SlideShare a Scribd company logo
Sanjivani Rural Education Society’s
Sanjivani College of Engineering, Kopargaon-423 603
(An Autonomous Institute, Affiliated to Savitribai Phule Pune University, Pune)
NACC ‘A’ Grade Accredited, ISO 9001:2015 Certified
Department of Computer Engineering
(NBA Accredited)
Prof. S.A.Shivarkar
Assistant Professor
E-mail : shivarkarsandipcomp@sanjivani.org.in
Contact No: 8275032712
Subject- Digital Electronics and Data Communication
(CO204)
Unit 2- Combinational Logic Design
Multiplexer
• One of the combinational circuit
• Example
• Several input and only one output
• Data on one of the input line is directed to
output line.
• Select lines!!
• It is also called as data selector.
• Fig. shows multiplexer with n input line and one
output line.
• Number of selector lines are m Where n = 2m
• Selector lines select one out of n data sources
and transmitted to single output channel.
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 2
4:1 Multiplexer
• 4 input lines I0 to I3
• 2 selector lines S1 and S0
• Y=S1’S0’I0 + S1’S0I1 + S1S0’I2 + S1S0I3
• Similarly We have 8:1 mux, 16:1 mux..
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 4
Select Inputs Output
S1 S0 Y
0 0 I0
0 1 I1
1 0 I2
1 1 I3
8:1 Multiplexer
• 8 input lines I0 to I7
• 3 selector lines S2, S1 and S0
• Similarly We have 16:1 mux..
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 5
Select Inputs Output
S2 S1 S0 Y
0 0 0 I0
0 0 1 I1
0 1 0 I2
0 1 1 I3
1 0 0 I4
1 0 1 I5
1 1 0 I6
1 1 1 I7
Combinational Circuit Design Using Multiplexer
• Advantages:
• Simplification of logic function is not required.
• Minimize IC package count.
• In order to design combinational circuit using Mux
• Either Truth table should be known
• Or one of the standard form of logical expression must be available.
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 6
Combinational Logic Design Using Multiplexer
• Implement following function using
mux.
• F(A,B,C) = ∑m(0,1,4,6)
• Solution
• Mux with 3 select line will be required.
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 7
Combinational Logic Design Using Multiplexer
• Implement using Mux
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 8
A B C Y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
Multiplexer Tree
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 9
IC 74151
• It is 8:1 multiplexer.
• It can be used as universal
function generator to
generate any logic function of
four variable.
• Two outputs are provided one
is complemented and other is
uncomplemented.
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 10
Combinational logic design Using 74151
• Implement using mux.
• F(A,B,C) = ∑m(0,1,2,5)
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 11
Demultiplexer
• It performs reverse operation of multiplexer.
• Accept single input and distributes it over
several outputs.
• The select line determines to which output
line input data is to be transmitted.
• Fig. shows Demultiplexer with n output line
and one input line.
• Number of selector lines are m.
• Where n = 2m
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 12
1:2 Demultiplexer
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 13
• 2 output lines
• 1 selector line
• Y0=S’I
• Y1=SI
Output
S (Select) Y0 Y1
0 I 0
1 0 I
1:4 Demultiplexer
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 14
• 4 output lines
• 2 selector line
• Logical expression
for output
Select Output
S1 S0 Y0 Y1 Y2 Y3
0 0 I 0 0 0
0 1 0 I 0 0
1 0 0 0 I 0
1 1 0 0 0 I
Combinational logic design Using Demultiplexer
• Demux can also be used to design
combinational circuit.
• Lets design Full subtractor using
demux.
• So D=∑m(1,2,4,7)
• Bout=∑m(1,2,3,7)
• Design on next slide->
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 15
Input Output
A B Bin D Bout
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1
Combinational logic design Using Demultiplexer
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 16
Demultiplexer Tree
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 17
Magnitude Comparator
• It compare magnitude of two n bit binary numbers say A and B and
activates one of three outputs A=B, A>B and A<B.
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 18
Design 1 bit Comparator
• It will compare two 1 bit number.
19
1 bit Comparator cont..
• Step1:
• Obtain truth table
• Step 2
• From truth table obtain three K
map for 3 output
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 20
Inputs Output
A0 B0 Y0 (A=B) Y1(A<B) Y2(A>B)
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
1 1 1 0 0
1 bit Comparator cont..
• Step 3: Obtain simplified expression from K map.
• Y0=A0’B0’ + A0B0
• Y1=A0’B0
• Y2=A0B0’
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 21
Design 2 bit comparator
• It will compare two 2 bit numbers.
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 22
2 bit comparator cont..
• Step1:
• Obtain truth table
• Step 2
• From truth table obtain 3 K map for 3 output
• Obtain simplified expression from K map.
Note: Left for self exercise
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 23
A1 A0 B1 B0 Y0 (A=B) Y1(A<B) Y2(A>B)
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0
IC 7485
• It is used to compare two 4 bit
numbers.
• This 16 pin IC.
• Note that circuit has 3 additional
cascade inputs (Pin 2,3,4).
• They are used to connect more than
one 7485 IC to compare numbers
having more than 4 bits.
• But these input have lower priority.
• They decide output only when 4 bit
input fed to this IC is equal.
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 24
IC 7485 cont..
• IF A=0011 and B=0001 then
output (A>B Pin no. 5) will be
high and all other outputs will
be low irrespective of the values
appearing on pin 2,3 and 4.
• When IC 7485 is not used in
cascade mode we keep Pin 2,4
at logic 0 and Pin 3 at logic 1.
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 25
IC 7485 cont..
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 26
Compare two 8 bit numbers using 7485
Encoder
• Encoders convert single active signal
(out of r inputs) into coded binary, s
bit output. (This is normally referred
to as r line to s line encoder)
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 27
Design 4 line to 2 line encoder that take 4 line decimal signal and convert it to binary code
Decimal Binary
D3 D2 D1 D0 A B
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 28
Decimal to BCD encoder
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 29
• There are ten switches one for each
number from 0 to 9.
• When particular number is to be fed
to the digital circuit in BCD form the
switch corresponding to that number
is pressed.
Priority Encoders
• Often encoders are
called as priority
encoders which means
that more than one of
the r input may be
active, in which case
the output pattern
produced is that for the
highest priority input.
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 30
Decoder
• A decode is similar to Demultiplexer with one
exception there is no data input.
• It has n input line and maximum 2n output
line.
• Consider decoder in given figure
• It has control inputs A2,A1,A0
• It is called as 1 of 8 decoder because only 1 of 8
output line is high.
• It is called binary to decimal decoder.
• It has 3 input and 8 output so also called as 3 line
to 8 line decoder.
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 31
3 line to 8 line Decoder.
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 32
DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 33

