
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handoutnomio0703
 

Similar to Nuclear chemistry (20)

Nuclear Chemistry Powerpoint 2003
Nuclear Chemistry Powerpoint   2003Nuclear Chemistry Powerpoint   2003
Nuclear Chemistry Powerpoint 2003
 
Nuclear Chemistry Powerpoint 2003
Nuclear Chemistry Powerpoint   2003Nuclear Chemistry Powerpoint   2003
Nuclear Chemistry Powerpoint 2003
 
ch21-nuclear-chem.pptx
ch21-nuclear-chem.pptxch21-nuclear-chem.pptx
ch21-nuclear-chem.pptx
 
Norman John Brodeur Nuclear Physics.pdf
Norman John Brodeur Nuclear Physics.pdfNorman John Brodeur Nuclear Physics.pdf
Norman John Brodeur Nuclear Physics.pdf
 
Principles of nuclear energy
Principles of nuclear energyPrinciples of nuclear energy
Principles of nuclear energy
 
Ch18 z7e nuclear
Ch18 z7e nuclearCh18 z7e nuclear
Ch18 z7e nuclear
 
11 Nuclear
11 Nuclear11 Nuclear
11 Nuclear
 
Nuclear chemistry and radiation
Nuclear chemistry and radiationNuclear chemistry and radiation
Nuclear chemistry and radiation
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Nuclear physics
Nuclear physicsNuclear physics
Nuclear physics
 
10- Nuclear and particle.pptx
10- Nuclear and particle.pptx10- Nuclear and particle.pptx
10- Nuclear and particle.pptx
 
25.0 Nuclear Physics Sem 3.pptx
25.0 Nuclear Physics Sem 3.pptx25.0 Nuclear Physics Sem 3.pptx
25.0 Nuclear Physics Sem 3.pptx
 
Nuclear fission and fusion
Nuclear fission and fusionNuclear fission and fusion
Nuclear fission and fusion
 
Radiobiology2
Radiobiology2Radiobiology2
Radiobiology2
 
Chapter_23_Nuclear_Chemistry.ppt
Chapter_23_Nuclear_Chemistry.pptChapter_23_Nuclear_Chemistry.ppt
Chapter_23_Nuclear_Chemistry.ppt
 
Radioactive_Decay.pptx
Radioactive_Decay.pptxRadioactive_Decay.pptx
Radioactive_Decay.pptx
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
Student ch 19 nuclear
Student ch 19 nuclearStudent ch 19 nuclear
Student ch 19 nuclear
 

More from Kris Ann Ferrer

Crystallization of Ice in Frozen Desserts
Crystallization of Ice in Frozen Desserts Crystallization of Ice in Frozen Desserts
Crystallization of Ice in Frozen Desserts
Kris Ann Ferrer
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpointKris Ann Ferrer
 
MATTER
MATTERMATTER
Laws of Chemical Combination + Stoichiometry
Laws of Chemical Combination + StoichiometryLaws of Chemical Combination + Stoichiometry
Laws of Chemical Combination + StoichiometryKris Ann Ferrer
 
The nine environmental principles
The nine environmental principlesThe nine environmental principles
The nine environmental principlesKris Ann Ferrer
 
Recycling and proper waste management of plastics r cl denr
Recycling and proper waste management of plastics r cl denrRecycling and proper waste management of plastics r cl denr
Recycling and proper waste management of plastics r cl denrKris Ann Ferrer
 
Periodic Table
Periodic TablePeriodic Table
Periodic Table
Kris Ann Ferrer
 
The Earth’s Atmosphere
The Earth’s AtmosphereThe Earth’s Atmosphere
The Earth’s Atmosphere
Kris Ann Ferrer
 
History of atomic structure
History of atomic structureHistory of atomic structure
History of atomic structureKris Ann Ferrer
 
History of the Atomic Structure (part1)
History of the Atomic Structure (part1)History of the Atomic Structure (part1)
History of the Atomic Structure (part1)
Kris Ann Ferrer
 

