SlideShare a Scribd company logo
Image Analysis & Retrieval
CS/EE 5590 Special Topics (Class Ids: 44873, 44874)
Fall 2016, M/W 4-5:15pm@Bloch 0012
Lec 14
Eigenface and Fisherface
Zhu Li
Dept of CSEE, UMKC
Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346.
http://l.web.umkc.edu/lizhu
Z. Li, Image Analysis & Retrv. 2016 p.1
Outline
 Recap:
 SVD
 PCA
 Face Recognition – direct learning from pixels
 Eigenface
 Fisherface
 Summary
Z. Li, Image Analysis & Retrv. 2016 p.2
SVD – projection decomposition
 for non square matrix: Amxn:
𝐴 = 𝑈Σ𝑉 𝑇
𝑉 𝑇
Σ
Z. Li, Image Analysis & Retrv. 2016 p.3
SVD as Signal Decomposition
The Singular Value Decomposition (SVD) of an nxm matrix A,
is,
 Where the diagonal of S are the eigen values of AAT,
[𝜎1, 𝜎2, … , 𝜎 𝑛], called “singular values”
 U are eigenvectors of AAT, and V are eigen vectors of ATA,
the outer product of uivi
T, are basis of A in reconstruction:
𝐴 = 𝑈𝑆𝑉 𝑇 =
𝑖
𝜎𝑖 𝑢𝑖 𝑣𝑖
𝑡
A(mxn) = U(mxm) S(mxn)
V(nxn)
The 1st order SVD approx. of A is:
𝜎1 ∗ 𝑈 : , 1 ∗ 𝑉 : , 1 𝑇
Z. Li, Image Analysis & Retrv. 2016 p.4
SVD approximation of an image
 Very easy…
function [x]=svd_approx(x0, k)
dbg=0;
if dbg
x0= fix(100*randn(4,6));
k=2;
end
[u, s, v]=svd(x0);
[m, n]=size(s);
x = zeros(m, n);
sgm = diag(s);
for j=1:k
x = x + sgm(j)*u(:,j)*v(:,j)';
end
Z. Li, Image Analysis & Retrv. 2016 p.5
PCA- Principal Component Analysis
 Formulation:
 Find projections, that the information/energy of the data are
maximally preserved
 Matlab: [A, s, eigv]=princomp(X);
max
𝑊
𝐸 𝑥 𝑇 𝑊 𝑇 𝑊𝑥 , 𝑠. 𝑡. , 𝑊 𝑇 𝑊 = 𝐼
Z. Li, Image Analysis & Retrv. 2016 p.6
PCAAlgorithm
 Center the data:
 X = X – repmat(mean(x), [n,
1]);
Principal component #1
points in the direction of the
largest variance
Each subsequent principal
component…
 is orthogonal to the previous
ones, and
 points in the directions of the
largest variance of the residual
subspace
 Solved by finding Eigen
Vectors of the
Scatter/Covarinace matrix of
data:
 S = cov(X); [A, eigv]=Eig(S)
Z. Li, Image Analysis & Retrv. 2016 p.7
Min Error Reconstruction Derivation of PCAAlgorithm
GOAL:
Z. Li, Image Analysis & Retrv. 2016 p.8
Justification of PCAAlgorithm
x is centered!
Remaining dimensions
Z. Li, Image Analysis & Retrv. 2016 p.9
PCA – reconstruction error minimization
GOAL:
Use Lagrange-multipliers for the constraints, KKT condition:
Z. Li, Image Analysis & Retrv. 2016 p.10
Justification of PCA
Z. Li, Image Analysis & Retrv. 2016 p.11
PCA for SIFT Dimension Reduction
 The PCA dimension reduction of SIFT data
Z. Li, Image Analysis & Retrv. 2016 p.12
PCA SIFT Basis
 SIFT Basis
 A= princomp(double(sift));
Z. Li, Image Analysis & Retrv. 2016 p.13
SIFT Embedding via PCA
 Project SIFT to desired lower dimensional space
 Matlab:
offs=gd_sift_offs(k-1)+1: gd_sift_offs(k);
sift = gd_sift_cdvs(offs,: );
x = sift*A1(:,1:kd)
% plot 3d
plot3(x(:,1), x(:,2), x(:,3), ‘.r’);
Z. Li, Image Analysis & Retrv. 2016 p.14
Outline
 Recap:
 SVD
 PCA
 Face Recognition – direct learning from pixels
 Eigenface
 Fisherface
 Summary
Z. Li, Image Analysis & Retrv. 2016 p.15
The Face Recognition Problem
 The Verification vs Identification Problem
= ?
= ?
Verification problem 1:1
Identification/Recognition problem 1:N
Z. Li, Image Analysis & Retrv. 2016 p.16
Holistic Approach: Treat Pixel Directly as features
1. Treat pixels as a vector
2. Recognize face by nearest neighbor
xy 
T
k
k
k argmin
h
w
X in Rwxh
{Y1, Y2, Y3,…, Yn } in Rwxh
Z. Li, Image Analysis & Retrv. 2016 p.17
The space of all face images
• When viewed as vectors of pixel values, face images are extremely
high-dimensional
 120x120 pixel image = 14400 dimensions
 Slow and lots of storage
• But very few 14,400-dimensional vectors are valid face images
• We want to effectively model the subspace of face images
Z. Li, Image Analysis & Retrv. 2016 p.18
The space of all face images
• Eigenface idea: construct a low-dimensional linear
subspace that best explains the variation/scatter of
the face images
Z. Li, Image Analysis & Retrv. 2016 p.19
Principal Component Analysis (PCA)
• Given: N data points x1, … ,xN in Rd
• We want to find a new set of features that are linear
combinations of original ones:
u(xi) = uT(xi – µ)
• (µ: mean of data points)
• Choose unit vector u in Rd that captures the most data
variance
Z. Li, Image Analysis & Retrv. 2016 p.20
Principal Component Analysis
• Direction that maximizes the variance of the projected data:
Projection of data point
Covariance matrix of data
The direction that maximizes the variance is the eigenvector associated with the
largest eigenvalue of Σ
N
N
1/N
Maximize
subject to ||u||=1
Z. Li, Image Analysis & Retrv. 2016 p.21
Eigenfaces (PCA on face images)
1. Compute covariance matrix of face images
2. Compute the principal components (“eigenfaces”)
 K eigenvectors with largest eigenvalues
3. Represent all face images in the dataset as linear
combinations of eigenfaces
 Perform nearest neighbor on these coefficients
M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991
Z. Li, Image Analysis & Retrv. 2016 p.22
Eigenfaces example
Training images
x1,…,xN
Z. Li, Image Analysis & Retrv. 2016 p.23
Eigenfaces example
 mean face and eigen faces
Top k eigenvectors: u1,…uk
Mean: μ
Z. Li, Image Analysis & Retrv. 2016 p.24
Visualization of eigenfaces
Principal component (eigenvector) uk
μ + 3σkuk
μ – 3σkuk
Z. Li, Image Analysis & Retrv. 2016 p.25
Representation and reconstruction
• Face x in “face space” coordinates:
• Reconstruction:
= +
µ + w1u1+w2u2+w3u3+w4u4+ …
=
^
x =
Z. Li, Image Analysis & Retrv. 2016 p.26
Matlab Implementation
 Scaling the face image to thumbnail size
 Justification: as long as human eye can recognize, that
contains sufficient info
 Scale space characteristic response for face recognition
 Compute the PCA over the vectorized face data
load faces-ids-n6680-m417-20x20.mat;
[A, s, lat]=princomp(faces);
h=20; w=20;
figure(30);
subplot(1,2,1); grid on; hold on; stem(lat, '.');
f_eng=lat.*lat;
subplot(1,2,2); grid on; hold on; plot(cumsum(f_eng)/sum(f_eng),
'.-');
Z. Li, Image Analysis & Retrv. 2016 p.27
Eigenface
Holistic approach: treat an hxw image as a point in Rhxw:
 Face data set: 20x20 face icon images, 417 subjects, 6680 face images
 Notice that all the face images are not filling up the R20x20 space:
 Eigenface basis: imagesc(reshape(A1(:,1), [h, w]));
kd kd
eigval
Infopreservingratio
Z. Li, Image Analysis & Retrv. 2016 p.28
Eigenface Projections
 Project face images to Eigenface space
 Matlab: x=faces*A(:,1:kd)
eigf1
eigf2
eigf3
= 10.9* + 0.4* + 4.7*
Z. Li, Image Analysis & Retrv. 2016 p.29
Verification Performance
 ROC of Eigen face kd=8, 12, 16
18 unique ids, 120 face images
Z. Li, Image Analysis & Retrv. 2016 p.30
Eigenface Matlab
 Matlab code
% PCA:
[A, s, eigv]=princomp(faces);
kd=16; nface=120;
% eigenface projectio
x=faces*A(:, 1:kd);
f_dist = pdist2(x(1:nface,:), x(1:nface,:));
figure(32);
imagesc(f_dist); colormap('gray');
figure(33); hold on; grid on;
d0 = f_dist(1:7,1:7); d1=f_dist(8:end, 8:end);
[tp, fp, tn, fn]= getPrecisionRecall(d0(:), d1(:), 40);
plot(fp./(tn+fp), tp./(tp+fn), '.-r', 'DisplayName', 'tpr-fpr
color, data set 1');
xlabel('fpr'); ylabel('tpr'); title('eig face recog');
legend('kd=8', 'kd=12', 'kd=16', 0);
Z. Li, Image Analysis & Retrv. 2016 p.31
Limitation of PCA
 What PCA does best ?
 Label agnostic data
compression/dimension reduction
 Suppress noises
 It is a linear rotation (note that
A*AT = I), minimum amount of
distortion to the data
 Help classification (sort of)
 What PCA can not
 Can not fit data that is not linear
(can try kernelized PCA)
 Does not taking labelling into
consideration (Fisherface !)
?
?
??
Z. Li, Image Analysis & Retrv. 2016 p.32
Outline
 Recap:
 SVD
 PCA
 Face Recognition – direct learning from pixels
 Eigenface
 Fisherface
 Summary
Z. Li, Image Analysis & Retrv. 2016 p.33
Why is Face Recognition Hard?
Many faces of Madonna the bad girl…
Z. Li, Image Analysis & Retrv. 2016 p.34
• Identify similar faces (inter-class similarity)
• Accommodate intra-class variability due to:
• head pose
• illumination conditions
• expressions
• facial accessories
• aging effects
• Cartoon/sketch
Face Recognition Challenges
Z. Li, Image Analysis & Retrv. 2016 p.35
• Different persons may have very similar appearance
Twins Father and son
www.marykateandashley.com news.bbc.co.uk/hi/english/in_depth/americas/2000/us_el
ections
Inter-class similarities
Z. Li, Image Analysis & Retrv. 2016 p.36
• Faces with intra-subject variations in pose, illumination,
expression, accessories, color, occlusions, and brightness
Intra-Class Variations
Z. Li, Image Analysis & Retrv. 2016 p.37
P. Belhumeur, J. Hespanha, D. Kriegman, Eigenfaces vs. Fisherfaces: Recognition
Using Class Specific Linear Projection, PAMI, July 1997, pp. 711--720.
• An n-pixel image xRn
can be
projected to a low-dimensional
feature space yR
m
by
y = Wx
where W is an n by m matrix.
• Recognition is performed using
nearest neighbor in R
m
.
• How do we choose a good W?
Fisherface solution
 Ref:
Z. Li, Image Analysis & Retrv. 2016 p.38
PCA & Fisher’s Linear Discriminant
• Between-class scatter
• Within-class scatter
• Total scatter
• Where
– c is the number of classes
– i is the mean of class i
– | i | is number of samples of i..
T
ii
c
i
iBS ))((
1
  