More Related Content

Similar to Combinational Ckt.pdf

Combinational and sequential logic
Combinational and sequential logicCombinational and sequential logic
Combinational and sequential logic
Deepak John
 
Assignment#4b
Assignment#4bAssignment#4b
Assignment#4b
Sunita Milind Dol
 
2-bit comparator
2-bit comparator2-bit comparator
2-bit comparator
Islam Adel
 
ANALYSIS & DESIGN OF COMBINATIONAL LOGIC
ANALYSIS & DESIGN OF COMBINATIONAL LOGICANALYSIS & DESIGN OF COMBINATIONAL LOGIC
ANALYSIS & DESIGN OF COMBINATIONAL LOGIC
Supanna Shirguppe
 
Digital Electronics (EC8392) UNIT-II -PPT-S.SESHA VIDHYA/ ASP/ECE
Digital Electronics (EC8392) UNIT-II -PPT-S.SESHA VIDHYA/ ASP/ECEDigital Electronics (EC8392) UNIT-II -PPT-S.SESHA VIDHYA/ ASP/ECE
Digital Electronics (EC8392) UNIT-II -PPT-S.SESHA VIDHYA/ ASP/ECE
SeshaVidhyaS
 
DEL LAB MANUAL
DEL LAB MANUALDEL LAB MANUAL
Mini Project 1 - 2-to-4 Decoder with Enable Input E and 4-to-2 Line Priority...
Mini Project 1 -  2-to-4 Decoder with Enable Input E and 4-to-2 Line Priority...Mini Project 1 -  2-to-4 Decoder with Enable Input E and 4-to-2 Line Priority...
Mini Project 1 - 2-to-4 Decoder with Enable Input E and 4-to-2 Line Priority...
AIMST University
 
lecture_19.pptx
lecture_19.pptxlecture_19.pptx
lecture_19.pptx
PrasenjitKumarDas2
 
