SlideShare a Scribd company logo
3



                                                                                              2



                                                                                              1



                                                                                              0
                                                              −3        −2          −1             0           1               2       3
                                                                               x

Chapter 2                                                                                 y
                                                                                              −1



                                                                                              −2



                                                                                              −3




Differentiation                                            3. Slope is
                                                                 f (−2 + h) − f (−2)
                                                             lim
                                                             h→0          h
                                                                             2
                                                                    (−2 + h) − 3(−2 + h) − (10)
                                                             = lim
                                                               h→0                h
                                                                    −7h + h2
                                                             = lim             = −7.
                                                               h→0      h
                                                             Tangent line is y = −7(x + 2) + 10
  2.1 Tangent Line and                                                                    120

  Velocity                                                                                100

                                                                                              80

                                                                                              60
  1. Slope is
                                                                                              40
         f (1 + h) − f (1)
     lim                                                                                      20
     h→0         h
                   2                                                                          0
            (1 + h) − 2 − (−1)                               −10   −8     −6       −4    −2    0       2           4       6       8   10
     = lim                                                                     x
                                                                                           −20
       h→0           h
            h2 + 2h                                                                       −40

     = lim                                                                                −60
       h→0     h
     = lim (h + 2) = 2.
          h→0
     Tangent line is y = 2(x−1)−1 or y = 2x−3.            4. Slope is
                                                                 f (1 + h) − f (1)
                                                             lim
                              5.0                            h→0         h
                                                                    (1 + 3h + 3h2 + h3 ) + (1 + h) − 2
                                                             = lim
                     x        2.5                              h→0                  h
     −3         −2       −1          0   1   2   3                  4h + 3h2 + h3
                              0.0                            = lim                 = lim 4 + 3h + h2 = 4.
                                                               h→0        h          h→0
                              −2.5
                                                             Tangent line is y = 4(x − 1) + 2.
                                                                         30


                              −5.0                                       25


                              −7.5                                       20



                                                                        y 15



                                                                         10



                                                                          5


  2. Slope is                                                             0
         f (0 + h) − f (0)                                   −1                0                   1                   2                3
     lim                                                                                                   x
     h→0         h                                                        −5

            h2
     = lim     = 0.
       h→0 h
     Tangent line is y = −2.                              5. Slope is

                                                     78
2.1. TANGENT LINE AND VELOCITY                                                                                                                79

            f (1 + h) − f (1)                                                           (h + 1) − 1
        lim                                                                     = lim    √
        h→0         h                                                             h→0 h( h + 1 + 1)
                   2        2
                (1+h)+1 − 1+1                                                               1        1
        = lim                                                                   = lim √            = .
          h→0         h                                                           h→0   h+1+1        2
                    2                                  2−(2+h)                                     1              1
                   2+h       −1                          2+h                    Tangent line is y = (x+2)+1 or y = x+2.
        = lim                          = lim                                                       2              2
          h→0            h                h→0            h                                                 4.0

                    −h                                                                                     3.2
                    2+h       −1       1
        = lim                      =− .
                                   = lim                                                                   2.4
          h→0    h       h→0 2 + h     2
                             1                                                                             1.6
        Tangent line is y = − (x − 1) + 1 or
                             2                                                                             0.8

              x 3
        y=− + .                                                                                            0.0

              2 2                                                                −4              −2
                                                                                                  x        −0.8
                                                                                                                  0          2            4

                                       4.0
                                                                                                           −1.6
                                       3.2                                                             y
                                                                                                           −2.4
                                       2.4
                                                                                                           −3.2
                                       1.6
                                                                                                           −4.0
                                       0.8

                                       0.0                                   8. Slope is
         −5   −4    −3        −2       −1
                                       −0.8
                                               0   1     2       3   4   5
                                                                                     f (1 + h) − f (x)
                         x
                                                                                lim
                                       −1.6                                     h→0          h            √
                                   y
                                       −2.4                                               (1 + h) + 3 − 1 + 3
                                                                                = lim
                                       −3.2                                       h→0 √             h
                                       −4.0                                               h+4−2
                                                                                = lim
                                                                                  h→0 √      h        √
     6. Slope is                                                                          h+4−2 h+4+2
                                                                                = lim               ·√
            f (0 + h) − f (0)                                                     h→0        h          h+4+2
        lim                                                                             h+4−4            1
        h→0           h                                                         = lim             ·√
                 h                                                                          h         h+4+2
                     −0                                                           h→0
        = lim h−1                                                                            1            1
          h→0       h                                                           = lim √               = .
                  1                                                               h→0     h+4+2           4
        = lim           = −1                                                                          1
          h→0 h − 1                                                             Tangent line is y = (x − 1) + 2.
        Tangent line is y = −x.                                                                       4
                                        4.0
                                                                                             4
                                        3.2

                                        2.4
                                                                                             3
                                        1.6

                                        0.8
                                                                                             2
                                        0.0
         −2              −1                    0             1           2
                         x              −0.8
                                                                                             1
                                        −1.6
                                   y
                                        −2.4

                                        −3.2
                                                                                      −2.5       0.0   2.5            5.0   7.5    10.0

                                        −4.0


                                                                             9. f (x) = x3 − x
     7. Slope is                                                                 No.         Points (x, y)                        Slope
            f (−2 + h) − f (−2)
        lim                                                                       (a)       (1,0) and (2,6)                          6
        h→0          h                                                            (b)      (2,6) and (3,24)                         18
                 (−2 + h) + 3 − 1                                                 (c)   (1.5,1.875) and (2,6)                      8.25
        = lim
          h→0 √        h                                                          (d) (2,6) and (2.5,13.125)                      14.25
                 h+1−1                                                            (e)   (1.9,4.959) and (2,6)                     10.41
        = lim
          h→0 √    h        √                                                     (f)   (2,6) and (2.1,7.161)                     11.61
                 h+1−1        h+1+1
        = lim              ·√                                                  (g) Slope seems to be approximately 11.
          h→0      h          h+1+1
80                                                                    CHAPTER 2. DIFFERENTIATION

                                                                                      2
     10. f (x) = x2 + 1                                                   −4.9(2 + h) + 5 − (−14.6)
                                                                    = lim
          No.        Points (x, y)             Slope                  h→0              h
           (a)  (1,1.414) and (2,2.236)        0.504                      −4.9(4 + 4h + h2 ) + 5 − (−14.6)
                                                                    = lim
           (b)  (2,2.236) and (3,3.162)        0.926                  h→0                h
           (c) (1.5,1.803) and (2,2.236)       0.867                      −19.6h − 4.9h2
                                                                    = lim
           (d) (2,2.236) and (2.5,2.269)       0.913                  h→0       h
           (e) (1.9,2.147) and (2,2.236)        0.89                      h (−19.6 − 4.9h)
                                                                    = lim                  = −19.6
           (f) (2,2.236) and (2.1,2.325)       0.899                  h→0        h