  

c
i x
T
ikikW
ik
xS
1
))((


WB
c
i x
T
kkT SSxS
ik
   1
))((


1
2

1
2
Z. Li, Image Analysis & Retrv. 2016 p.39
Eigen vs Fisher Projection
• PCA (Eigenfaces)
Maximizes projected total scatter
• Fisher’s Linear Discriminant
Maximizes ratio of projected
between-class to projected
within-class scatter, solved by the
generalized Eigen problem:
WSWW T
T
W
PCA maxarg
WSW
WSW
W
W
T
B
T
W
fld maxarg
1
2
PCA
Fisher 𝑆 𝐵 𝑊 = 𝜆𝑆 𝑊 𝑊
Z. Li, Image Analysis & Retrv. 2016 p.40
A problem…
 Compute Scatter matrix in I-dimensional space
 We need at least d data points to compute a non-singular
scatter matrix.
 E.g, d=3, we need at least 3 points, and, these points should
not be co-plane (gives rank 2, instead of 3).
 In face recognition, d is number of pixels, say 20x20=400,
while number of training samples per class is small, say, nk =
10.
 What shall we do ?
Z. Li, Image Analysis & Retrv. 2016 p.41
Computing the Fisher Projection Matrix
• The wi are orthonormal
• There are at most c-1 non-zero generalized Eigenvalues, so m <= c-1
• Rank of Sw is N-c, where N is the number of training samples (=10 in AT&T data set),
and c=40, so Sw can be singular and present numerical difficulty.
Z. Li, Image Analysis & Retrv. 2016 p.42
Dealing with Singularity of Sw
WWSWW
WWSWW
W
WSWW
WWW
PCAW
T
PCA
T
PCAB
T
PCA
T
W
fld
T
T
W
PCA
PCAfld
maxarg
maxarg