Adder and Subtractor
Adder and SubtractorAdder and Subtractor
Adder and Subtractor
Jaydeep Kale
 
DCF-Combinational circuit
DCF-Combinational circuitDCF-Combinational circuit
DCF-Combinational circuit
vinothinisureshbabu
 
K010137378
K010137378K010137378
K010137378
IOSR Journals
 
Design, Construction and Operation of a 4-Bit Counting Circuit
Design, Construction and Operation of a 4-Bit Counting CircuitDesign, Construction and Operation of a 4-Bit Counting Circuit
Design, Construction and Operation of a 4-Bit Counting Circuit
IOSR Journals
 
combinational-circuit (1).ppt
combinational-circuit (1).pptcombinational-circuit (1).ppt
combinational-circuit (1).ppt
ThanmayiKumar
 
Saur lecture 16
Saur lecture 16Saur lecture 16
Saur lecture 16
saur28_83
 
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...
IJERA Editor
 
Object counter
Object counterObject counter
Object counter
suresh shindhe
 
Lcdf4 chap 03_p2
Lcdf4 chap 03_p2Lcdf4 chap 03_p2
Lcdf4 chap 03_p2
ozgur_can
 
Iaetsd implementation of power efficient iterative logarithmic multiplier usi...
Iaetsd implementation of power efficient iterative logarithmic multiplier usi...Iaetsd implementation of power efficient iterative logarithmic multiplier usi...
Iaetsd implementation of power efficient iterative logarithmic multiplier usi...
Iaetsd Iaetsd
 
C0421013019
C0421013019C0421013019
C0421013019
ijceronline
 
IC Layout Design of 4-bit Magnitude Comparator using Electric VLSI Design System
IC Layout Design of 4-bit Magnitude Comparator using Electric VLSI Design SystemIC Layout Design of 4-bit Magnitude Comparator using Electric VLSI Design System
IC Layout Design of 4-bit Magnitude Comparator using Electric VLSI Design System
IOSRJVSP
 

Similar to Combinational Ckt.pdf (20)

Combinational and sequential logic
Combinational and sequential logicCombinational and sequential logic
Combinational and sequential logic
 
Assignment#4b
Assignment#4bAssignment#4b
Assignment#4b
 
2-bit comparator
2-bit comparator2-bit comparator
2-bit comparator
 
ANALYSIS & DESIGN OF COMBINATIONAL LOGIC
ANALYSIS & DESIGN OF COMBINATIONAL LOGICANALYSIS & DESIGN OF COMBINATIONAL LOGIC
ANALYSIS & DESIGN OF COMBINATIONAL LOGIC
 
Digital Electronics (EC8392) UNIT-II -PPT-S.SESHA VIDHYA/ ASP/ECE
Digital Electronics (EC8392) UNIT-II -PPT-S.SESHA VIDHYA/ ASP/ECEDigital Electronics (EC8392) UNIT-II -PPT-S.SESHA VIDHYA/ ASP/ECE
Digital Electronics (EC8392) UNIT-II -PPT-S.SESHA VIDHYA/ ASP/ECE
 
DEL LAB MANUAL
DEL LAB MANUALDEL LAB MANUAL
DEL LAB MANUAL
 
Mini Project 1 - 2-to-4 Decoder with Enable Input E and 4-to-2 Line Priority...
Mini Project 1 -  2-to-4 Decoder with Enable Input E and 4-to-2 Line Priority...Mini Project 1 -  2-to-4 Decoder with Enable Input E and 4-to-2 Line Priority...
Mini Project 1 - 2-to-4 Decoder with Enable Input E and 4-to-2 Line Priority...
 
lecture_19.pptx
lecture_19.pptxlecture_19.pptx
lecture_19.pptx
 
Adder and Subtractor
Adder and SubtractorAdder and Subtractor
Adder and Subtractor
 
DCF-Combinational circuit
DCF-Combinational circuitDCF-Combinational circuit
DCF-Combinational circuit
 
K010137378
K010137378K010137378
K010137378
 
Design, Construction and Operation of a 4-Bit Counting Circuit
Design, Construction and Operation of a 4-Bit Counting CircuitDesign, Construction and Operation of a 4-Bit Counting Circuit
Design, Construction and Operation of a 4-Bit Counting Circuit
 
combinational-circuit (1).ppt
combinational-circuit (1).pptcombinational-circuit (1).ppt
combinational-circuit (1).ppt
 
Saur lecture 16
Saur lecture 16Saur lecture 16
Saur lecture 16
 
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier us...
 