          (g) Slope seems to be approximately 0.89.        16. (a) Velocity at time t = 0 is,
                                                                       s(0 + h) − s(0)
                   x−1                                             lim
     11. f (x) =                                                   h→0         h
                   x+1                                                    4h − 4.9h2
           No.           Points (x, y)       Slope                 = lim
                                                                     h→0       h
           (a)        (1,0) and (2,0.33)      0.33                        h (4 − 4.9h)
                                                                   = lim
           (b)       (2,0.33) and (3,0.5)     0.17                   h→0        h
           (c)      (1.5,0.2) and (2,0.33)    0.26                 = 4 − lim 4.9h = 4.
                                                                            h→0
           (d)     (2,0.33) and (2.5,0.43)     0.2             (b) Velocity at time t = 1 is,
           (e)     (1.9,0.31) and (2,0.33)     0.2                     s(1 + h) − s(1)
           (f)     (2,0.33) and (2.1,0.35)     0.2                 lim
                                                                   h→0         h
                                                                                               2
          (g) Slope seems to be approximately 0.2.                        4(1 + h) − 4.9(1 + h) − (−0.9)
                                                                   = lim
                                                                     h→0                 h
     12. f (x) = ex                                                       4 + 4h − 4.9 − 9.8h − 4.9h2 + 0.9
           No.          Points (x, y)           Slope              = lim
                                                                     h→0                  h
           (a)     (1,2.718) and (2,7.389)      4.671                     −5.8h − 4.9h2
                                                                   = lim
           (b)    (2,7.389) and (3,20.085)      12.696               h→0         h
           (c)   (1.5,4.481) and (2,7.389)      5.814                     h (−5.8 − 4.9h)
                                                                   = lim                   = −5.8
           (d) (2,7.389) and (2.5,12.182)       9.586                h→0         h
           (e)   (1.9,6.686) and (2,7.389)       7.03
                                                           17. (a) Velocity at time t = 0 is,
           (f)   (2,7.389) and (2.1,8.166)       7.77
                                                                       s(0 + h) − s(0)
                                                                   lim
          (g) Slope seems to be approximately 7.4                  h→0    √ h            √
                                                                            h + 16 − 4     h + 16 + 4
     13. C, B, A, D. At the point labeled C, the slope             = lim                ·√
                                                                     h→0        h          h + 16 + 4
         is very steep and negative. At the point B,                       (h + 16) − 16
         the slope is zero and at the point A, the slope           = lim √
                                                                     h→0 h( h + 16 + 4)
         is just more than zero. The slope of the line                          1          1
         tangent to the point D is large and positive.             = lim √              =
                                                                     h→0    h + 16 + 4     8
     14. In order of increasing slope: D (large nega-          (b) Velocity at time t = 2 is,
         tive), C (small negative), B (small positive),                s(2 + h) − s(2)
         and A (large positive).                                   lim
                                                                   h→0    √ h         √
     15. (a) Velocity at time t = 1 is,                                     18 + h − 18
                                                                   = lim
                  s(1 + h) − s(1)                                    h→0          h√           √
              lim                                                                    h + 18 + 18
              h→0         h                                        Multiplying by √            √ gives
                                 2
                     −4.9(1 + h) + 5 − (0.1)                                         h + 18 + 18
              = lim                                                          (h + 18) − 18
                h→0              h                                 = lim √              √
                     −4.9(1 + 2h + h2 ) + 5 − (0.1)                  h→0 h( h + 18 +      18)
              = lim                                                               1            1
                h→0                h                               = lim √            √ = √
                     −9.8h − 4.9h2                                   h→0    h + 18 + 18       2 18
              = lim
                h→0         h
                     h (−9.8 − 4.9h)                       18. (a) Velocity at time t = 2 is,
              = lim                   = −9.8.                          s(2 + h) − s(2)
                h→0         h                                      lim
          (b) Velocity at time t = 2 is,                           h→0         h
                                                                            4               4−4−2h
                  s(2 + h) − s(2)                                         (2+h) − 2           (2+h)
              lim                                                  = lim            = lim
              h→0         h                                          h→0      h        h→0      h
2.1. TANGENT LINE AND VELOCITY                                                                                        81
                                                                                 √
                    −2h           −2                      (c) Second point: (1.9, 18.81)
            = lim          = lim       = −1.
              h→0 h(2 + h)   h→0 2 + h                        Average velocity:
                                                              √      √
                                                                20 − 18.81
       (b) Velocity at time t = 4 is,                                        = 1.3508627
                                          4
                                                 −1               2 − 1.9
               s(4 + h) − s(4)          (4+h)
           lim                 = lim                                              √
           h→0         h          h→0        h            (d) Second point: (1.99, 19.8801)
                    4−1(4+h)       4−4−h
                      (4+h)         (4+h)                     Average velocity:
                                                              √      √
            = lim          = lim                                20 − 19.88
              h→0     h      h→0    h                                        = 1.3425375
                    −h            −1      1                      2 − 1.99
            = lim          = lim       =−
              h→0 h(4 + h)   h→0 4 + h    4
                                                          (e) One might conjecture that these num-
   19. (a) Points: (0, 10) and (2, 74)                        bers are approaching 1.34. The exact
                              74 − 10                                   6
           Average velocity:           = 32                   limit is √ ≈ 1.341641.
                                 2                                      20

       (b) Second point: (1, 26)                      22. (a) Points: (0, −2.7279) and (2, 0)
                             74 − 26                          Average velocity:
           Average velocity:         = 48
                                 1                            0 − (−2.7279)
                                                                             = 1.3639
                                                                  2−0
        (c) Second point: (1.9, 67.76)
                              74 − 67.76                  (b) Second point: (1, −2.5244)
            Average velocity:            = 62.4
                                  0.1                         Average velocity:
                                                              0 − (−2.5244)
       (d) Second point: (1.99, 73.3616)                                     = 2.5244
                             74 − 73.3616                         2−1
           Average velocity:              = 63.84
                                  0.01                    (c) Second point: (1.9, −0.2995)
        (e) The instantaneous velocity seems to be            Average velocity:
            64.                                               0 − (−0.2995)
                                                                             = 2.995
                                                                 2 − 1.9

   20. (a) Points: (0, 0) and (2, 26)                     (d) Second point: (1.99, −0.03)
                              26 − 0                                            0 − (−0.03)
           Average velocity:          = 13                    Average velocity:             =3
                              2−0                                                 2 − 1.99
                                                          (e) The instantaneous velocity seems to be
       (b) Second point: (1, 4)                               3.
                             26 − 4
           Average velocity:        = 22
                              2−1
                                                      23. A graph makes it apparent that this function
        (c) Second point: (1.9, 22.477)
                              26 − 22.477                 has a corner at x = 1.
            Average velocity:             = 35.23                                        5

                                 2 − 1.9                                                 4

                                                                                         3
       (d) Second point: (1.99, 25.6318)
           Average velocity:                                                             2

           26 − 25.6318                                                                  1
                        = 36.8203
             2 − 1.99                                                                    0
                                                            −5   −4   −3       −2   −1        0   1   2   3   4   5
                                                                           x             −1
        (e) The instantaneous velocity seems to be
                                                                                         −2
            approaching 37.                                                         y
                                                                                         −3


                                 √                                                       −4

   21. (a) Points: (0, 0) and √
                              (2, 20)                                                    −5

                                20 − 0
           Average velocity:           = 2.236068          Numerical evidence suggests that,
                               2−0                               f (1 + h) − f (1)
                                                            lim+                   =1
       (b) Second point: (1, 3)                            h→0           h
                             √                                          f (1 + h) − f (1)
                                20 − 3                     while lim−                     = −1.
            Average velocity:          = 1.472136                h→0            h
                                2−1
                                                           Since these are not equal, there is no tangent
82                                                                                        CHAPTER 2. DIFFERENTIATION

                                                                                                               5
         line.
                                                                                                               4

                                                                                                               3


     24. Tangent line does not exist at x = 1 because                                                          2


         the function is not defined there.                                  −5       −4    −3    −2       −1
                                                                                                               1
                                                                                                                    0      1       2           3   4        5
                                        10
                                                                                                               0

                                         8
                                                                                                               −1

                                         6
                                                                                                               −2

                                         4
                                                                                                               −3

                                         2
                                                                                                               −4

                                         0                                                                     −5
          −10    −8   −6       −4   −2   0         2   4   6   8   10
                                      −2
                           x
                                                                            Also,
                                         −4
                                    y                                             f (0 + h) − f (0)        −2h
                                         −6                                     lim−                = lim−      = −2
                                                                            h→0           h          h→0     h
                                         −8
                                                                                  f (0 + h) − f (0)
                                                                             lim+                   = lim+ (h − 4) = −4.
                                        −10
                                                                            h→0           h          h→0


     25. From the graph it is clear that, curve is not                      Numerical evidence suggest that,
         continuous at x = 0 therefore tangent line                               f (0 + h) − f (0)
                                                                             lim−
         at y = f (x) at x = 0 does not exist.                              h→0           h
                                        10.0                                         f (0 + h) − f (0)
                                                                            = lim+                     .
                                                                               h→0           h
                                                                            Therefore tangent line does not exist at x =
                                         7.5
                                                                            0.
                                         5.0                            27. Tangent line at x = π to y = sin x as below:
                                                                            3

                                         2.5
                                                                            2



                                         0.0                                1
                                                                                                                       x
         −10     −8   −6       −4   −2         0   2   4   6   8   10
                                                                                 0        1           2            3           4           5           6
                                                                            0
                                        −2.5