• Since SW is rank N-c, project
training set via PCA first to
subspace spanned by first N-c
principal components of the
training set.
• Apply FLD to N-c
dimensional subspace yielding
c-1 dimensional feature space.
• Fisher’s Linear Discriminant projects away the within-class variation
(lighting, expressions) found in training set.
• Fisher’s Linear Discriminant preserves the separability of the classes.
Z. Li, Image Analysis & Retrv. 2016 p.43
Experiment results on 417-6680 data set
 Compute Eigenface model and Fisherface model
% Eigenface: A1
load faces-ids-n6680-m417-20x20.mat;
[A1, s, lat]=princomp(faces);
% Fisherface: A2
n_face = 600; n_subj = length(unique(ids(1:n_face)));
%eigenface kd
kd = 32; opt.Fisherface = 1;
[A2, lat]=LDA(ids(1:n_face), opt,
faces(1:n_face,:)*A1(:,1:kd));
% eigenface
x1 = faces*A1(:,1:kd);
f_dist1 = pdist2(x1, x1);
% fisherface
x2 = faces*A1(:,1:kd)*A2;
f_dist2 = pdist2(x2, x2);
Z. Li, Image Analysis & Retrv. 2016 p.44
Fisher vs Eigenface performance
 Eigenface model: kd=32
 Data set: 400 faces/58 subjects, 600 faces/86 subjects
Z. Li, Image Analysis & Retrv. 2016 p.45
Summary
 PCA approach
 Try to find an orthogonal rotation
s.t. the first k-dimensions of the
new subspace, captures most of
the info of the data
 Agnostic to the label info
 Matlab: [A, s,
eigv]=princomp(data);
 LDA approach
 Try to find projection that
maximizes the ratio of between
class scatter vs within class
scatter
 Typically solved by apply PCA
first to avoid within class scatter
singularity
 Utilizes label info
 Matlab: [A, eigv]=LDA(label,
opt, data);
1
2
PCA
Fisher
Z. Li, Image Analysis & Retrv. 2016 p.46

More Related Content

What's hot

Volume Rendering in Unity3D
Volume Rendering in Unity3DVolume Rendering in Unity3D
Volume Rendering in Unity3D
Matias Lavik
 
【機械学習勉強会】画像の翻訳 ”Image-to-Image translation”
【機械学習勉強会】画像の翻訳 ”Image-to-Image translation” 【機械学習勉強会】画像の翻訳 ”Image-to-Image translation”
【機械学習勉強会】画像の翻訳 ”Image-to-Image translation”
yoshitaka373
 
Facial Recognition System
Facial Recognition SystemFacial Recognition System
Facial Recognition SystemArun ACE
 
Computer Vision image classification
Computer Vision image classificationComputer Vision image classification
Computer Vision image classification
Wael Badawy
 
OpenCV presentation series- part 1
OpenCV presentation series- part 1OpenCV presentation series- part 1
OpenCV presentation series- part 1
Sairam Adithya
 
BASICS OF DIGITAL IMAGE PROCESSING,MARIA PETROU
BASICS OF DIGITAL IMAGE PROCESSING,MARIA PETROUBASICS OF DIGITAL IMAGE PROCESSING,MARIA PETROU
BASICS OF DIGITAL IMAGE PROCESSING,MARIA PETROU
anjunarayanan
 
Image Acquisition and Representation
Image Acquisition and RepresentationImage Acquisition and Representation
Image Acquisition and Representation
Amnaakhaan
 
Lec12: Shape Models and Medical Image Segmentation
Lec12: Shape Models and Medical Image SegmentationLec12: Shape Models and Medical Image Segmentation
Lec12: Shape Models and Medical Image Segmentation
Ulaş Bağcı
 
SSII2021 [OS3] 広域環境の3D計測と認識 ~ 人が活動する場のセンシングとモデル化 ~(オーガナイザーによる冒頭の導入)
SSII2021 [OS3] 広域環境の3D計測と認識 ~ 人が活動する場のセンシングとモデル化 ~(オーガナイザーによる冒頭の導入)SSII2021 [OS3] 広域環境の3D計測と認識 ~ 人が活動する場のセンシングとモデル化 ~(オーガナイザーによる冒頭の導入)
SSII2021 [OS3] 広域環境の3D計測と認識 ~ 人が活動する場のセンシングとモデル化 ~(オーガナイザーによる冒頭の導入)
SSII
 
GTMF 2017:IncrediBuildでビルド時間を最大90%短縮! インクレディビルドジャパン株式会社
GTMF 2017:IncrediBuildでビルド時間を最大90%短縮! インクレディビルドジャパン株式会社GTMF 2017:IncrediBuildでビルド時間を最大90%短縮! インクレディビルドジャパン株式会社
GTMF 2017:IncrediBuildでビルド時間を最大90%短縮! インクレディビルドジャパン株式会社
Game Tools & Middleware Forum
 
Image Compression using K-Means Clustering Method
Image Compression using K-Means Clustering MethodImage Compression using K-Means Clustering Method
Image Compression using K-Means Clustering Method
Gyanendra Awasthi
 
Image super resolution
Image super resolutionImage super resolution
Image super resolution
Akshay Hazare
 
Introduction of VAE
Introduction of VAEIntroduction of VAE
Introduction of VAE
Ken'ichi Matsui
 
Image segmentation 2
Image segmentation 2 Image segmentation 2
Image segmentation 2 Rumah Belajar
 
[OSGeo-KR Tech Workshop] Deep Learning for Single Image Super-Resolution
[OSGeo-KR Tech Workshop] Deep Learning for Single Image Super-Resolution[OSGeo-KR Tech Workshop] Deep Learning for Single Image Super-Resolution
[OSGeo-KR Tech Workshop] Deep Learning for Single Image Super-Resolution
Taegyun Jeon
 