Object counter
Object counterObject counter
Object counter
 
Lcdf4 chap 03_p2
Lcdf4 chap 03_p2Lcdf4 chap 03_p2
Lcdf4 chap 03_p2
 
Iaetsd implementation of power efficient iterative logarithmic multiplier usi...
Iaetsd implementation of power efficient iterative logarithmic multiplier usi...Iaetsd implementation of power efficient iterative logarithmic multiplier usi...
Iaetsd implementation of power efficient iterative logarithmic multiplier usi...
 
C0421013019
C0421013019C0421013019
C0421013019
 
IC Layout Design of 4-bit Magnitude Comparator using Electric VLSI Design System
IC Layout Design of 4-bit Magnitude Comparator using Electric VLSI Design SystemIC Layout Design of 4-bit Magnitude Comparator using Electric VLSI Design System
IC Layout Design of 4-bit Magnitude Comparator using Electric VLSI Design System
 

More from ShivarkarSandip

Cluster Analysis: Measuring Similarity & Dissimilarity
Cluster Analysis: Measuring Similarity & DissimilarityCluster Analysis: Measuring Similarity & Dissimilarity
Cluster Analysis: Measuring Similarity & Dissimilarity
ShivarkarSandip
 
Classification, Attribute Selection, Classifiers- Decision Tree, ID3,C4.5,Nav...
Classification, Attribute Selection, Classifiers- Decision Tree, ID3,C4.5,Nav...Classification, Attribute Selection, Classifiers- Decision Tree, ID3,C4.5,Nav...
Classification, Attribute Selection, Classifiers- Decision Tree, ID3,C4.5,Nav...
ShivarkarSandip
 
Frequent Pattern Analysis, Apriori and FP Growth Algorithm
Frequent Pattern Analysis, Apriori and FP Growth AlgorithmFrequent Pattern Analysis, Apriori and FP Growth Algorithm
Frequent Pattern Analysis, Apriori and FP Growth Algorithm
ShivarkarSandip
 
Data Warehouse and Architecture, OLAP Operation
Data Warehouse and Architecture, OLAP OperationData Warehouse and Architecture, OLAP Operation
Data Warehouse and Architecture, OLAP Operation
ShivarkarSandip
 
Data Preparation and Preprocessing , Data Cleaning
Data Preparation and Preprocessing , Data CleaningData Preparation and Preprocessing , Data Cleaning
Data Preparation and Preprocessing , Data Cleaning
ShivarkarSandip
 
Introduction to Data Mining, KDD Process, OLTP and OLAP
Introduction to Data Mining, KDD Process, OLTP and OLAPIntroduction to Data Mining, KDD Process, OLTP and OLAP
Introduction to Data Mining, KDD Process, OLTP and OLAP
ShivarkarSandip
 
Introduction to Data Mining KDD Process OLAP
Introduction to Data Mining KDD Process OLAPIntroduction to Data Mining KDD Process OLAP
Introduction to Data Mining KDD Process OLAP
ShivarkarSandip
 
Issues in data mining Patterns Online Analytical Processing
Issues in data mining  Patterns Online Analytical ProcessingIssues in data mining  Patterns Online Analytical Processing
Issues in data mining Patterns Online Analytical Processing
ShivarkarSandip
 
Introduction to data mining which covers the basics
Introduction to data mining which covers the basicsIntroduction to data mining which covers the basics
Introduction to data mining which covers the basics
ShivarkarSandip
 
Introduction to Data Communication.pdf
Introduction to Data Communication.pdfIntroduction to Data Communication.pdf
Introduction to Data Communication.pdf
ShivarkarSandip
 
Classification of Signal.pdf
Classification of Signal.pdfClassification of Signal.pdf
Classification of Signal.pdf
ShivarkarSandip
 
Sequential Ckt.pdf
Sequential Ckt.pdfSequential Ckt.pdf
Sequential Ckt.pdf
ShivarkarSandip
 