         Also,                                                              −1

               f (0 + h) − f (0)
          lim                                                               −2
         h→0−          h
                  h2 − 1 − (−1)                                             −3
         = lim−
            h→0           h
                  h2
         = lim−       = lim− h = 0
            h→0    h     h→0                                            28. Tangent line at x = 0 to y = tan−1 x as be-
         Similarly,                                                         low:
               f (0 + h) − f (0)                                                                           5.0
          lim+
         h→0           h
                  h + 1 − (1)         h
         = lim+                = lim+ = 1.                                                                 2.5
            h→0         h         h→0 h
         Numerical evidence suggest that,
               f (0 + h) − f (0)
          lim−                                                                                             0.0
         h→0           h                                                     −10                −5                  0                  5                   10
                  f (0 + h) − f (0)
         = lim                      .
            h→0+           h                                                                              −2.5
         Therefore tangent line does not exist at
         x = 0.
                                                                                                          −5.0
     26. From the graph it is clear that, the curve of
         y = f (x) is not smooth at x = 0 therefore                     29. Since the graph has a corner at x = 0, tan-
         tangent line at x = 0 does not exist.                              gent line does not exist.
2.1. TANGENT LINE AND VELOCITY                                                                                  83

    30. The tangent line overlays the line:                                   f (s) − f (r)
                                                                 33. vavg =
                                                                                  s−r
                                                                              f (s) − f (r)
                                                                      vavg =
      2
                                                                                  s−r
                                                                              as + bs + c − (ar2 + br + c)
                                                                                 2
                                                                           =
     1.5
                                                                                            s−r
                                                                              a(s2 − r2 ) + b(s − r)
                                                                           =
      1
                                                                                       s−r
                                                                              a(s + r)(s − r) + b(s − r)
                                                                           =
     0.5
                                                                                          s−r
                                                                           = a(s + r) + b
      0
           0         0.5      1       1.5      2
                                                                      Let v(r) be the velocity at t = r. We have,
                              x                                       v(r) =
                   f (4) − f (2)                                           f (r + h) − f (r)
   31. (a)                          = 21,034                          lim
                          2                                           h→0          h
                            f (b)−f (a)
                   Since        b−a     is the average rate of                        2
                                                                              a(r + h) + b(r + h) + c − (ar2 + bh + c)
                   change of function f between a and b.               = lim
                                                                         h→0                     h
                   The expression tells us that the average
                                                                               a(r + 2rh + h ) + bh − ar2
                                                                                  2            2
                   rate of change of f between a = 2 to                = lim
                   b = 4 is 21,034. That is the average                  h→0                 h
                   rate of change in the bank balance be-                      h(2ar + ah + b)
                                                                       = lim
                   tween Jan. 1, 2002 and Jan. 1, 2004 was               h→0          h
                   21,034 ($ per year).                                = lim (2ar + ah + b) = 2ar + b
                                                                         h→0
               (b) 2 [f (4) − f (3.5)] = 25,036                       So, v(r) = 2ar + b.
                   Note that 2[f (4) − f (3.5)] = f (4) −             The same argument shows that v(s) =
                   f (3.5)/2. The expression says that the            2as + b.
                   average rate of change in balance be-              Finally
                   tween July 1, 2003 and Jan. 1, 2004                 v(r) + v(s)   (2ar + b) + (2as + b)
                                                                                   =
                   was 25,036 ($ per year).                                 2                  2
                         f (4 + h) − f (4)                                           2a(s + r) + 2b
               (c) lim                       = 30,000                              =
                   h→0            h                                                         2
                   The expression says that the instanta-                          = a(s + r) + b = vavg
                   neous rate of change in the balance on
                   Jan. 1, 2004 was 30,000 ($ per year).
                                                                 34. f (t) = t3 −t works with r = 0, s = 2. The av-
                   f (40) − f (38)                                                                      6−0
   32. (a)                            = −2103                        erage velocity between r and s is,       = 3.
                           2                                                                            2−0
                   Since   f (b)−f (a)
                                       is the average rate of        The instantaneous velocity at r is
                               b−a                                                 3
                   change of function between a and b. The                 (0 + h) − (0 + h) − 0
                                                                     lim                         =0
                   expression tells us that the average rate         h→0              h
                   of change of f between a = 38 to b = 40           and the instantaneous velocity at s is,
                                                                                   3
                   is −2103. That is the average rate of de-               (2 + h) − (2 + h) − 6
                                                                     lim
                   preciation between 38 and 40 thousand             h→0              h
                   miles.                                                     8 + 12h + 6h2 + h3 − 2 − h − 6
                                                                     = lim
               (b) f (40) − f (39) = −2040                              h→0                 h
                                                                     = lim 11 + 6h + h2 = 11
                   The expression says that the average                 h→0
                   rate of depreciation between 39 and 40             so, the average between the instantaneous
                   thousand miles is −2040.                           velocities is 5.5.
                        f (40 + h) − f (40)
               (c) lim                       = −2000             35. (a) y = x3 + 3x + 1
                   h→0             h
                   The expression says that the instanta-                y = 3x2 + 3
                   neous rate of depreciation in the value               Since the slope needed to be 5, y = 5.
                   of the car when it has 40 thousand miles              3x2 + 3 = 5
                   is −2000.                                             ⇒ 3x2 = 5 − 3
84                                                                 CHAPTER 2. DIFFERENTIATION

                       2                                         gent line is y = 6x − 1.
              ⇒ x2 =
                       3                                         Given that y = x3 + 3x + 1.
                         2                                       Therefore, we write
              ⇒x=±
                         3                                       x3 + 3x + 1 = 6x − 1
             Therefore, slope of tangent line at x =             x3 − 3x + 2 = 0
                2              2                                 (x − 1) x2 + x − 2 = 0
                  and x = −       to y = x3 + 3x + 1
                3              3                                 (x − 1)(x − 1) (x + 2) = 0
             equals 5.                                                   2
                                                                 (x − 1) (x + 2) = 0.
         (b) Since the slope needed to be 1, y = 1.              Therefore, tangent line intersects y =
             3x2 + 3 = 1 which has no real roots.                x3 + 3x + 1 at more then one point that
             Therefore slope of tangent line to y =              is at x = 1 and x = −2.
             x3 + 3x + 1 cannot equals 1.
     36. (a) From the graph it is clear that y = x2 +1       (c) y = x2 + 1
             and y = x do not intersect.                              f (c + h) − f (c)
                                10                               lim
                                                                 h→0          h
                                                                         (c + h)2 + 1 − c2 + 1
                                                                 = lim
                                 5                                  h→0              h
                                                                          (c2 + 2ch + h2 ) + 1 − c2 + 1
                                                                 = lim
                                                                    h→0                   h
                                 0                                        c2 + 2ch + h2 + 1 − c2 − 1
                                                                 = lim
              −10          −5         0   5        10               h→0                 h
                                                                          2ch + h2
                                −5                               = lim
                                                                    h→0       h
                                                                          h (2c + h)
                                                                 = lim               = 2c
                                −10
                                                                    h→0       h
                                                                 The point correponding to x = c is
                                                                  c, c2 + 1 .     So, line with slope 2c
         (b) y = x2 + 1 and y = x                                through point c, c2 + 1 has equation
             y = x2 + 1 ⇒ y = 2x                                 y = 2c (x − c)+c2 +1 or y = 2cx−c2 +1.
             y=x⇒y =1                                            Given that y = x2 + 1
             For, y = x2 + 1                                     Therefore,
             y = 2x = 1.                                         x2 + 1 = 2cx − c2 + 1
             2x = 1                                              x2 − 2cx + c2 = 0
                     1                                                    2
             ⇒x=                                                 (x − c) = 0.
                     2
                                                 1               Therefore, tangent line intersects y =
             Therefore, tangent line at x =         to           x2 + 1 only at one point that is at x = c.
                                                 2
                   2
             y = x +1 is parallel to the tangent lines
             to y = x.                                   38. Let x = h + a. Then h = x − a and clearly
                                                             f (a + h) − f (a)    f (x) − f (a)
     37. (a) y = x3 + 3x + 1                                                   =                .
                                                                      h               x−a
                 f (1 + h) − f (x)                           It is also clear that, x → a if and only if
             lim
             h→0         h                                   h → 0. Therefore, if one of the two limits
                    (1 + h)3 + 3(1 + h) + 1 − 5              exists, then so does the other and
             = lim
               h→0                 h                              f (a + h) − f (a)        f (x) − f (a)
                             2   3                           lim                    = lim                .
             = lim (1+3h+3h +h h)+(3+3h)+1−5                 h→0          h           x→a      x−a
                h→0
                    6h + 3h2 + h3                        39. The slope of the tangent line at p = 1 is ap-
              = lim
                h→0       h                                  proximately
                     h 6 + 3h + h2                           −20 − 0
             = lim                    =6                               = −10
                h→0          h                                 2−0
             The point correponding to x = 1 is              which means that at p = 1 the freezing tem-
             (1, 5). So, line with slope 6 through           perature of water decreases by 10 degrees
             point (1,5) has equation y = 6 (x − 1)+5        Celsius per 1 atm increase in pressure. The
             or y = 6x − 1.                                  slope of the tangent line at p = 3 is approx-
         (b) From part (a) we have, equation of tan-         imately
2.2. THE DERIVATIVE                                                                                      85