20200910コンピュータビジョン今昔物語(JPTA講演資料)
20200910コンピュータビジョン今昔物語(JPTA講演資料)20200910コンピュータビジョン今昔物語(JPTA講演資料)
20200910コンピュータビジョン今昔物語(JPTA講演資料)
Takuya Minagawa
 
Object tracking presentation
Object tracking  presentationObject tracking  presentation
Object tracking presentation
MrsShwetaBanait1
 
非参照型メトリクスを用いた放射線動画の評価
非参照型メトリクスを用いた放射線動画の評価非参照型メトリクスを用いた放射線動画の評価
非参照型メトリクスを用いた放射線動画の評価
Yutaka KATAYAMA
 
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose EstimationDLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
harmonylab
 
Face recognization using artificial nerual network
Face recognization using artificial nerual networkFace recognization using artificial nerual network
Face recognization using artificial nerual network
Dharmesh Tank
 

What's hot (20)

Volume Rendering in Unity3D
Volume Rendering in Unity3DVolume Rendering in Unity3D
Volume Rendering in Unity3D
 
【機械学習勉強会】画像の翻訳 ”Image-to-Image translation”
【機械学習勉強会】画像の翻訳 ”Image-to-Image translation” 【機械学習勉強会】画像の翻訳 ”Image-to-Image translation”
【機械学習勉強会】画像の翻訳 ”Image-to-Image translation”
 
Facial Recognition System
Facial Recognition SystemFacial Recognition System
Facial Recognition System
 
Computer Vision image classification
Computer Vision image classificationComputer Vision image classification
Computer Vision image classification
 
OpenCV presentation series- part 1
OpenCV presentation series- part 1OpenCV presentation series- part 1
OpenCV presentation series- part 1
 
BASICS OF DIGITAL IMAGE PROCESSING,MARIA PETROU
BASICS OF DIGITAL IMAGE PROCESSING,MARIA PETROUBASICS OF DIGITAL IMAGE PROCESSING,MARIA PETROU
BASICS OF DIGITAL IMAGE PROCESSING,MARIA PETROU
 
Image Acquisition and Representation
Image Acquisition and RepresentationImage Acquisition and Representation
Image Acquisition and Representation
 
Lec12: Shape Models and Medical Image Segmentation
Lec12: Shape Models and Medical Image SegmentationLec12: Shape Models and Medical Image Segmentation
Lec12: Shape Models and Medical Image Segmentation
 
SSII2021 [OS3] 広域環境の3D計測と認識 ~ 人が活動する場のセンシングとモデル化 ~(オーガナイザーによる冒頭の導入)
SSII2021 [OS3] 広域環境の3D計測と認識 ~ 人が活動する場のセンシングとモデル化 ~(オーガナイザーによる冒頭の導入)SSII2021 [OS3] 広域環境の3D計測と認識 ~ 人が活動する場のセンシングとモデル化 ~(オーガナイザーによる冒頭の導入)
SSII2021 [OS3] 広域環境の3D計測と認識 ~ 人が活動する場のセンシングとモデル化 ~(オーガナイザーによる冒頭の導入)
 
GTMF 2017:IncrediBuildでビルド時間を最大90%短縮! インクレディビルドジャパン株式会社
GTMF 2017:IncrediBuildでビルド時間を最大90%短縮! インクレディビルドジャパン株式会社GTMF 2017:IncrediBuildでビルド時間を最大90%短縮! インクレディビルドジャパン株式会社
GTMF 2017:IncrediBuildでビルド時間を最大90%短縮! インクレディビルドジャパン株式会社
 
Image Compression using K-Means Clustering Method
Image Compression using K-Means Clustering MethodImage Compression using K-Means Clustering Method
Image Compression using K-Means Clustering Method
 
Image super resolution
Image super resolutionImage super resolution
Image super resolution
 
Introduction of VAE
Introduction of VAEIntroduction of VAE
Introduction of VAE
 
Image segmentation 2
Image segmentation 2 Image segmentation 2
Image segmentation 2
 
[OSGeo-KR Tech Workshop] Deep Learning for Single Image Super-Resolution
[OSGeo-KR Tech Workshop] Deep Learning for Single Image Super-Resolution[OSGeo-KR Tech Workshop] Deep Learning for Single Image Super-Resolution
[OSGeo-KR Tech Workshop] Deep Learning for Single Image Super-Resolution
 
20200910コンピュータビジョン今昔物語(JPTA講演資料)
20200910コンピュータビジョン今昔物語(JPTA講演資料)20200910コンピュータビジョン今昔物語(JPTA講演資料)
20200910コンピュータビジョン今昔物語(JPTA講演資料)
 
Object tracking presentation
Object tracking  presentationObject tracking  presentation
Object tracking presentation
 
非参照型メトリクスを用いた放射線動画の評価
非参照型メトリクスを用いた放射線動画の評価非参照型メトリクスを用いた放射線動画の評価
非参照型メトリクスを用いた放射線動画の評価
 
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose EstimationDLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
DLゼミ: Ego-Body Pose Estimation via Ego-Head Pose Estimation
 
Face recognization using artificial nerual network
Face recognization using artificial nerual networkFace recognization using artificial nerual network
Face recognization using artificial nerual network
 

Similar to Lec14 eigenface and fisherface

Lec17 sparse signal processing & applications
Lec17 sparse signal processing & applicationsLec17 sparse signal processing & applications
Lec17 sparse signal processing & applications
United States Air Force Academy
 
Lec15 graph laplacian embedding
Lec15 graph laplacian embeddingLec15 graph laplacian embedding
Lec15 graph laplacian embedding
United States Air Force Academy
 
MLIP - Chapter 6 - Generation, Super-Resolution, Style transfer
MLIP - Chapter 6 - Generation, Super-Resolution, Style transferMLIP - Chapter 6 - Generation, Super-Resolution, Style transfer
MLIP - Chapter 6 - Generation, Super-Resolution, Style transfer
Charles Deledalle
 
Lec07 aggregation-and-retrieval-system
Lec07 aggregation-and-retrieval-systemLec07 aggregation-and-retrieval-system
Lec07 aggregation-and-retrieval-system
United States Air Force Academy
 
Moshe Guttmann's slides on eigenface
Moshe Guttmann's slides on eigenfaceMoshe Guttmann's slides on eigenface
Moshe Guttmann's slides on eigenfacewolf
 