Flip Flop.pdf
Flip Flop.pdfFlip Flop.pdf
Flip Flop.pdf
ShivarkarSandip
 
Boolean Algebra Terminologies.pdf
Boolean Algebra Terminologies.pdfBoolean Algebra Terminologies.pdf
Boolean Algebra Terminologies.pdf
ShivarkarSandip
 
Logic Minimization.pdf
Logic Minimization.pdfLogic Minimization.pdf
Logic Minimization.pdf
ShivarkarSandip
 
Unit III Introduction to DWH.pdf
Unit III Introduction to DWH.pdfUnit III Introduction to DWH.pdf
Unit III Introduction to DWH.pdf
ShivarkarSandip
 
Unit II Decision Making Basics and Concepts.pdf
Unit II Decision Making Basics and Concepts.pdfUnit II Decision Making Basics and Concepts.pdf
Unit II Decision Making Basics and Concepts.pdf
ShivarkarSandip
 
Unit I Factors Responsible for Successful BI Project.pdf
Unit I Factors Responsible for Successful BI Project.pdfUnit I Factors Responsible for Successful BI Project.pdf
Unit I Factors Responsible for Successful BI Project.pdf
ShivarkarSandip
 
Unit I Operational data Informational data.pdf
Unit I Operational data  Informational data.pdfUnit I Operational data  Informational data.pdf
Unit I Operational data Informational data.pdf
ShivarkarSandip
 
Unit I Introduction to BI.pdf
Unit I Introduction to BI.pdfUnit I Introduction to BI.pdf
Unit I Introduction to BI.pdf
ShivarkarSandip
 

More from ShivarkarSandip (20)

Cluster Analysis: Measuring Similarity & Dissimilarity
Cluster Analysis: Measuring Similarity & DissimilarityCluster Analysis: Measuring Similarity & Dissimilarity
Cluster Analysis: Measuring Similarity & Dissimilarity
 
Classification, Attribute Selection, Classifiers- Decision Tree, ID3,C4.5,Nav...
Classification, Attribute Selection, Classifiers- Decision Tree, ID3,C4.5,Nav...Classification, Attribute Selection, Classifiers- Decision Tree, ID3,C4.5,Nav...
Classification, Attribute Selection, Classifiers- Decision Tree, ID3,C4.5,Nav...
 
Frequent Pattern Analysis, Apriori and FP Growth Algorithm
Frequent Pattern Analysis, Apriori and FP Growth AlgorithmFrequent Pattern Analysis, Apriori and FP Growth Algorithm
Frequent Pattern Analysis, Apriori and FP Growth Algorithm
 
Data Warehouse and Architecture, OLAP Operation
Data Warehouse and Architecture, OLAP OperationData Warehouse and Architecture, OLAP Operation
Data Warehouse and Architecture, OLAP Operation
 
Data Preparation and Preprocessing , Data Cleaning
Data Preparation and Preprocessing , Data CleaningData Preparation and Preprocessing , Data Cleaning
Data Preparation and Preprocessing , Data Cleaning
 
Introduction to Data Mining, KDD Process, OLTP and OLAP
Introduction to Data Mining, KDD Process, OLTP and OLAPIntroduction to Data Mining, KDD Process, OLTP and OLAP
Introduction to Data Mining, KDD Process, OLTP and OLAP
 
Introduction to Data Mining KDD Process OLAP
Introduction to Data Mining KDD Process OLAPIntroduction to Data Mining KDD Process OLAP
Introduction to Data Mining KDD Process OLAP
 
Issues in data mining Patterns Online Analytical Processing
Issues in data mining  Patterns Online Analytical ProcessingIssues in data mining  Patterns Online Analytical Processing
Issues in data mining Patterns Online Analytical Processing
 
Introduction to data mining which covers the basics
Introduction to data mining which covers the basicsIntroduction to data mining which covers the basics
Introduction to data mining which covers the basics
 
Introduction to Data Communication.pdf
Introduction to Data Communication.pdfIntroduction to Data Communication.pdf
Introduction to Data Communication.pdf
 
Classification of Signal.pdf
Classification of Signal.pdfClassification of Signal.pdf
Classification of Signal.pdf
 