        −11 − (−20)
                      = 4.5                                                       x

            4−2                                                    0
                                                                        0   5     10       15     20

        which means that at p = 3 the freezing tem-
        perature of water increases by 4.5 degrees
        Celsius per 1 atm increase in pressure.                    -4



                                                              y
                                                                   -8


    40. The slope of the tangent line at v = 50 is
                       47 − 28                                    -12
        approximately           = .95.
                       60 − 40
        This means that at an initial speed of 50mph
        the range of the soccer kick increases by .95
        yards per 1 mph increase in initial speed.
                                                        44. Possible graph of bungee-jumpers height:

                                                                  350

    41. The hiker reached the top at the highest
                                                                  300
        point on the graph (about1.75 hours). The
        hiker was going the fastest on the way up at              250

        about 1.5 hours. The hiker was going the
                                                                  200
        fastest on the way down at the point where
        the tangent line has the least (i.e most neg-             150

        ative) slope, at about 4 hours at the end of              100
        the hike. Where the graph is level the hiker
        was either resting or walking on flat ground.              50

                                                                        0   5     10       15     20
                                                                                  x

                                                              A graph of the bungee-jumper s velocity:
    42. The tank is the fullest at the first spike (at
        around 8 A.M.). The tank is the emptiest
        just before this at the lowest dip (around                50

                                                                                  x
        7 A.M.). The tank is filling up the fastest                      0   5     10       15     20
                                                                   0
        where the graph has the steepest positive
        slope (in between 7 and 8 A.M.). The tank
                                                                  -50
        is emptying the fastest just after 8 A.M.
        where the graph has the steepest negative             -100
        slope. The level portions most likely repre-
        sent night when waterusage is at a minimum.           -150




    43. A possible graph of the temperature with
        respect to time:
            100
                                                        2.2            The Derivative
            80
                                                         1. Using (2.1):
                                                                             f (1 + h) − f (1)
                                                              f (1) = lim
            60                                                          h→0          h
        y                                                                    3(1 + h) + 1 − (4)
                                                                     = lim
            40                                                          h→0           h
                                                                             3h
            20                                                       = lim       = lim 3 = 3
                                                                        h→0 h      h→0
                                                              Using (2.2):
             0
                 0   5     10      15      20                      f (b) − f (1)
                            x                                 lim
                                                              b→1      b−1
        Graph of the rate of change of the tem-                       3b + 1 − (3 + 1)
        perature:                                             = lim
                                                                 b→1        b−1
86                                                            CHAPTER 2. DIFFERENTIATION

              3b − 3                                                f (b) − f (1)
        = lim                                           f (1) = lim
          b→1 b − 1                                             b→1     b−1
              3(b − 1)                                                    3
        = lim                                                 = lim √
          b→1 b − 1                                             b→1    3b + 1 + 2
        = lim 3 = 3
           b→1                                                     3        3
                                                              =√         =
     2. Using (2.1):                                              4+2       4
                      f (1 + h) − f (1)              4. Using (2.1):
        f (1) = lim
                  h→0         h                                        f (2 + h) − f (2)
                               2                        f (2) = lim
                      3(1 + h) + 1 − 4                          h→0            h
                = lim                                                      3
                                                                       (2+h)+1 − 1
                  h→0          h
                      6h + 3h 2                               = lim
                = lim                                           h→0          h
                  h→0      h                                            3      3+h
                                                                             − 3+h
                                                                       3+h
                = lim 6 + 3h = 6                              = lim
                  h→0                                           h→0          h
        Using (2.2):                                                   −h
                                                                       3+h
                      f (x) − f (1)                           = lim
        f (1) = lim                                             h→0    h
                  x→1     x−1                                         −1         1
                      (3x2 + 1) − 4                           = lim         =−
                = lim                                           h→0 3 + h        3
                  x→1     x−1                           Using (2.2):
                      3(x − 1)(x + 1)                                f (x) − f (2)
                = lim                                   f (2) = lim
                  x→1       x−1                                 x→2      x−2
                                                                       3
                = lim 3(x + 1) = 6                                        −1
                  x→1                                         = lim x+1
                                                                x→2 x − 2
     3. Using (2.1): Since                                             3
                                                                          − x+1
        f (1 + h) − f (1)                                     = lim x+1 x+1
                 h
                                                                x→2      x−2
                                                                       −(x−2)
              3(1 + h) + 1 − 2                                          x+1
        =                                                     = lim
           √         h      √                                   x→2  x−2
              4 + 3h − 2      4 + 3h + 2                             −1      1
        =                  ·√                                 = lim       =−
                  h           4 + 3h + 2                        x→2 x + 1    3
               4 + 3h − 4               3h
        = √                   = √                           f (x + h) − f (x)
           h( 4 + 3h + 2)        h( 4 + 3h + 2)      5. lim
                  3                3                    h→0         h
        =√                 =√              ,                           2           2
                                                               3(x + h) + 1 − (3(x) + 1)
              4 + 3h + 2        4 + 3h + 2              = lim
        we have                                           h→0               h
                       f (1 + h) − f (1)                       3x2 + 6xh + 3h2 + 1 − (3x2 + 1)
        f (1) = lim                                     = lim
                   h→0         h                          h→0                 h
                             3                                 6xh + 3h2
                = lim √                                 = lim
                   h→0    4 + 3h + 2                      h→0      h
                                                        = lim (6x + 3h) = 6x
                          3           3                   h→0
                =                  =
                     4 + 3(0) + 2     4                             f (x + h) − f (x)
        Using (2.2): Since                           6. f (x) = lim
                                                                 h→0        h
        f (b) − f (1)                                                       2
                                                                    (x + h) − 2(x + h) + 1 − f (x)
           √− 1
            b                                                 = lim
              3b + 1 − 2                                        h→0                 h
        =                                                           2xh + h2 − 2h
            √ b−1           √                                 = lim
           ( 3b + 1 − 2)( 3b + 1 + 2)                           h→0        h
        =               √
                (b − 1)( 3b + 1 + 2)                                h(2x + h − 2)
                                                              = lim                 = 2x − 2
                (3b + 1) − 4                                    h→0        h
        =           √
           (b − 1) 3b + 1 + 2                               f (b) − f (x)
                  3(b − 1)                3          7. lim
        =           √             =√             ,      b→x     b−x
           (b − 1) 3b + 1 + 2         3b + 1 + 2               b3 + 2b − 1 − x3 + 2x − 1
        we have                                         = lim
                                                          b→x             b−x
2.2. THE DERIVATIVE                                                                                                            87

