http://chickpealab.ucdavis.edu
United States, Ethiopia, India, Pakistan, Turkey, Australia, Canada,
Morocco
Domestication Modern breeding
Regionaldiversification
WildRelatives
Abiotic stress, Biotic stress, Nitrogen fixation, Nutrition, Agronomic traits
Molecular breeding in legumes for resource-poor
farmers: Chickpea for Ethiopia and India
Chickpea is the world’s 2nd most important
grain legume and critical to food security in
much of the developing world
•Stagnant yields
•Susceptible to pathogens,
pests and abiotic stress
• Drought
• Heat
• Pests and Disease
• Nitrogen fixation
• Nutrition
• Soil adaptation
• Domestication
11
Domestication Modern breeding
Regionaldiversification
WildRelatives
6.7M variants 0.172 M variants
Wild species Modern elite varieties
~95% loss of variation
26 representative wilds 29 modern elite varieties
Crop improvement requires a source of variation
Nitrogen fixation
and domestication
Migrating adaptive alleles from
wild to cultivated
Drought
tolerance
Sponsor and Partner Institutions
Our target countries
• Regularly impacted by climatic
extremes
Ethiopia
• 40% of Africa’s chickpea
production
• Historical focus of
domestication
India
• Major consumer and producer
of chickpea.
• Among the lowest yielding
countries.
Terminal drought: year in, year out, most serious constraint.
Plant a er the rains.
Produce crop on residual soil moisture.
Exposes crop to drought.
Ascochyta blight is a climate-driven disease, and o en
the limi ng factor in chickpea produc on
Fusarium wilt
Pod borer
Plant a er the rains
Climate-driven shi s in the microbiome drive cul va on prac ces
Early plan ng increases risk of:
1. Foliar Ascochyta blight
2. Soil seedling diseases
Both diseases are driven by
high moisture.
Cul va on too late in season =
increased risk of:
1. Drought and Heat
2. Fusarium infec on
3. Pod borer
Abiotic and biotic stress drive cultivation practices
Accessing, characterizing and
utilizing genetic variation
Breeding needs variation
Wild systems: Starting in south-eastern Turkey
Turkey
Syria Iraq
Iran
C.arietinum
C.reticulatum
C.echinospermum
Using all 19 variables for Bioclim on DIVA-GIS
Post-domestication diversification: landraces
NikolayVavilov
Time-series analyses: how effects of G changed
over ~100 years of climate / environment change
0
500
1000
1500
2000
2500
3000 1911
1914
1917
1920
1923
1926
1929
1932
1935
1938
1941
1944
1947
1950
1953
1956
1959
1962
1965
1968
1971
1974
1977
1980
1983
1986
1989
1992
1995
1998
2001
2004
#ofAccessions
# Date of acquisition
Percentofcollection
Ethiopia*(87)
India
(261)
Turkey (75)
39
We explored chickpea’s center of origin over 56 days
in 2013 and 100 days in 2014/15 at ~50 sites
Egil
1 2
3
4
5
6
C.arietinum
C.reticulatum
C.echinospermum
In the wild: 1002 Km
How do you survey variation for climate
resilience?
Altitude: 600m – 2,000m
Rainfall gradients
Seasonality
Temperature
Humidity
Soil types
Microbial communities
Co-occurring species
Understand environmental heterogeneity
soils
co-occurring species
abiotic factors
spatial and temporal variation
DNA from thousands
GBS and WGS
population genomics
in situ association genetics
C. reticulatum
C. echinospermum
Egil
1 2
3
4
5
6
Predominant focus of
historical germplasm
1,100 accessions 2013
~1,000 accessions 2014/2015
Cicer reticulatumCicer echinospermum
Karabace
S2DR
Gunas
Cermic
Destek
Guven
Derici
Kesantas
Oyali
Sarikaya
Kayatape
Kalkan
Egil
Besevler
Savur
Bari2
Bari3
Bari1
Cudi1
Cudi2
Sirnak
Ortanca
RKesen
RCNTRL
REgill
RKalka
RBesev
RSavur
RKayat
Rnpgs
RDerei
RSarik
RBari3
RBari2
RBari1
ROyali
RCudiA
RCudiB
RSirna
EDeste
EGunas
ECermi
Enpgs
ERdsde
ES2Drd
EKarab
EOrtan
EGuven
How will we make the wild alleles
useful for breeding?