Sequential Ckt.pdf
Sequential Ckt.pdfSequential Ckt.pdf
Sequential Ckt.pdf
 
Flip Flop.pdf
Flip Flop.pdfFlip Flop.pdf
Flip Flop.pdf
 
Boolean Algebra Terminologies.pdf
Boolean Algebra Terminologies.pdfBoolean Algebra Terminologies.pdf
Boolean Algebra Terminologies.pdf
 
Logic Minimization.pdf
Logic Minimization.pdfLogic Minimization.pdf
Logic Minimization.pdf
 
Unit III Introduction to DWH.pdf
Unit III Introduction to DWH.pdfUnit III Introduction to DWH.pdf
Unit III Introduction to DWH.pdf
 
Unit II Decision Making Basics and Concepts.pdf
Unit II Decision Making Basics and Concepts.pdfUnit II Decision Making Basics and Concepts.pdf
Unit II Decision Making Basics and Concepts.pdf
 
Unit I Factors Responsible for Successful BI Project.pdf
Unit I Factors Responsible for Successful BI Project.pdfUnit I Factors Responsible for Successful BI Project.pdf
Unit I Factors Responsible for Successful BI Project.pdf
 
Unit I Operational data Informational data.pdf
Unit I Operational data  Informational data.pdfUnit I Operational data  Informational data.pdf
Unit I Operational data Informational data.pdf
 
Unit I Introduction to BI.pdf
Unit I Introduction to BI.pdfUnit I Introduction to BI.pdf
Unit I Introduction to BI.pdf
 

Recently uploaded

English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 

Recently uploaded (20)