More from Kris Ann Ferrer (19)

Crystallization of Ice in Frozen Desserts
Crystallization of Ice in Frozen Desserts Crystallization of Ice in Frozen Desserts
Crystallization of Ice in Frozen Desserts
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpoint
 
Hydrosphere
HydrosphereHydrosphere
Hydrosphere
 
MATTER
MATTERMATTER
MATTER
 
Laws of Chemical Combination + Stoichiometry
Laws of Chemical Combination + StoichiometryLaws of Chemical Combination + Stoichiometry
Laws of Chemical Combination + Stoichiometry
 
The nine environmental principles
The nine environmental principlesThe nine environmental principles
The nine environmental principles
 
Molecular Geometry
Molecular GeometryMolecular Geometry
Molecular Geometry
 
Chemical bonding II
Chemical bonding IIChemical bonding II
Chemical bonding II
 
Allotropes of carbon
Allotropes of carbonAllotropes of carbon
Allotropes of carbon
 
03 ra9003-pco
03   ra9003-pco03   ra9003-pco
03 ra9003-pco
 
Recycling and proper waste management of plastics r cl denr
Recycling and proper waste management of plastics r cl denrRecycling and proper waste management of plastics r cl denr
Recycling and proper waste management of plastics r cl denr
 
Chemical Bonding
Chemical Bonding Chemical Bonding
Chemical Bonding
 
Chemical Bonding
Chemical Bonding Chemical Bonding
Chemical Bonding
 
Periodic Table
Periodic TablePeriodic Table
Periodic Table
 
Quantum numbers
Quantum numbersQuantum numbers
Quantum numbers
 
Electron configuration
Electron configurationElectron configuration
Electron configuration
 
The Earth’s Atmosphere
The Earth’s AtmosphereThe Earth’s Atmosphere
The Earth’s Atmosphere
 
History of atomic structure
History of atomic structureHistory of atomic structure
History of atomic structure
 
History of the Atomic Structure (part1)
History of the Atomic Structure (part1)History of the Atomic Structure (part1)
History of the Atomic Structure (part1)
 