Lec-08 Feature Aggregation II: Fisher Vector, AKULA and Super Vector
Lec-08 Feature Aggregation II: Fisher Vector, AKULA and Super VectorLec-08 Feature Aggregation II: Fisher Vector, AKULA and Super Vector
Lec-08 Feature Aggregation II: Fisher Vector, AKULA and Super Vector
United States Air Force Academy
 
Lec16 subspace optimization
Lec16 subspace optimizationLec16 subspace optimization
Lec16 subspace optimization
United States Air Force Academy
 
Lec12 review-part-i
Lec12 review-part-iLec12 review-part-i
Lec12 review-part-i
United States Air Force Academy
 
Face recognition using laplacianfaces (synopsis)
Face recognition using laplacianfaces (synopsis)Face recognition using laplacianfaces (synopsis)
Face recognition using laplacianfaces (synopsis)Mumbai Academisc
 
Deep Learning for Computer Vision: Image Retrieval (UPC 2016)
Deep Learning for Computer Vision: Image Retrieval (UPC 2016)Deep Learning for Computer Vision: Image Retrieval (UPC 2016)
Deep Learning for Computer Vision: Image Retrieval (UPC 2016)
Universitat Politècnica de Catalunya
 
Content Based Image Retrieval Using Gray Level Co-Occurance Matrix with SVD a...
Content Based Image Retrieval Using Gray Level Co-Occurance Matrix with SVD a...Content Based Image Retrieval Using Gray Level Co-Occurance Matrix with SVD a...
Content Based Image Retrieval Using Gray Level Co-Occurance Matrix with SVD a...
ijcisjournal
 
Multimodal Residual Networks for Visual QA
Multimodal Residual Networks for Visual QAMultimodal Residual Networks for Visual QA
Multimodal Residual Networks for Visual QA
Jin-Hwa Kim
 
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
Masahiro Suzuki
 
Subspace Indexing on Grassmannian Manifold for Large Scale Visual Identification
Subspace Indexing on Grassmannian Manifold for Large Scale Visual IdentificationSubspace Indexing on Grassmannian Manifold for Large Scale Visual Identification
Subspace Indexing on Grassmannian Manifold for Large Scale Visual Identification
United States Air Force Academy
 
C1803011419
C1803011419C1803011419
C1803011419
IOSR Journals
 
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
Methods of Manifold Learning for Dimension Reduction of Large Data SetsMethods of Manifold Learning for Dimension Reduction of Large Data Sets
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
Ryan B Harvey, CSDP, CSM
 

Similar to Lec14 eigenface and fisherface (20)

Lec17 sparse signal processing & applications
Lec17 sparse signal processing & applicationsLec17 sparse signal processing & applications
Lec17 sparse signal processing & applications
 
Lec15 graph laplacian embedding
Lec15 graph laplacian embeddingLec15 graph laplacian embedding
Lec15 graph laplacian embedding
 
MLIP - Chapter 6 - Generation, Super-Resolution, Style transfer
MLIP - Chapter 6 - Generation, Super-Resolution, Style transferMLIP - Chapter 6 - Generation, Super-Resolution, Style transfer
MLIP - Chapter 6 - Generation, Super-Resolution, Style transfer
 
Lec07 aggregation-and-retrieval-system
Lec07 aggregation-and-retrieval-systemLec07 aggregation-and-retrieval-system
Lec07 aggregation-and-retrieval-system
 
Moshe Guttmann's slides on eigenface
Moshe Guttmann's slides on eigenfaceMoshe Guttmann's slides on eigenface
Moshe Guttmann's slides on eigenface
 
Lec-08 Feature Aggregation II: Fisher Vector, AKULA and Super Vector
Lec-08 Feature Aggregation II: Fisher Vector, AKULA and Super VectorLec-08 Feature Aggregation II: Fisher Vector, AKULA and Super Vector
Lec-08 Feature Aggregation II: Fisher Vector, AKULA and Super Vector
 
Lec16 subspace optimization
Lec16 subspace optimizationLec16 subspace optimization
Lec16 subspace optimization
 
Ijcatr04041016
Ijcatr04041016Ijcatr04041016
Ijcatr04041016
 
Lec12 review-part-i
Lec12 review-part-iLec12 review-part-i
Lec12 review-part-i
 
Face recognition using laplacianfaces (synopsis)
Face recognition using laplacianfaces (synopsis)Face recognition using laplacianfaces (synopsis)
Face recognition using laplacianfaces (synopsis)
 
Deep Learning for Computer Vision: Image Retrieval (UPC 2016)
Deep Learning for Computer Vision: Image Retrieval (UPC 2016)Deep Learning for Computer Vision: Image Retrieval (UPC 2016)
Deep Learning for Computer Vision: Image Retrieval (UPC 2016)
 
Project 2
Project 2Project 2
Project 2
 
Content Based Image Retrieval Using Gray Level Co-Occurance Matrix with SVD a...
Content Based Image Retrieval Using Gray Level Co-Occurance Matrix with SVD a...Content Based Image Retrieval Using Gray Level Co-Occurance Matrix with SVD a...
Content Based Image Retrieval Using Gray Level Co-Occurance Matrix with SVD a...
 
Part2
Part2Part2
Part2
 
BTP Presentation
BTP PresentationBTP Presentation
BTP Presentation
 
Multimodal Residual Networks for Visual QA
Multimodal Residual Networks for Visual QAMultimodal Residual Networks for Visual QA
Multimodal Residual Networks for Visual QA
 
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
 
Subspace Indexing on Grassmannian Manifold for Large Scale Visual Identification
Subspace Indexing on Grassmannian Manifold for Large Scale Visual IdentificationSubspace Indexing on Grassmannian Manifold for Large Scale Visual Identification
Subspace Indexing on Grassmannian Manifold for Large Scale Visual Identification
 
C1803011419
C1803011419C1803011419
C1803011419
 
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
Methods of Manifold Learning for Dimension Reduction of Large Data SetsMethods of Manifold Learning for Dimension Reduction of Large Data Sets
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
 

More from United States Air Force Academy

Lec11 object-re-id
Lec11 object-re-idLec11 object-re-id
Lec11 rate distortion optimization
Lec11 rate distortion optimizationLec11 rate distortion optimization
Lec11 rate distortion optimization
United States Air Force Academy
 
Lec-03 Entropy Coding I: Hoffmann & Golomb Codes
Lec-03 Entropy Coding I: Hoffmann & Golomb CodesLec-03 Entropy Coding I: Hoffmann & Golomb Codes
Lec-03 Entropy Coding I: Hoffmann & Golomb Codes
United States Air Force Academy
 