English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 

Combinational Ckt.pdf

  • 1. Sanjivani Rural Education Society’s Sanjivani College of Engineering, Kopargaon-423 603 (An Autonomous Institute, Affiliated to Savitribai Phule Pune University, Pune) NACC ‘A’ Grade Accredited, ISO 9001:2015 Certified Department of Computer Engineering (NBA Accredited) Prof. S.A.Shivarkar Assistant Professor E-mail : shivarkarsandipcomp@sanjivani.org.in Contact No: 8275032712 Subject- Digital Electronics and Data Communication (CO204) Unit 2- Combinational Logic Design
  • 2. Multiplexer • One of the combinational circuit • Example • Several input and only one output • Data on one of the input line is directed to output line. • Select lines!! • It is also called as data selector. • Fig. shows multiplexer with n input line and one output line. • Number of selector lines are m Where n = 2m • Selector lines select one out of n data sources and transmitted to single output channel. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 2
  • 3. 4:1 Multiplexer • 4 input lines I0 to I3 • 2 selector lines S1 and S0 • Y=S1’S0’I0 + S1’S0I1 + S1S0’I2 + S1S0I3 • Similarly We have 8:1 mux, 16:1 mux.. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 4 Select Inputs Output S1 S0 Y 0 0 I0 0 1 I1 1 0 I2 1 1 I3
  • 4. 8:1 Multiplexer • 8 input lines I0 to I7 • 3 selector lines S2, S1 and S0 • Similarly We have 16:1 mux.. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 5 Select Inputs Output S2 S1 S0 Y 0 0 0 I0 0 0 1 I1 0 1 0 I2 0 1 1 I3 1 0 0 I4 1 0 1 I5 1 1 0 I6 1 1 1 I7
  • 5. Combinational Circuit Design Using Multiplexer • Advantages: • Simplification of logic function is not required. • Minimize IC package count. • In order to design combinational circuit using Mux • Either Truth table should be known • Or one of the standard form of logical expression must be available. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 6
  • 6. Combinational Logic Design Using Multiplexer • Implement following function using mux. • F(A,B,C) = ∑m(0,1,4,6) • Solution • Mux with 3 select line will be required. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 7
  • 7. Combinational Logic Design Using Multiplexer • Implement using Mux DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 8 A B C Y 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1
  • 8. Multiplexer Tree DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 9
  • 9. IC 74151 • It is 8:1 multiplexer. • It can be used as universal function generator to generate any logic function of four variable. • Two outputs are provided one is complemented and other is uncomplemented. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 10
  • 10. Combinational logic design Using 74151 • Implement using mux. • F(A,B,C) = ∑m(0,1,2,5) DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 11
  • 11. Demultiplexer • It performs reverse operation of multiplexer. • Accept single input and distributes it over several outputs. • The select line determines to which output line input data is to be transmitted. • Fig. shows Demultiplexer with n output line and one input line. • Number of selector lines are m. • Where n = 2m DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 12
  • 12. 1:2 Demultiplexer DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 13 • 2 output lines • 1 selector line • Y0=S’I • Y1=SI Output S (Select) Y0 Y1 0 I 0 1 0 I
  • 13. 1:4 Demultiplexer DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 14 • 4 output lines • 2 selector line • Logical expression for output Select Output S1 S0 Y0 Y1 Y2 Y3 0 0 I 0 0 0 0 1 0 I 0 0 1 0 0 0 I 0 1 1 0 0 0 I
  • 14. Combinational logic design Using Demultiplexer • Demux can also be used to design combinational circuit. • Lets design Full subtractor using demux. • So D=∑m(1,2,4,7) • Bout=∑m(1,2,3,7) • Design on next slide-> DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 15 Input Output A B Bin D Bout 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1
  • 15. Combinational logic design Using Demultiplexer DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 16
  • 16. Demultiplexer Tree DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 17
  • 17. Magnitude Comparator • It compare magnitude of two n bit binary numbers say A and B and activates one of three outputs A=B, A>B and A<B. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 18
  • 18. Design 1 bit Comparator • It will compare two 1 bit number. 19
  • 19. 1 bit Comparator cont.. • Step1: • Obtain truth table • Step 2 • From truth table obtain three K map for 3 output DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 20 Inputs Output A0 B0 Y0 (A=B) Y1(A<B) Y2(A>B) 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 0 0
  • 20. 1 bit Comparator cont.. • Step 3: Obtain simplified expression from K map. • Y0=A0’B0’ + A0B0 • Y1=A0’B0 • Y2=A0B0’ DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 21
  • 21. Design 2 bit comparator • It will compare two 2 bit numbers. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 22
  • 22. 2 bit comparator cont.. • Step1: • Obtain truth table • Step 2 • From truth table obtain 3 K map for 3 output • Obtain simplified expression from K map. Note: Left for self exercise DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 23 A1 A0 B1 B0 Y0 (A=B) Y1(A<B) Y2(A>B) 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0
  • 23. IC 7485 • It is used to compare two 4 bit numbers. • This 16 pin IC. • Note that circuit has 3 additional cascade inputs (Pin 2,3,4). • They are used to connect more than one 7485 IC to compare numbers having more than 4 bits. • But these input have lower priority. • They decide output only when 4 bit input fed to this IC is equal. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 24
  • 24. IC 7485 cont.. • IF A=0011 and B=0001 then output (A>B Pin no. 5) will be high and all other outputs will be low irrespective of the values appearing on pin 2,3 and 4. • When IC 7485 is not used in cascade mode we keep Pin 2,4 at logic 0 and Pin 3 at logic 1. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 25
  • 25. IC 7485 cont.. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 26 Compare two 8 bit numbers using 7485
  • 26. Encoder • Encoders convert single active signal (out of r inputs) into coded binary, s bit output. (This is normally referred to as r line to s line encoder) DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 27
  • 27. Design 4 line to 2 line encoder that take 4 line decimal signal and convert it to binary code Decimal Binary D3 D2 D1 D0 A B 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 28
  • 28. Decimal to BCD encoder DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 29 • There are ten switches one for each number from 0 to 9. • When particular number is to be fed to the digital circuit in BCD form the switch corresponding to that number is pressed.
  • 29. Priority Encoders • Often encoders are called as priority encoders which means that more than one of the r input may be active, in which case the output pattern produced is that for the highest priority input. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 30
  • 30. Decoder • A decode is similar to Demultiplexer with one exception there is no data input. • It has n input line and maximum 2n output line. • Consider decoder in given figure • It has control inputs A2,A1,A0 • It is called as 1 of 8 decoder because only 1 of 8 output line is high. • It is called binary to decimal decoder. • It has 3 input and 8 output so also called as 3 line to 8 line decoder. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 31
  • 31. 3 line to 8 line Decoder. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 32
  • 32. DEPARTMENT OF COMPUTER ENGINEERING, Sanjivani COE, Kopargaon 33