Nuclear chemistry

  • 1.  
  • 2.
  • 3.  
  • 4.  
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 13.
  • 14.  
  • 15.
  • 16.
  • 17.  
  • 18.  
  • 19.
  • 20.
  • 21.
  • 22.
  • 23. Nuclear Energy Recall: Nucleus is composed of proton and neutron Then, is the mass of an atom equal to the total mass of all the proton plus the total mass of all the neutron? Example for a He atom: Total mass of the subatomic particles = mass of 2 p + + mass of 2n 0 = 2 ( 1.00728 amu ) + 2 (1.00867 amu) = 4.03190 amu And atomic weight of He-4 is 4.00150 Why does the mass differ if the atomic mass = number of protons + number of neutrons?
  • 24. Mass defect -mass difference due to the release of energy -this mass can be calculated using Einstein’s equation E =mc 2 2 1 1 H + 2 2 0 H -> 4 2 He + energy Therefore: -energy is released upon the formation of a nucleus from the constituent protons and neutrons -the nucleus is lower in energy than the component parts. -The energy released is a measure of the stability of the nucleus. Taking the reverse of the equation: 4 2 He + energy -> 2 1 1 H + 2 2 0 n
  • 25. Therefore, -energy is released to break up the nucleus into its component parts. This is called the nuclear binding energy. -the higher the binding energy, the stable the nuclei. -isotopes with high binding energy and most stable are those in the mass range 50-60.
  • 26. Nuclear binding energy per nucleon vs Mass number 23.2 nuclear binding energy nucleon nuclear stability
  • 27. -The plot shows the use of nuclear reactions as source of energy. -energy is released in a process which goes from a higher energy state (less stable, low binding energy) to a low energy state (more stable, high binding energy). -Using the plot, there are two ways in which energy can be released in nuclear reactions: a. Fission – splitting of a heavy nucleus into smaller nuclei b. Fusion – combining of two light nuclei to form a heavier, more stable nucleus.
  • 28. Nuclear binding energy (BE) is the energy required to break up a nucleus into its component protons and neutrons. BE = 9 x (p mass) + 10 x (n mass) – 19 F mass E = mc 2 BE (amu) = 9 x 1.007825 + 10 x 1.008665 – 18.9984 BE = 0.1587 amu 1 amu = 1.49 x 10 -10 J BE = 2.37 x 10 -11 J = 1.25 x 10 -12 J 23.2 BE + 19 F 9 1 p + 10 1 n 9 1 0 binding energy per nucleon = binding energy number of nucleons = 2.37 x 10 -11 J 19 nucleons
  • 29. 23.3
  • 30. Radiocarbon Dating t ½ = 5730 years Uranium-238 Dating t ½ = 4.51 x 10 9 years 23.3 14 N + 1 n 14 C + 1 H 7 1 6 0 14 C 14 N + 0  +  6 7 -1 238 U 206 Pb + 8 4  + 6 0  92 -1 82 2
  • 31. Nuclear Transmutation 23.4 Cyclotron Particle Accelerator 14 N + 4  17 O + 1 p 7 2 8 1 27 Al + 4  30 P + 1 n 13 2 15 0 14 N + 1 p 11 C + 4  7 1 6 2
  • 33. Nuclear Fission 23.5 Energy = [mass 235 U + mass n – (mass 90 Sr + mass 143 Xe + 3 x mass n )] x c 2 Energy = 3.3 x 10 -11 J per 235 U = 2.0 x 10 13 J per mole 235 U Combustion of 1 ton of coal = 5 x 10 7 J 235 U + 1 n 90 Sr + 143 Xe + 3 1 n + Energy 92 54 38 0 0
  • 34. Nuclear Fission 23.5 Representative fission reaction 235 U + 1 n 90 Sr + 143 Xe + 3 1 n + Energy 92 54 38 0 0
  • 35. Nuclear Fission 23.5 Nuclear chain reaction is a self-sustaining sequence of nuclear fission reactions. The minimum mass of fissionable material required to generate a self-sustaining nuclear chain reaction is the critical mass . Non-critical Critical
  • 36. Nuclear Fission 23.5 Schematic diagram of a nuclear fission reactor
  • 37. Annual Waste Production 23.5 Nuclear Fission 35,000 tons SO 2 4.5 x 10 6 tons CO 2 1,000 MW coal-fired power plant 3.5 x 10 6 ft 3 ash 1,000 MW nuclear power plant 70 ft 3 vitrified waste
  • 38. 23.5 Nuclear Fission Hazards of the radioactivities in spent fuel compared to uranium ore From “Science, Society and America’s Nuclear Waste,” DOE/RW-0361 TG
  • 39. 23.6 Nuclear Fusion Fusion Reaction Energy Released 6.3 x 10 -13 J 2.8 x 10 -12 J 3.6 x 10 -12 J Tokamak magnetic plasma confinement 2 H + 2 H 3 H + 1 H 1 1 1 1 2 H + 3 H 4 He + 1 n 1 1 2 0 6 Li + 2 H 2 4 He 3 1 2
  • 40.
  • 41. Geiger-M ü ller Counter 23.7
  • 42. 23.8 Biological Effects of Radiation R adiation a bsorbed d ose ( rad ) 1 rad = 1 x 10 -5 J/g of material R oentgen e quivalent for m an ( rem ) 1 rem = 1 rad x Q Q uality Factor  -ray = 1  = 1  = 20
  • 43. Chemistry In Action: Food Irradiation Dosage Effect Up to 100 kilorad Inhibits sprouting of potatoes, onions, garlics. Inactivates trichinae in pork. Kills or prevents insects from reproducing in grains, fruits, and vegetables. 100 – 1000 kilorads Delays spoilage of meat poultry and fish. Reduces salmonella. Extends shelf life of some fruit. 1000 to 10,000 kilorads Sterilizes meat, poultry and fish. Kills insects and microorganisms in spices and seasoning.