Evaluation Strategies
In situ association genetics for
candidate gene nomination
Association genetics with
phenology-normalized NAMs
Advanced backcross
introgression lines
Breeding
Ecology and population
genomics
Phenotyping
Trait discovery
Genomics-driven
Introgression
Domestication:
10-12,000 years ago
Secondary diversification:
~6,000 years ago
Secondary diversification:
~3-4,000 years ago
6.7M variants
0.172 M variants
•3 High quality reference genomes:
BioNano OM, PacBio, Illumina,
dense SNP maps
•26 deep representative wilds (30X)
•250 moderate wilds (10X)
•750 shallow wilds with imputation
•29 cultivated from international
project
Developing genomic platforms
Wild species Modern elite varieties
~95% loss of variation
Cicer reticulatumCicer echinospermum
Karabace
S2DR
Gunas
Cermic
Destek
Guven
Derici
Kesantas
Oyali
Sarikaya
Kayatape
Kalkan
Egil
Besevler
Savur
Bari2
Bari3
Bari1
Cudi1
Cudi2
Sirnak
RKesen
RCNTRL
REgill
RKalka
RBesev
RSavur
RKayat
Rnpgs
RDerei
RSarik
RBari3
RBari2
RBari1
ROyali
RCudiA
RCudiB
RSirna
EDeste
EGunas
ECermi
Enpgs
ERdsde
ES2Drd
EKarab
EOrtan
EGuven
Ortanca
270 accessions in the multi-
lateral system.
Hundreds of additional
accessions in partner institutions
in Turkey
>26 wild accessions x 5 elite
cultivars in pre-breeding pipeline
(NAMs and ABIs).
~5,000 Segregating F3
Developing genetic resources: pre-breeding, trait and gene
discovery
Microbes impart functional properties (i.e.,
“health”) to their plant hosts.
… but we lack a solid understanding of these
phenomena
Micronutrient
uptake
Drought
Tolerance
Phosphate
solubilization
Disease
Tolerance
Nitrogen
Fixation
Micronutrient
uptake
Drought
Tolerance
Phosphate
solubilization
Disease
Tolerance
Nitrogen
Fixation
?
? ?
?
?
?
?
?
?
? ?
?
Systematically collect and characterize chickpea’s microbiome
0.2
M.gobiense
Mesorhizobiumsp.
M.plurifarium
M.chacoense
USDA-4473
Ensiferfredii
USDA-4267
M.cicerisv.biserrulae
2P3S1-b
Azorhizobiumcaulinodans
Bradyrhizobiumjaponicum
M.amorphae
USDA-4332
M.loti
CV-18-Elvas
M.tianshanense
cw-197
M.temperatum
M.septentrionale
USDA-10001
M.metallidurans
M.albiziae
E.meliloti
USDA-4213
24P3S1
M.tarimense
E.medicae
Rhizobiumetli
USDA-4779
cw-159
Ethiopia
India
Turkey
(Cicer reticulatum)
USA
Canada
Australia
Turkey
(Cicer echinospermum)
0 5 10 15 20 25 30
400060008000100001200014000
Group 2 Pangenome Gene Accumulation Plot
Genomes
Genes
Global collection of Nitrogen-fixing
Mesorhizobium
X
X
X
X
X1
2
4
3 5
6
7
Chickpea’s microbiome
Pathogens
Symbionts
Commensals
Host
Environment
Genetic resiliency to extreme and variable climates
requires a holistic approach
Abiotic stress: Drought, heat, cold
Biotic stress: Fusarium, Pod borer, (Ascochyta)
Nitrogen: Symbiosis and nitrogen “metabolism”.
Nutrition: Inorganic and organic composition.
Agronomic traits: Architecture, flowering time.
Phenotyping and trait targets
UC Davis
Doug Cook
Varma Penmetsa
Noelia Carrasquilla
Alex Greenspan
Betsy Alford
Susan Moenga
Lisa Vance
Peter Chang
Bullo Mamo
Brendan Riely
Gul Abbas
Dagnachew Bekele
Zahra Samiezade-Yazd
Lei Feng
Ping Song
Shraddha Suman
Florida International Univ
Eric von Wettberg
ICRISAT
Vincent Vadez
Hari Sharma
Assam Agric Univ
Bidyut Sarmah
Punjab Agric Univ
Sarvjeet Singh
Harran University
Adbullah Kahraman
Dicle University
Bekir Bukun
Fatma Basdemin
AARI
Ali Peksuslu
Lerzan Aykas
Abdullah Inan
Turkish Ministry of Ag
Abdulkadir Aydogan
Husseyin Ozcelik
Mahmut Gayberi
CSIRO WA
Jens Berger
John Thompson
Wendy Vance
Judith Lichtenzveig
Graham O’Hara
Banaras Hindu University
Birinchi Sarma
UAS-Dharwad
Bhuvaneshwara Patil
EIAR
Asnake Fikre
Lijalem Balcha
Kassaye Dinegde
Zehara Damtew
Dagnachew Bekele
Tsegaye Getahun
Gashaw Bedada
Sultan Yimer
Addis Aababa Univ
Kassahun Tesfaye
Fassil Assefa
Masresha Fetene
USC
Sergey Nuzhdin
Peter Chang
Vasantika Singh
Matilde Cordeiro
Min-Gyoung Shin
ICARDA
Michel Ghanem
Sripada Udupa
Ege University
Bhattin Tanyolac
U Saskatchewan
Bunyamin Taran
Research Partners and Institutions

Molecular breeding in legumes for resource-poor farmers: Chickpea for Ethiopia and India

  • 1.