Multimedia Communication Lec02: Info Theory and Entropy
Multimedia Communication Lec02: Info Theory and EntropyMultimedia Communication Lec02: Info Theory and Entropy
Multimedia Communication Lec02: Info Theory and Entropy
United States Air Force Academy
 
ECE 4490 Multimedia Communication Lec01
ECE 4490 Multimedia Communication Lec01ECE 4490 Multimedia Communication Lec01
ECE 4490 Multimedia Communication Lec01
United States Air Force Academy
 
Mobile Visual Search: Object Re-Identification Against Large Repositories
Mobile Visual Search: Object Re-Identification Against Large RepositoriesMobile Visual Search: Object Re-Identification Against Large Repositories
Mobile Visual Search: Object Re-Identification Against Large Repositories
United States Air Force Academy
 
Tutorial on MPEG CDVS/CDVA Standardization at ICNITS L3 Meeting
Tutorial on MPEG CDVS/CDVA Standardization at ICNITS L3 MeetingTutorial on MPEG CDVS/CDVA Standardization at ICNITS L3 Meeting
Tutorial on MPEG CDVS/CDVA Standardization at ICNITS L3 Meeting
United States Air Force Academy
 
Light Weight Fingerprinting for Video Playback Verification in MPEG DASH
Light Weight Fingerprinting for Video Playback Verification in MPEG DASHLight Weight Fingerprinting for Video Playback Verification in MPEG DASH
Light Weight Fingerprinting for Video Playback Verification in MPEG DASH
United States Air Force Academy
 
Scaled Eigen Appearance and Likelihood Prunning for Large Scale Video Duplica...
Scaled Eigen Appearance and Likelihood Prunning for Large Scale Video Duplica...Scaled Eigen Appearance and Likelihood Prunning for Large Scale Video Duplica...
Scaled Eigen Appearance and Likelihood Prunning for Large Scale Video Duplica...United States Air Force Academy
 

More from United States Air Force Academy (9)

Lec11 object-re-id
Lec11 object-re-idLec11 object-re-id
Lec11 object-re-id
 
Lec11 rate distortion optimization
Lec11 rate distortion optimizationLec11 rate distortion optimization
Lec11 rate distortion optimization
 
Lec-03 Entropy Coding I: Hoffmann & Golomb Codes
Lec-03 Entropy Coding I: Hoffmann & Golomb CodesLec-03 Entropy Coding I: Hoffmann & Golomb Codes
Lec-03 Entropy Coding I: Hoffmann & Golomb Codes
 
Multimedia Communication Lec02: Info Theory and Entropy
Multimedia Communication Lec02: Info Theory and EntropyMultimedia Communication Lec02: Info Theory and Entropy
Multimedia Communication Lec02: Info Theory and Entropy
 
ECE 4490 Multimedia Communication Lec01
ECE 4490 Multimedia Communication Lec01ECE 4490 Multimedia Communication Lec01
ECE 4490 Multimedia Communication Lec01
 
Mobile Visual Search: Object Re-Identification Against Large Repositories
Mobile Visual Search: Object Re-Identification Against Large RepositoriesMobile Visual Search: Object Re-Identification Against Large Repositories
Mobile Visual Search: Object Re-Identification Against Large Repositories
 
Tutorial on MPEG CDVS/CDVA Standardization at ICNITS L3 Meeting
Tutorial on MPEG CDVS/CDVA Standardization at ICNITS L3 MeetingTutorial on MPEG CDVS/CDVA Standardization at ICNITS L3 Meeting
Tutorial on MPEG CDVS/CDVA Standardization at ICNITS L3 Meeting
 
Light Weight Fingerprinting for Video Playback Verification in MPEG DASH
Light Weight Fingerprinting for Video Playback Verification in MPEG DASHLight Weight Fingerprinting for Video Playback Verification in MPEG DASH
Light Weight Fingerprinting for Video Playback Verification in MPEG DASH
 
Scaled Eigen Appearance and Likelihood Prunning for Large Scale Video Duplica...
Scaled Eigen Appearance and Likelihood Prunning for Large Scale Video Duplica...Scaled Eigen Appearance and Likelihood Prunning for Large Scale Video Duplica...
Scaled Eigen Appearance and Likelihood Prunning for Large Scale Video Duplica...
 

Recently uploaded

Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
JEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questionsJEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questions
ShivajiThube2
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
deeptiverma2406
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 

Recently uploaded (20)

Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
JEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questionsJEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questions
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 