              (b − x) b2 + bx + x2 + 2                                      (3b + 1) − (3t + 1)
        = lim                                           f (t) = lim            √           √
          b→x           b−x                                        b→t (b − t)   3b + 1 + 3t + 1
        = lim b2 + bx + x2 + 2                                                   3(b − t)
           b→x
                                                             = lim                   √    √
        = 3x2 + 2                                                  b→t    (b − t)
                                                                                3b + 1 + 3t + 1
                                                                               3
                                                              = lim √             √
                                                                b→t    3b + 1 + 3t + 1
     8. f (x) =                                                     3
            f (x + h) − f (x)                                 = √
        lim                                                     2 3t + 1
        h→0         h                                          √
               (x+h)4 −2(x+h)2 +1−f (x)            12. f (t) = 2t + 4
        = lim             h
           h→0                                                      f (b) − f (t)
        = lim 4x3 + 6x2 h + 4xh2 + h3 − 4x − 2h        f (t) = lim
           h→0                                                  b→t    (b − t)
                                                                    √             √
        = 4x3 − 4x                                                     2b + 4 − 2t + 4
                                                              = lim
                                                                b→t
                                                                         √ (b − t) √
                                                                           2b + 4 + 2t + 4
            f (b) − f (x)                              Multiplying by √               √       gives
     9. lim                                                                2b + 4 + 2t + 4
        b→x     b−x                                                       (2b + 4) − (2t + 4)
                 3      3                              f (t) = lim           √            √
               b+1 − x+1                                        b→t (b − t)     2b + 4 + 2t + 4
        = lim
          b→x      b−x
                  3(x+1)−3(b+1)                                               2(b − t)
                    (b+1)(x+1)                               = lim                   √ √
        = lim                                                      b→t    (b − t)
                                                                             2b + 4 + 2t + 4
           b→x     b−x
                    −3(b − x)                                               2
        = lim                                                = lim √           √
          b→x (b + 1)(x + 1)(b − x)                            b→t   2b + 4 + 2t + 4
                    −3                                             2            1
        = lim                                                = √         =√
          b→x (b + 1)(x + 1)                                   2 2t + 4        2t + 4
             −3
        =                                          13. (a) The derivative should look like:
          (x + 1)2                                                                        10

                                                                                          8

                                                                                          6

                         f (x + h) − f (x)                                                4
    10. f (x) = lim
                   h→0           h                                                        2
                              2         2
                         2(x+h)−1 − 2x−1                                                  0
                 = lim                                       −10    −8    −6    −4   −2        0   2   4       6       8       10
                   h→0            h                                                       −2

                         2(2x−1)−2(2x+2h−1)                                               −4
                           (2x+2h−1)(2x−1)
                 = lim                                                                    −6
                   h→0                h                                                   −8
                               −4h
                         (2x+2h−1)(2x−1)                                              −10
                 = lim
                   h→0            h
                                −4
                 = lim
                   h→0 (2x + 2h − 1)(2x − 1)           (b) The derivative should look like:
                      −4
                 =                                                                    5.0
                   (2x − 1)2

                                                                                      2.5

                  √
    11. f (t) =  3t + 1
                    f (b) − f (t)                                                     0.0

        f (t) = lim                                            −5    −4    −3   −2   −1        0   1   2   3       4       5
                b→t    (b − t)
                    √            √
                       3b + 1 − 3t + 1                                                −2.5

              = lim
                b→t
                         √ (b − t) √
                           3b + 1 + 3t + 1                                            −5.0
        Multiplying by √           √       gives
                           3b + 1 + 3t + 1
88                                                                                           CHAPTER 2. DIFFERENTIATION

                                                                                                                             5

                                                                                                                             4

                                                                                                                             3

                                                                                                                             2

                                                                                                                             1
     14. (a) The derivative should look like:
                                                                                                                             0
                                             5
                                                                                            −5   −4   −3        −2   −1           0   1   2       3   4   5
                                                                                                           x                 −1
                                             4
                                                                                                                             −2
                                             3
                                                                                                                         y
                                                                                                                             −3
                                             2
                                                                                                                             −4
                                             1

                                                                                                                             −5
                                             0
               −5   −4    −3       −2    −1   0       1       2   3       4   5
                                           −1
                               x

                                             −2
                                         y
                                             −3

                                             −4

                                             −5




                                                                                  16. (a) The derivative should look like:
                                                                                                                             10

                                                                                                                             8
         (b) The derivative should look like:
                                                                                                                             6
                                             5
                                                                                                                             4
                                             4
                                                                                                                             2
                                             3
                                                                                                                             0
                                             2
                                                                                            −5   −4   −3        −2   −1           0   1   2       3   4   5
                                                                                                           x                 −2
                                             1
                                                                                                                             −4
                                             0                                                                       y
               −5   −4    −3       −2    −1   0       1       2   3       4   5                                              −6
                                           −1
                               x
                                                                                                                             −8
                                             −2
                                         y
                                                                                                                         −10
                                             −3

                                             −4

                                             −5




                                                                                      (b) The derivative should look like:
                                                                                                                         4.0

                                                                                                                         3.2


     15. (a) The derivative should look like:                                                                            2.4

                                             3                                                                           1.6

                                                                                                                         0.8
                                             2
                                                                                                                         0.0
                                                                                            −4             −2                     0           2           4
                                                                                                           x             −0.8
                                             1

                                                                                                                         −1.6
                                                                                                                     y
                                             0                                                                           −2.4
               −3        −2         −1            0       1           2       3
                                                                                                                         −3.2
                               x
                                             −1
                                                                                                                         −4.0
                                         y

                                             −2



                                             −3




         (b) The derivative should look like:                                     17. (a) The function should look like:
2.2. THE DERIVATIVE                                                                                                                 89

                                           10                                                         25

                                           8
                                                                                                      20
                                           6

                                                                                                      15
                                           4
                                                                                                  y
                                           2                                                          10

                                           0
             −10   −8   −6       −4   −2        0   2   4   6   8   10                                 5
                             x             −2

                                           −4                                                          0
                                      y                                           −5.0     −2.5            0.0   2.5   5.0   7.5   10.0
                                           −6                                                                          x
                                                                                                      −5
                                           −8

                                                                                                      −10
                                          −10




                                                                         19. The left-hand derivative is

                                                                                                f (h) − f (0)
        (b) The function should look like:                                   D− f (0) = lim
                                           10
                                                                                           h→0−       h
                                                                                                2h + 1 − 1
                                           8
                                                                                         = lim−              =2
                                           6
                                                                                          h→0        h
                                           4                                 The right-hand derivative is
                                           2

                                           0                                                    f (h) − f (0)
             −10   −8   −6       −4   −2        0   2   4   6   8   10       D+ f (0) = lim+
                             x             −2                                              h→0        h
                                           −4                                                   3h + 1 − 1
                                      y                                                  = lim+              =3
                                           −6                                             h→0        h
                                           −8
                                                                             Since the one-sided limits do not agree (2 =
                                          −10
                                                                             3), f (0) does not exist.

                                                                         20. The left-hand derivative is

                                                                                                f (h) − f (0)
                                                                             D− f (0) = lim
                                                                                           h→0+       h
                                                                                                0−0
                                                                                         = lim−        =0
                                                                                          h→0      h

    18. (a) The function should look like:                                   The right-hand derivative is
                                           10

                                           8                                                    f (h) − f (0)
                                                                             D+ f (0) = lim−
                                           6                                               h→0        h
                                           4                                                    2h
                                                                                         = lim+     =2
                                           2                                              h→0    h

             −10   −8   −6       −4   −2
                                           0
                                                0   2   4   6   8   10
                                                                             Since the one-sided limits do not agree (0 =
                             x             −2
                                                                             2), f (0) does not exist.
                                           −4
                                      y
                                           −6                            21. The left-hand derivative is
                                           −8

                                                                                                f (h) − f (0)
                                          −10
                                                                             D− f (0) = lim
                                                                                           h→0−       h
                                                                                                h2 − 0
                                                                                         = lim−         =0
                                                                                          h→0      h
                                                                             The right-hand derivative is
        (b) The function should look like:
90                                                                       CHAPTER 2. DIFFERENTIATION

                          f (h) − f (0)                                                         f (x) − f (2)
           D+ f (0) = lim+                                                x              f (x)
                     h→0        h                                                                   x−2
                          h3 − 0                                        1.1      172.7658734 635.6957329
                    = lim         =0                                   1.01      114.2323717 503.6071639
                     h→0+    h
                                                                       1.001     109.6888867 492.5866054
           Since the one-sided limits are same (0 = 0),               1.0001     109.2454504 491.5034872
           f (0) exist.                                              1.00001      109.201214 491.3953621
                                                                    1.000001     109.1967915 491.3845515
                                                                   1.0000001 109.1963492 491.3834702
      22. The left-hand derivative is                              1.00000001 109.1963050 491.3833622
                                                                The evidence of this table strongly suggests
                                                                that the difference quotients (essentially) in-
                          f (h) − f (0)                         distinguishable from the values (themselves)
           D− f (0) = lim+
                    h→0         h                               491.383. If true, this would mean that f (2)
                          2h                                    ≈ 491.383.
                   = lim−     =2
                    h→0    h
                                                            25. f (x) = cos 3x
                                                                                         f (x) − f (0)
           The right-hand derivative is                              x           f (x)
                                                                                             x−0
                                                                    0.1      0.9553365 −0.4466351
                          f (h) − f (0)                            0.01      0.9995500 −0.0449966
           D+ f (0) = lim−
                    h→0         h                                  0.001     0.9999955 −0.0045000
                          h2 + 2h                                 0.0001 1.0000000 −0.0004500
                   = lim                                         0.00001 1.0000000 −0.0000450
                    h→0+      h
                          h(h + 2)                              The evidence of this table strongly suggests
                   = lim                                        that the difference quotients (essentially) in-
                    h→0+      h
                                                                distinguishable from the values (themselves)
                   = lim+ h + 2 = 2                             0. If true, this would mean that f (0) ≈ 0.
                        h→0