    http://chickpealab.ucdavis.edu United States, Ethiopia,India, Pakistan, Turkey, Australia, Canada, Morocco Domestication Modern breeding Regionaldiversification WildRelatives Abiotic stress, Biotic stress, Nitrogen fixation, Nutrition, Agronomic traits Molecular breeding in legumes for resource-poor farmers: Chickpea for Ethiopia and India
  • 2.
    Chickpea is theworld’s 2nd most important grain legume and critical to food security in much of the developing world •Stagnant yields •Susceptible to pathogens, pests and abiotic stress • Drought • Heat • Pests and Disease • Nitrogen fixation • Nutrition • Soil adaptation • Domestication 11
  • 3.
    Domestication Modern breeding Regionaldiversification WildRelatives 6.7Mvariants 0.172 M variants Wild species Modern elite varieties ~95% loss of variation 26 representative wilds 29 modern elite varieties Crop improvement requires a source of variation
  • 4.
    Nitrogen fixation and domestication Migratingadaptive alleles from wild to cultivated Drought tolerance Sponsor and Partner Institutions
  • 5.
    Our target countries •Regularly impacted by climatic extremes Ethiopia • 40% of Africa’s chickpea production • Historical focus of domestication India • Major consumer and producer of chickpea. • Among the lowest yielding countries.
  • 6.
    Terminal drought: yearin, year out, most serious constraint.
  • 7.
    Plant a erthe rains. Produce crop on residual soil moisture. Exposes crop to drought.
  • 8.
    Ascochyta blight isa climate-driven disease, and o en the limi ng factor in chickpea produc on Fusarium wilt Pod borer
  • 9.
    Plant a erthe rains Climate-driven shi s in the microbiome drive cul va on prac ces Early plan ng increases risk of: 1. Foliar Ascochyta blight 2. Soil seedling diseases Both diseases are driven by high moisture. Cul va on too late in season = increased risk of: 1. Drought and Heat 2. Fusarium infec on 3. Pod borer Abiotic and biotic stress drive cultivation practices
  • 10.
    Accessing, characterizing and utilizinggenetic variation Breeding needs variation
  • 11.
    Wild systems: Startingin south-eastern Turkey Turkey Syria Iraq Iran C.arietinum C.reticulatum C.echinospermum Using all 19 variables for Bioclim on DIVA-GIS
  • 12.
  • 13.
    Time-series analyses: howeffects of G changed over ~100 years of climate / environment change 0 500 1000 1500 2000 2500 3000 1911 1914 1917 1920 1923 1926 1929 1932 1935 1938 1941 1944 1947 1950 1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 #ofAccessions # Date of acquisition Percentofcollection Ethiopia*(87) India (261) Turkey (75) 39
  • 14.
    We explored chickpea’scenter of origin over 56 days in 2013 and 100 days in 2014/15 at ~50 sites Egil 1 2 3 4 5 6 C.arietinum C.reticulatum C.echinospermum In the wild: 1002 Km
  • 15.
    How do yousurvey variation for climate resilience? Altitude: 600m – 2,000m Rainfall gradients Seasonality Temperature Humidity Soil types Microbial communities Co-occurring species
  • 16.
    Understand environmental heterogeneity soils co-occurringspecies abiotic factors spatial and temporal variation
  • 17.
    DNA from thousands GBSand WGS population genomics in situ association genetics C. reticulatum C. echinospermum Egil 1 2 3 4 5 6 Predominant focus of historical germplasm 1,100 accessions 2013 ~1,000 accessions 2014/2015 Cicer reticulatumCicer echinospermum Karabace S2DR Gunas Cermic Destek Guven Derici Kesantas Oyali Sarikaya Kayatape Kalkan Egil Besevler Savur Bari2 Bari3 Bari1 Cudi1 Cudi2 Sirnak Ortanca RKesen RCNTRL REgill RKalka RBesev RSavur RKayat Rnpgs RDerei RSarik RBari3 RBari2 RBari1 ROyali RCudiA RCudiB RSirna EDeste EGunas ECermi Enpgs ERdsde ES2Drd EKarab EOrtan EGuven
  • 18.
    How will wemake the wild alleles useful for breeding?
  • 19.
    Evaluation Strategies In situassociation genetics for candidate gene nomination Association genetics with phenology-normalized NAMs Advanced backcross introgression lines Breeding Ecology and population genomics Phenotyping Trait discovery Genomics-driven Introgression
  • 20.