Lec14 eigenface and fisherface

  • 1. Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 14 Eigenface and Fisherface Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu Z. Li, Image Analysis & Retrv. 2016 p.1
  • 2. Outline  Recap:  SVD  PCA  Face Recognition – direct learning from pixels  Eigenface  Fisherface  Summary Z. Li, Image Analysis & Retrv. 2016 p.2
  • 3. SVD – projection decomposition  for non square matrix: Amxn: 𝐴 = 𝑈Σ𝑉 𝑇 𝑉 𝑇 Σ Z. Li, Image Analysis & Retrv. 2016 p.3
  • 4. SVD as Signal Decomposition The Singular Value Decomposition (SVD) of an nxm matrix A, is,  Where the diagonal of S are the eigen values of AAT, [𝜎1, 𝜎2, … , 𝜎 𝑛], called “singular values”  U are eigenvectors of AAT, and V are eigen vectors of ATA, the outer product of uivi T, are basis of A in reconstruction: 𝐴 = 𝑈𝑆𝑉 𝑇 = 𝑖 𝜎𝑖 𝑢𝑖 𝑣𝑖 𝑡 A(mxn) = U(mxm) S(mxn) V(nxn) The 1st order SVD approx. of A is: 𝜎1 ∗ 𝑈 : , 1 ∗ 𝑉 : , 1 𝑇 Z. Li, Image Analysis & Retrv. 2016 p.4
  • 5. SVD approximation of an image  Very easy… function [x]=svd_approx(x0, k) dbg=0; if dbg x0= fix(100*randn(4,6)); k=2; end [u, s, v]=svd(x0); [m, n]=size(s); x = zeros(m, n); sgm = diag(s); for j=1:k x = x + sgm(j)*u(:,j)*v(:,j)'; end Z. Li, Image Analysis & Retrv. 2016 p.5
  • 6. PCA- Principal Component Analysis  Formulation:  Find projections, that the information/energy of the data are maximally preserved  Matlab: [A, s, eigv]=princomp(X); max 𝑊 𝐸 𝑥 𝑇 𝑊 𝑇 𝑊𝑥 , 𝑠. 𝑡. , 𝑊 𝑇 𝑊 = 𝐼 Z. Li, Image Analysis & Retrv. 2016 p.6
  • 7. PCAAlgorithm  Center the data:  X = X – repmat(mean(x), [n, 1]); Principal component #1 points in the direction of the largest variance Each subsequent principal component…  is orthogonal to the previous ones, and  points in the directions of the largest variance of the residual subspace  Solved by finding Eigen Vectors of the Scatter/Covarinace matrix of data:  S = cov(X); [A, eigv]=Eig(S) Z. Li, Image Analysis & Retrv. 2016 p.7
  • 8. Min Error Reconstruction Derivation of PCAAlgorithm GOAL: Z. Li, Image Analysis & Retrv. 2016 p.8
  • 9. Justification of PCAAlgorithm x is centered! Remaining dimensions Z. Li, Image Analysis & Retrv. 2016 p.9
  • 10. PCA – reconstruction error minimization GOAL: Use Lagrange-multipliers for the constraints, KKT condition: Z. Li, Image Analysis & Retrv. 2016 p.10
  • 11. Justification of PCA Z. Li, Image Analysis & Retrv. 2016 p.11
  • 12. PCA for SIFT Dimension Reduction  The PCA dimension reduction of SIFT data Z. Li, Image Analysis & Retrv. 2016 p.12
  • 13. PCA SIFT Basis  SIFT Basis  A= princomp(double(sift)); Z. Li, Image Analysis & Retrv. 2016 p.13
  • 14. SIFT Embedding via PCA  Project SIFT to desired lower dimensional space  Matlab: offs=gd_sift_offs(k-1)+1: gd_sift_offs(k); sift = gd_sift_cdvs(offs,: ); x = sift*A1(:,1:kd) % plot 3d plot3(x(:,1), x(:,2), x(:,3), ‘.r’); Z. Li, Image Analysis & Retrv. 2016 p.14
  • 15. Outline  Recap:  SVD  PCA  Face Recognition – direct learning from pixels  Eigenface  Fisherface  Summary Z. Li, Image Analysis & Retrv. 2016 p.15
  • 16. The Face Recognition Problem  The Verification vs Identification Problem = ? = ? Verification problem 1:1 Identification/Recognition problem 1:N Z. Li, Image Analysis & Retrv. 2016 p.16
  • 17. Holistic Approach: Treat Pixel Directly as features 1. Treat pixels as a vector 2. Recognize face by nearest neighbor xy  T k k k argmin h w X in Rwxh {Y1, Y2, Y3,…, Yn } in Rwxh Z. Li, Image Analysis & Retrv. 2016 p.17
  • 18. The space of all face images • When viewed as vectors of pixel values, face images are extremely high-dimensional  120x120 pixel image = 14400 dimensions  Slow and lots of storage • But very few 14,400-dimensional vectors are valid face images • We want to effectively model the subspace of face images Z. Li, Image Analysis & Retrv. 2016 p.18
  • 19. The space of all face images • Eigenface idea: construct a low-dimensional linear subspace that best explains the variation/scatter of the face images Z. Li, Image Analysis & Retrv. 2016 p.19
  • 20. Principal Component Analysis (PCA) • Given: N data points x1, … ,xN in Rd • We want to find a new set of features that are linear combinations of original ones: u(xi) = uT(xi – µ) • (µ: mean of data points) • Choose unit vector u in Rd that captures the most data variance Z. Li, Image Analysis & Retrv. 2016 p.20
  • 21. Principal Component Analysis • Direction that maximizes the variance of the projected data: Projection of data point Covariance matrix of data The direction that maximizes the variance is the eigenvector associated with the largest eigenvalue of Σ N N 1/N Maximize subject to ||u||=1 Z. Li, Image Analysis & Retrv. 2016 p.21
  • 22. Eigenfaces (PCA on face images) 1. Compute covariance matrix of face images 2. Compute the principal components (“eigenfaces”)  K eigenvectors with largest eigenvalues 3. Represent all face images in the dataset as linear combinations of eigenfaces  Perform nearest neighbor on these coefficients M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991 Z. Li, Image Analysis & Retrv. 2016 p.22
  • 23. Eigenfaces example Training images x1,…,xN Z. Li, Image Analysis & Retrv. 2016 p.23
  • 24. Eigenfaces example  mean face and eigen faces Top k eigenvectors: u1,…uk Mean: μ Z. Li, Image Analysis & Retrv. 2016 p.24
  • 25. Visualization of eigenfaces Principal component (eigenvector) uk μ + 3σkuk μ – 3σkuk Z. Li, Image Analysis & Retrv. 2016 p.25
  • 26. Representation and reconstruction • Face x in “face space” coordinates: • Reconstruction: = + µ + w1u1+w2u2+w3u3+w4u4+ … = ^ x = Z. Li, Image Analysis & Retrv. 2016 p.26
  • 27. Matlab Implementation  Scaling the face image to thumbnail size  Justification: as long as human eye can recognize, that contains sufficient info  Scale space characteristic response for face recognition  Compute the PCA over the vectorized face data load faces-ids-n6680-m417-20x20.mat; [A, s, lat]=princomp(faces); h=20; w=20; figure(30); subplot(1,2,1); grid on; hold on; stem(lat, '.'); f_eng=lat.*lat; subplot(1,2,2); grid on; hold on; plot(cumsum(f_eng)/sum(f_eng), '.-'); Z. Li, Image Analysis & Retrv. 2016 p.27