                                                            26. f (x) = ln 3x
           Since the one-sided limits are same (2 = 2),                                    f (x) − f (2)
           f (0) exist.                                               x            f (x)
                                                                                               x−2
                                                                     2.1      1.8405496     0.4879016
                                                                     2.01     1.7967470     0.4987542
                        x
     23.   f (x) = √                                                2.001     1.7922593     0.4998757
                       x2   +1                                     2.0001     1.7918095     0.4999875
                                     f (x) − f (1)                 2.00001    1.7917645     0.4999988
               x             f (x)
                                         x−1                      2.000001 1.7917600        0.4999999
               1.1      0.7399401     0.3283329                  2.0000001 1.7917595        0.5000000
              1.01      0.7106159     0.3509150                 The evidence of this table strongly suggests
              1.001     0.7074601     0.3532884                 that the difference quotients (essentially) in-
             1.0001     0.7071421     0.3535268                 distinguishable from the values (themselves)
            1.00001     0.7071103     0.3535507                 0.5. If true, this would mean that f (2)
                                                                ≈ 0.5.
                                                            27. Compute average velocities:
           The evidence of this table strongly suggests
                                                                 Time Interval Average Velocity
           that the difference quotients (essentially) in-
                                                                   (1.7, 2.0)           9.0
           distinguishable from the values (themselves)
           0.353. If true, this would mean that f (1)              (1.8, 2.0)           9.5
           ≈ 0.353.                                                (1.8, 2.0)           10.0
                                                                   (2.0, 2.1)           10.0
                                                                   (2.0, 2.2)           9.5
                                                                   (2.0, 2.3)           9.0
                        2                                       Our best estimate of velocity at t = 2 is 10.
      24. f (x) = xex
                                                            28. Compute average velocities:
2.2. THE DERIVATIVE                                                                                                                                                               91

                                                                                                                                               3
                                                                                                                   (b) g(x) = e−2/(x               −x)

          Time Interval Average Velocity                                                                                                                 5

            (1.7, 2.0)             8                                                                                                                     4

            (1.8, 2.0)            8.5                                                                                                                    3

            (1.8, 2.0)            9.0                                                                                                                    2

            (2.0, 2.1)            8.0                                                                                                                    1

            (2.0, 2.2)            8.0                                                                                                                    0
                                                                                                                           −5   −4   −3       −2    −1        0   1   2   3   4   5
            (2.0, 2.3)           7.67                                                                                                     x              −1

         A velocity of between 8 and 9 seems to be a                                                                                                     −2
                                                                                                                                                     y
         good guess.                                                                                                                                     −3


    29. (a) f (x) = |x| + |x − 2|                                                                                                                        −4

                                                               10                                                                                        −5

                                                               8
                                                                                                                          g(x) is not differentiable at x = 0 and
                                                               6                                                          x = ±1.
                                                                                                                                     p
                                                               4
                                                                                                                         (0 + h) − 0p         hp
                                                               2                                                31. lim                = lim      = lim hp−1
                                                                                                                    h→0        h         h→0 h      h→0
                                                               0                                                    The last limit does not exist when p < 1,
              −6        −5       −4        −3    −2       −1   0        1       2       3       4   5       6
                                                            −2                                                      equals 1 when p = 1 and is 0 when p > 1.
                                                               −4                                                   Thus f (0) exists when p ≥ 1.
                                                               −6
                                                                                                                              x2 + 2x x < 0
                                                                                                                32. f (x) =
                                                               −8
                                                                                                                               ax + b x ≥ 0
                                                              −10
                                                                                                                    For h < 0, f (h) = h2 + 2h, f (0) = b
            f (x) is not differentiable at x = 0 and                                                                                    f (h) − f (0)
                                                                                                                     D− f (0) = lim
            x = 2.                                                                                                              h→0−          h
        (b) f (x) = |x2 − 4x|                                                                                                            2
                                                                                                                                       h + 2h − b
                                                                                                                              = lim−
                                                          5.0                                                                   h→0           h
                                                                                                                    For f to be differentiable D− f (0) must ex-
                                                                                                                    ist.
                                                          2.5
                                                                                                                    D− f (0) exists if and only if b = 0.
                                                                                                                    Substituting b = 0, we get
                                                          0.0                                                                          h2 + 2h
                                                                                                                    D− f (0) = lim−             = lim− (h + 2) = 2
             −6        −5    −4        −3       −2        −1        0   1       2       3
                                                                                        x
                                                                                                4       5   6
                                                                                                                               h→0         h       h→0
                                                                                                                    For h > 0, f (h) = ah + b, f (0) = b
                                                      y
                                                          −2.5
                                                                                                                                       f (h) − f (0)
                                                                                                                     D+ f (0) = lim+
                                                                                                                                h→0           h
                                                          −5.0                                                                         ah + b − b
                                                                                                                              = lim+
                                                                                                                                h→0          h
             f (x) is not differentiable at x = 0 and                                                                                   ah
             x = 4.                                                                                                           = lim+       =a
                                                                                                                                h→0     h
    30. (a) g(x) = e−2/x                                                                                            D+ f (0) = 2 if and only if a = 2.
                                                                                                                33. Let f (x) = −1 − x2 then for all, we have
                                                               5

                                                               4
                                                                                                                    f (x) ≤ x. But at x = −1, we find f (−1) =
                                                               3
                                                                                                                    −2 and
                                                               2                                                                   f (−1 + h) − f (−1)
                                                                                                                    f (−1) = lim
                                                               1                                                               h→0          h
                                                                                                                                                   2
                                                               0
                                                                                                                                   −1 − (−1 + h) − (−2)
                  −5        −4        −3        −2        −1
                                                            −1
                                                               0            1       2       3       4       5               = lim
                                           x                                                                                   h→0             h
                                                          y
                                                               −2
                                                                                                                                   1 − (1 − 2h + h2 )
                                                               −3                                                           = lim
                                                                                                                               h→0         h
                                                               −4
                                                                                                                                   2h − h2
                                                               −5                                                           = lim           = lim (2 − h) = 2.
                                                                                                                               h→0     h       h→0
             g(x) is not differentiable at x = 0.                                                                    So, f (x) is not always less than 1.
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2
Ism et chapter_2

More Related Content

What's hot

Cash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap FuturesCash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap Futures
Clarus Financial Technology
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
Chalio Solano
 
Chapter 07
Chapter 07Chapter 07
Chapter 07
ramiz100111
 
4th Semester Mechanincal Engineering (2012-December) Question Papers
4th Semester Mechanincal Engineering (2012-December) Question Papers4th Semester Mechanincal Engineering (2012-December) Question Papers
4th Semester Mechanincal Engineering (2012-December) Question Papers
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppt
tuiye
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
Matthew Leingang
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
SEENET-MTP
 
Lec4 MECH ENG STRucture
Lec4    MECH ENG  STRuctureLec4    MECH ENG  STRucture
Lec4 MECH ENG STRucture
Mohamed Yaser
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
Matthew Leingang
 
Sol7
Sol7Sol7
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
Delta Pi Systems
 
Cheat Sheet
Cheat SheetCheat Sheet
Cheat Sheet
guest742ba8
 
Lagrange
LagrangeLagrange
Lagrange
chenaren
 
1202 ch 12 day 2
1202 ch 12 day 21202 ch 12 day 2
1202 ch 12 day 2
festivalelmo
 
Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : Fourier
Gabriel Peyré
 
1201 ch 12 day 1
1201 ch 12 day 11201 ch 12 day 1
1201 ch 12 day 1
festivalelmo
 
1203 ch 12 day 3
1203 ch 12 day 31203 ch 12 day 3
1203 ch 12 day 3
festivalelmo
 
Chapter 02
Chapter 02Chapter 02
Chapter 02
sujanhuda
 

What's hot (18)