    Domestication: 10-12,000 years ago Secondarydiversification: ~6,000 years ago Secondary diversification: ~3-4,000 years ago 6.7M variants 0.172 M variants •3 High quality reference genomes: BioNano OM, PacBio, Illumina, dense SNP maps •26 deep representative wilds (30X) •250 moderate wilds (10X) •750 shallow wilds with imputation •29 cultivated from international project Developing genomic platforms Wild species Modern elite varieties ~95% loss of variation
  • 21.
    Cicer reticulatumCicer echinospermum Karabace S2DR Gunas Cermic Destek Guven Derici Kesantas Oyali Sarikaya Kayatape Kalkan Egil Besevler Savur Bari2 Bari3 Bari1 Cudi1 Cudi2 Sirnak RKesen RCNTRL REgill RKalka RBesev RSavur RKayat Rnpgs RDerei RSarik RBari3 RBari2 RBari1 ROyali RCudiA RCudiB RSirna EDeste EGunas ECermi Enpgs ERdsde ES2Drd EKarab EOrtan EGuven Ortanca 270accessions in the multi- lateral system. Hundreds of additional accessions in partner institutions in Turkey >26 wild accessions x 5 elite cultivars in pre-breeding pipeline (NAMs and ABIs). ~5,000 Segregating F3 Developing genetic resources: pre-breeding, trait and gene discovery
  • 22.
    Microbes impart functionalproperties (i.e., “health”) to their plant hosts. … but we lack a solid understanding of these phenomena Micronutrient uptake Drought Tolerance Phosphate solubilization Disease Tolerance Nitrogen Fixation Micronutrient uptake Drought Tolerance Phosphate solubilization Disease Tolerance Nitrogen Fixation ? ? ? ? ? ? ? ? ? ? ? ?
  • 23.
    Systematically collect andcharacterize chickpea’s microbiome 0.2 M.gobiense Mesorhizobiumsp. M.plurifarium M.chacoense USDA-4473 Ensiferfredii USDA-4267 M.cicerisv.biserrulae 2P3S1-b Azorhizobiumcaulinodans Bradyrhizobiumjaponicum M.amorphae USDA-4332 M.loti CV-18-Elvas M.tianshanense cw-197 M.temperatum M.septentrionale USDA-10001 M.metallidurans M.albiziae E.meliloti USDA-4213 24P3S1 M.tarimense E.medicae Rhizobiumetli USDA-4779 cw-159 Ethiopia India Turkey (Cicer reticulatum) USA Canada Australia Turkey (Cicer echinospermum) 0 5 10 15 20 25 30 400060008000100001200014000 Group 2 Pangenome Gene Accumulation Plot Genomes Genes Global collection of Nitrogen-fixing Mesorhizobium X X X X X1 2 4 3 5 6 7 Chickpea’s microbiome
  • 24.
    Pathogens Symbionts Commensals Host Environment Genetic resiliency toextreme and variable climates requires a holistic approach
  • 25.
    Abiotic stress: Drought,heat, cold Biotic stress: Fusarium, Pod borer, (Ascochyta) Nitrogen: Symbiosis and nitrogen “metabolism”. Nutrition: Inorganic and organic composition. Agronomic traits: Architecture, flowering time. Phenotyping and trait targets
  • 26.
    UC Davis Doug Cook VarmaPenmetsa Noelia Carrasquilla Alex Greenspan Betsy Alford Susan Moenga Lisa Vance Peter Chang Bullo Mamo Brendan Riely Gul Abbas Dagnachew Bekele Zahra Samiezade-Yazd Lei Feng Ping Song Shraddha Suman Florida International Univ Eric von Wettberg ICRISAT Vincent Vadez Hari Sharma Assam Agric Univ Bidyut Sarmah Punjab Agric Univ Sarvjeet Singh Harran University Adbullah Kahraman Dicle University Bekir Bukun Fatma Basdemin AARI Ali Peksuslu Lerzan Aykas Abdullah Inan Turkish Ministry of Ag Abdulkadir Aydogan Husseyin Ozcelik Mahmut Gayberi CSIRO WA Jens Berger John Thompson Wendy Vance Judith Lichtenzveig Graham O’Hara Banaras Hindu University Birinchi Sarma UAS-Dharwad Bhuvaneshwara Patil EIAR Asnake Fikre Lijalem Balcha Kassaye Dinegde Zehara Damtew Dagnachew Bekele Tsegaye Getahun Gashaw Bedada Sultan Yimer Addis Aababa Univ Kassahun Tesfaye Fassil Assefa Masresha Fetene USC Sergey Nuzhdin Peter Chang Vasantika Singh Matilde Cordeiro Min-Gyoung Shin ICARDA Michel Ghanem Sripada Udupa Ege University Bhattin Tanyolac U Saskatchewan Bunyamin Taran Research Partners and Institutions