  • 28. Eigenface Holistic approach: treat an hxw image as a point in Rhxw:  Face data set: 20x20 face icon images, 417 subjects, 6680 face images  Notice that all the face images are not filling up the R20x20 space:  Eigenface basis: imagesc(reshape(A1(:,1), [h, w])); kd kd eigval Infopreservingratio Z. Li, Image Analysis & Retrv. 2016 p.28
  • 29. Eigenface Projections  Project face images to Eigenface space  Matlab: x=faces*A(:,1:kd) eigf1 eigf2 eigf3 = 10.9* + 0.4* + 4.7* Z. Li, Image Analysis & Retrv. 2016 p.29
  • 30. Verification Performance  ROC of Eigen face kd=8, 12, 16 18 unique ids, 120 face images Z. Li, Image Analysis & Retrv. 2016 p.30
  • 31. Eigenface Matlab  Matlab code % PCA: [A, s, eigv]=princomp(faces); kd=16; nface=120; % eigenface projectio x=faces*A(:, 1:kd); f_dist = pdist2(x(1:nface,:), x(1:nface,:)); figure(32); imagesc(f_dist); colormap('gray'); figure(33); hold on; grid on; d0 = f_dist(1:7,1:7); d1=f_dist(8:end, 8:end); [tp, fp, tn, fn]= getPrecisionRecall(d0(:), d1(:), 40); plot(fp./(tn+fp), tp./(tp+fn), '.-r', 'DisplayName', 'tpr-fpr color, data set 1'); xlabel('fpr'); ylabel('tpr'); title('eig face recog'); legend('kd=8', 'kd=12', 'kd=16', 0); Z. Li, Image Analysis & Retrv. 2016 p.31
  • 32. Limitation of PCA  What PCA does best ?  Label agnostic data compression/dimension reduction  Suppress noises  It is a linear rotation (note that A*AT = I), minimum amount of distortion to the data  Help classification (sort of)  What PCA can not  Can not fit data that is not linear (can try kernelized PCA)  Does not taking labelling into consideration (Fisherface !) ? ? ?? Z. Li, Image Analysis & Retrv. 2016 p.32
  • 33. Outline  Recap:  SVD  PCA  Face Recognition – direct learning from pixels  Eigenface  Fisherface  Summary Z. Li, Image Analysis & Retrv. 2016 p.33
  • 34. Why is Face Recognition Hard? Many faces of Madonna the bad girl… Z. Li, Image Analysis & Retrv. 2016 p.34
  • 35. • Identify similar faces (inter-class similarity) • Accommodate intra-class variability due to: • head pose • illumination conditions • expressions • facial accessories • aging effects • Cartoon/sketch Face Recognition Challenges Z. Li, Image Analysis & Retrv. 2016 p.35
  • 36. • Different persons may have very similar appearance Twins Father and son www.marykateandashley.com news.bbc.co.uk/hi/english/in_depth/americas/2000/us_el ections Inter-class similarities Z. Li, Image Analysis & Retrv. 2016 p.36
  • 37. • Faces with intra-subject variations in pose, illumination, expression, accessories, color, occlusions, and brightness Intra-Class Variations Z. Li, Image Analysis & Retrv. 2016 p.37
  • 38. P. Belhumeur, J. Hespanha, D. Kriegman, Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection, PAMI, July 1997, pp. 711--720. • An n-pixel image xRn can be projected to a low-dimensional feature space yR m by y = Wx where W is an n by m matrix. • Recognition is performed using nearest neighbor in R m . • How do we choose a good W? Fisherface solution  Ref: Z. Li, Image Analysis & Retrv. 2016 p.38
  • 39. PCA & Fisher’s Linear Discriminant • Between-class scatter • Within-class scatter • Total scatter • Where – c is the number of classes – i is the mean of class i – | i | is number of samples of i.. T ii c i iBS ))(( 1        c i x T ikikW ik xS 1 ))((   WB c i x T kkT SSxS ik    1 ))((   1 2  1 2 Z. Li, Image Analysis & Retrv. 2016 p.39
  • 40. Eigen vs Fisher Projection • PCA (Eigenfaces) Maximizes projected total scatter • Fisher’s Linear Discriminant Maximizes ratio of projected between-class to projected within-class scatter, solved by the generalized Eigen problem: WSWW T T W PCA maxarg WSW WSW W W T B T W fld maxarg 1 2 PCA Fisher 𝑆 𝐵 𝑊 = 𝜆𝑆 𝑊 𝑊 Z. Li, Image Analysis & Retrv. 2016 p.40
  • 41. A problem…  Compute Scatter matrix in I-dimensional space  We need at least d data points to compute a non-singular scatter matrix.  E.g, d=3, we need at least 3 points, and, these points should not be co-plane (gives rank 2, instead of 3).  In face recognition, d is number of pixels, say 20x20=400, while number of training samples per class is small, say, nk = 10.  What shall we do ? Z. Li, Image Analysis & Retrv. 2016 p.41
  • 42. Computing the Fisher Projection Matrix • The wi are orthonormal • There are at most c-1 non-zero generalized Eigenvalues, so m <= c-1 • Rank of Sw is N-c, where N is the number of training samples (=10 in AT&T data set), and c=40, so Sw can be singular and present numerical difficulty. Z. Li, Image Analysis & Retrv. 2016 p.42
  • 43. Dealing with Singularity of Sw WWSWW WWSWW W WSWW WWW PCAW T PCA T PCAB T PCA T W fld T T W PCA PCAfld maxarg maxarg    • Since SW is rank N-c, project training set via PCA first to subspace spanned by first N-c principal components of the training set. • Apply FLD to N-c dimensional subspace yielding c-1 dimensional feature space. • Fisher’s Linear Discriminant projects away the within-class variation (lighting, expressions) found in training set. • Fisher’s Linear Discriminant preserves the separability of the classes. Z. Li, Image Analysis & Retrv. 2016 p.43
  • 44. Experiment results on 417-6680 data set  Compute Eigenface model and Fisherface model % Eigenface: A1 load faces-ids-n6680-m417-20x20.mat; [A1, s, lat]=princomp(faces); % Fisherface: A2 n_face = 600; n_subj = length(unique(ids(1:n_face))); %eigenface kd kd = 32; opt.Fisherface = 1; [A2, lat]=LDA(ids(1:n_face), opt, faces(1:n_face,:)*A1(:,1:kd)); % eigenface x1 = faces*A1(:,1:kd); f_dist1 = pdist2(x1, x1); % fisherface x2 = faces*A1(:,1:kd)*A2; f_dist2 = pdist2(x2, x2); Z. Li, Image Analysis & Retrv. 2016 p.44
  • 45. Fisher vs Eigenface performance  Eigenface model: kd=32  Data set: 400 faces/58 subjects, 600 faces/86 subjects Z. Li, Image Analysis & Retrv. 2016 p.45
  • 46. Summary  PCA approach  Try to find an orthogonal rotation s.t. the first k-dimensions of the new subspace, captures most of the info of the data  Agnostic to the label info  Matlab: [A, s, eigv]=princomp(data);  LDA approach  Try to find projection that maximizes the ratio of between class scatter vs within class scatter  Typically solved by apply PCA first to avoid within class scatter singularity  Utilizes label info  Matlab: [A, eigv]=LDA(label, opt, data); 1 2 PCA Fisher Z. Li, Image Analysis & Retrv. 2016 p.46