Cash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap FuturesCash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap Futures
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Chapter 07
Chapter 07Chapter 07
Chapter 07
 
4th Semester Mechanincal Engineering (2012-December) Question Papers
4th Semester Mechanincal Engineering (2012-December) Question Papers4th Semester Mechanincal Engineering (2012-December) Question Papers
4th Semester Mechanincal Engineering (2012-December) Question Papers
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppt
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
 
Lec4 MECH ENG STRucture
Lec4    MECH ENG  STRuctureLec4    MECH ENG  STRucture
Lec4 MECH ENG STRucture
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
 
Sol7
Sol7Sol7
Sol7
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Cheat Sheet
Cheat SheetCheat Sheet
Cheat Sheet
 
Lagrange
LagrangeLagrange
Lagrange
 
1202 ch 12 day 2
1202 ch 12 day 21202 ch 12 day 2
1202 ch 12 day 2
 
Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : Fourier
 
1201 ch 12 day 1
1201 ch 12 day 11201 ch 12 day 1
1201 ch 12 day 1
 
1203 ch 12 day 3
1203 ch 12 day 31203 ch 12 day 3
1203 ch 12 day 3
 
Chapter 02
Chapter 02Chapter 02
Chapter 02
 

Similar to Ism et chapter_2

solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2
José Encalada
 
Capitulo 2
Capitulo 2Capitulo 2
Capitulo 2
Alfredo Naranjo
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
Destiny Nooppynuchy
 
Den5200 ps1
Den5200 ps1Den5200 ps1
Den5200 ps1
jogerpow
 
Euler lagrange equation
Euler lagrange equationEuler lagrange equation
Euler lagrange equation
mufti195
 
Chapter 2(limits)
Chapter 2(limits)Chapter 2(limits)
Chapter 2(limits)
Eko Wijayanto
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
Matthew Leingang
 
Ch33 11
Ch33 11Ch33 11
Ch33 11
schibu20
 
1204 ch 12 day 4
1204 ch 12 day 41204 ch 12 day 4
1204 ch 12 day 4
festivalelmo
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
Drradz Maths
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
Drradz Maths
 
Performance of Optimal Registration Estimator
Performance of Optimal Registration EstimatorPerformance of Optimal Registration Estimator
Performance of Optimal Registration Estimator
Tuan Q. Pham
 
Mat 128 11 3
Mat 128 11 3Mat 128 11 3
Mat 128 11 3
zwaneroger8912
 
solucionario de purcell 1
solucionario de purcell 1solucionario de purcell 1
solucionario de purcell 1
José Encalada
 
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
Dabe Milli
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
ramiz100111
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
Matthew Leingang
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
Drradz Maths
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
Drradz Maths
 
1st 2practice
1st 2practice1st 2practice
1st 2practice
canalculus
 

Similar to Ism et chapter_2 (20)

solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2
 
Capitulo 2
Capitulo 2Capitulo 2
Capitulo 2
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
 
Den5200 ps1
Den5200 ps1Den5200 ps1
Den5200 ps1
 
Euler lagrange equation
Euler lagrange equationEuler lagrange equation
Euler lagrange equation
 
Chapter 2(limits)
Chapter 2(limits)Chapter 2(limits)
Chapter 2(limits)
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
Ch33 11
Ch33 11Ch33 11
Ch33 11
 
1204 ch 12 day 4
1204 ch 12 day 41204 ch 12 day 4
1204 ch 12 day 4
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
 
Performance of Optimal Registration Estimator
Performance of Optimal Registration EstimatorPerformance of Optimal Registration Estimator
Performance of Optimal Registration Estimator
 
Mat 128 11 3
Mat 128 11 3Mat 128 11 3
Mat 128 11 3
 
solucionario de purcell 1
solucionario de purcell 1solucionario de purcell 1
solucionario de purcell 1
 
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
 
1st 2practice
1st 2practice1st 2practice
1st 2practice
 

More from Drradz Maths

Figures
FiguresFigures
Figures
Drradz Maths
 
Formulas
FormulasFormulas
Formulas
Drradz Maths
 
Revision 7.1 7.3
Revision 7.1 7.3Revision 7.1 7.3
Revision 7.1 7.3
Drradz Maths
 
Tutorial 9
Tutorial 9Tutorial 9
Tutorial 9
Drradz Maths
 
Tutorial 8
Tutorial 8Tutorial 8
Tutorial 8
Drradz Maths
 
MTH3101 Tutor 7 lagrange multiplier
MTH3101  Tutor 7 lagrange multiplierMTH3101  Tutor 7 lagrange multiplier
MTH3101 Tutor 7 lagrange multiplier
Drradz Maths
 
Tutorial 6 en.mughti important
Tutorial 6 en.mughti importantTutorial 6 en.mughti important
Tutorial 6 en.mughti important
Drradz Maths
 
Figures
FiguresFigures
Figures
Drradz Maths
 
Figures
FiguresFigures
Figures
Drradz Maths
 
First_attachment MTH3101
First_attachment MTH3101First_attachment MTH3101
First_attachment MTH3101
Drradz Maths
 
Tutorial 9 mth 3201
Tutorial 9 mth 3201Tutorial 9 mth 3201
Tutorial 9 mth 3201
Drradz Maths
 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201
Drradz Maths
 
Tutorial 7 mth 3201
Tutorial 7 mth 3201Tutorial 7 mth 3201
Tutorial 7 mth 3201
Drradz Maths
 
Tutorial 6 mth 3201
Tutorial 6 mth 3201Tutorial 6 mth 3201
Tutorial 6 mth 3201
Drradz Maths
 
Tutorial 5 mth 3201
Tutorial 5 mth 3201Tutorial 5 mth 3201
Tutorial 5 mth 3201
Drradz Maths
 
Tutorial 4 mth 3201
Tutorial 4 mth 3201Tutorial 4 mth 3201
Tutorial 4 mth 3201
Drradz Maths
 
Tutorial 2, 2(e), no. 7
Tutorial 2,  2(e),  no. 7Tutorial 2,  2(e),  no. 7
Tutorial 2, 2(e), no. 7
Drradz Maths
 
Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201
Drradz Maths
 
Tutorial 2 mth 3201
Tutorial 2 mth 3201Tutorial 2 mth 3201
Tutorial 2 mth 3201
Drradz Maths
 

More from Drradz Maths (20)

Figures
FiguresFigures
Figures
 
Formulas
FormulasFormulas
Formulas
 
Revision 7.1 7.3
Revision 7.1 7.3Revision 7.1 7.3
Revision 7.1 7.3
 
Tutorial 9
Tutorial 9Tutorial 9
Tutorial 9
 
Tutorial 8
Tutorial 8Tutorial 8
Tutorial 8
 
MTH3101 Tutor 7 lagrange multiplier
MTH3101  Tutor 7 lagrange multiplierMTH3101  Tutor 7 lagrange multiplier
MTH3101 Tutor 7 lagrange multiplier
 
Tutorial 6 en.mughti important
Tutorial 6 en.mughti importantTutorial 6 en.mughti important
Tutorial 6 en.mughti important
 
Figures
FiguresFigures
Figures
 
Formulas
FormulasFormulas
Formulas
 
Figures
FiguresFigures
Figures
 
First_attachment MTH3101
First_attachment MTH3101First_attachment MTH3101
First_attachment MTH3101
 
Tutorial 9 mth 3201
Tutorial 9 mth 3201Tutorial 9 mth 3201
Tutorial 9 mth 3201
 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201
 
Tutorial 7 mth 3201
Tutorial 7 mth 3201Tutorial 7 mth 3201
Tutorial 7 mth 3201
 
Tutorial 6 mth 3201
Tutorial 6 mth 3201Tutorial 6 mth 3201
Tutorial 6 mth 3201
 
Tutorial 5 mth 3201
Tutorial 5 mth 3201Tutorial 5 mth 3201
Tutorial 5 mth 3201
 
Tutorial 4 mth 3201
Tutorial 4 mth 3201Tutorial 4 mth 3201
Tutorial 4 mth 3201
 
Tutorial 2, 2(e), no. 7
Tutorial 2,  2(e),  no. 7Tutorial 2,  2(e),  no. 7
Tutorial 2, 2(e), no. 7
 
Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201
 
Tutorial 2 mth 3201
Tutorial 2 mth 3201Tutorial 2 mth 3201
Tutorial 2 mth 3201
 

Recently uploaded

Turkey vs Georgia Tickets: Turkey's Provisional Squad for UEFA Euro 2024, Key...
Turkey vs Georgia Tickets: Turkey's Provisional Squad for UEFA Euro 2024, Key...Turkey vs Georgia Tickets: Turkey's Provisional Squad for UEFA Euro 2024, Key...
Turkey vs Georgia Tickets: Turkey's Provisional Squad for UEFA Euro 2024, Key...
Eticketing.co
 
Croatia's UEFA Euro 2024 Puzzle of Experience versus Youth.docx
Croatia's UEFA Euro 2024 Puzzle of Experience versus Youth.docxCroatia's UEFA Euro 2024 Puzzle of Experience versus Youth.docx
Croatia's UEFA Euro 2024 Puzzle of Experience versus Youth.docx
Euro Cup 2024 Tickets
 
Euro 2024 Belgium's Rebirth the New Generation Match the Golden Era.docx
Euro 2024 Belgium's Rebirth the New Generation Match the Golden Era.docxEuro 2024 Belgium's Rebirth the New Generation Match the Golden Era.docx
Euro 2024 Belgium's Rebirth the New Generation Match the Golden Era.docx
Eticketing.co
 
Luciano Spalletti Leads Italy's Transition at UEFA Euro 2024.docx
Luciano Spalletti Leads Italy's Transition at UEFA Euro 2024.docxLuciano Spalletti Leads Italy's Transition at UEFA Euro 2024.docx
Luciano Spalletti Leads Italy's Transition at UEFA Euro 2024.docx
Euro Cup 2024 Tickets
 
Croatia vs Italy Modric's Last Dance Croatia's UEFA Euro 2024 Journey and Ita...
Croatia vs Italy Modric's Last Dance Croatia's UEFA Euro 2024 Journey and Ita...Croatia vs Italy Modric's Last Dance Croatia's UEFA Euro 2024 Journey and Ita...
Croatia vs Italy Modric's Last Dance Croatia's UEFA Euro 2024 Journey and Ita...
Eticketing.co
 
快速制作加拿大西蒙菲莎大学毕业证(sfu毕业证书)硕士学位证书原版一模一样
快速制作加拿大西蒙菲莎大学毕业证(sfu毕业证书)硕士学位证书原版一模一样快速制作加拿大西蒙菲莎大学毕业证(sfu毕业证书)硕士学位证书原版一模一样
快速制作加拿大西蒙菲莎大学毕业证(sfu毕业证书)硕士学位证书原版一模一样
8z10jo1w
 
Euro Cup Group E Preview, Team Strategies, Key Players, and Tactical Insights...
Euro Cup Group E Preview, Team Strategies, Key Players, and Tactical Insights...Euro Cup Group E Preview, Team Strategies, Key Players, and Tactical Insights...
Euro Cup Group E Preview, Team Strategies, Key Players, and Tactical Insights...
Eticketing.co
 
Paris 2024 History-making Matildas team selected for Olympic Games.pdf
Paris 2024 History-making Matildas team selected for Olympic Games.pdfParis 2024 History-making Matildas team selected for Olympic Games.pdf
Paris 2024 History-making Matildas team selected for Olympic Games.pdf
Eticketing.co
 
Olympic 2024 Key Players and Teams to Watch in Men's and Women's Football at ...
Olympic 2024 Key Players and Teams to Watch in Men's and Women's Football at ...Olympic 2024 Key Players and Teams to Watch in Men's and Women's Football at ...
Olympic 2024 Key Players and Teams to Watch in Men's and Women's Football at ...
Eticketing.co
 
JORNADA 11 LIGA MURO 2024BASQUETBOL1.pdf
JORNADA 11 LIGA MURO 2024BASQUETBOL1.pdfJORNADA 11 LIGA MURO 2024BASQUETBOL1.pdf
JORNADA 11 LIGA MURO 2024BASQUETBOL1.pdf
Arturo Pacheco Alvarez
 
Turkey UEFA Euro 2024 Journey A Quest for Redemption and Success.docx
Turkey UEFA Euro 2024 Journey A Quest for Redemption and Success.docxTurkey UEFA Euro 2024 Journey A Quest for Redemption and Success.docx
Turkey UEFA Euro 2024 Journey A Quest for Redemption and Success.docx
Eticketing.co
 
Spain vs Italy Spain Route to The Euro Cup 2024 Final Who La Roja Will Face I...
Spain vs Italy Spain Route to The Euro Cup 2024 Final Who La Roja Will Face I...Spain vs Italy Spain Route to The Euro Cup 2024 Final Who La Roja Will Face I...
Spain vs Italy Spain Route to The Euro Cup 2024 Final Who La Roja Will Face I...
Eticketing.co
 
Tennis rules and techniques with information
Tennis rules and techniques with informationTennis rules and techniques with information
Tennis rules and techniques with information
mohsintariq167876
 
Georgia vs Portugal Euro Cup 2024 Clash Unites a Nation Amid Turmoil.pdf
Georgia vs Portugal Euro Cup 2024 Clash Unites a Nation Amid Turmoil.pdfGeorgia vs Portugal Euro Cup 2024 Clash Unites a Nation Amid Turmoil.pdf
Georgia vs Portugal Euro Cup 2024 Clash Unites a Nation Amid Turmoil.pdf
Eticketing.co
 
Sportr pitch deck for our saas based platform
Sportr pitch deck for our saas based platformSportr pitch deck for our saas based platform
Sportr pitch deck for our saas based platform
NathanielMDuncan
 
MESH IPL 2024 REport_Wavemaker India.pdf
MESH IPL 2024 REport_Wavemaker India.pdfMESH IPL 2024 REport_Wavemaker India.pdf
MESH IPL 2024 REport_Wavemaker India.pdf
Social Samosa
 
Turkey vs Georgia Prospects and Challenges in Euro Cup Germany.docx
Turkey vs Georgia Prospects and Challenges in Euro Cup Germany.docxTurkey vs Georgia Prospects and Challenges in Euro Cup Germany.docx
Turkey vs Georgia Prospects and Challenges in Euro Cup Germany.docx
Eticketing.co
 
Georgia vs Portugal Georgia UEFA Euro 2024 Squad Khvicha Kvaratskhelia Leads ...
Georgia vs Portugal Georgia UEFA Euro 2024 Squad Khvicha Kvaratskhelia Leads ...Georgia vs Portugal Georgia UEFA Euro 2024 Squad Khvicha Kvaratskhelia Leads ...
Georgia vs Portugal Georgia UEFA Euro 2024 Squad Khvicha Kvaratskhelia Leads ...
Eticketing.co
 
Belgium vs Romania Ultimate Guide to Euro Cup 2024 Tactics, Ticketing, and Qu...
Belgium vs Romania Ultimate Guide to Euro Cup 2024 Tactics, Ticketing, and Qu...Belgium vs Romania Ultimate Guide to Euro Cup 2024 Tactics, Ticketing, and Qu...
Belgium vs Romania Ultimate Guide to Euro Cup 2024 Tactics, Ticketing, and Qu...
Eticketing.co
 
Psaroudakis: Family and Football – The Psaroudakis Success Story
Psaroudakis: Family and Football – The Psaroudakis Success StoryPsaroudakis: Family and Football – The Psaroudakis Success Story
Psaroudakis: Family and Football – The Psaroudakis Success Story
Psaroudakis
 

Recently uploaded (20)

Turkey vs Georgia Tickets: Turkey's Provisional Squad for UEFA Euro 2024, Key...
Turkey vs Georgia Tickets: Turkey's Provisional Squad for UEFA Euro 2024, Key...Turkey vs Georgia Tickets: Turkey's Provisional Squad for UEFA Euro 2024, Key...
Turkey vs Georgia Tickets: Turkey's Provisional Squad for UEFA Euro 2024, Key...
 
Croatia's UEFA Euro 2024 Puzzle of Experience versus Youth.docx
Croatia's UEFA Euro 2024 Puzzle of Experience versus Youth.docxCroatia's UEFA Euro 2024 Puzzle of Experience versus Youth.docx
Croatia's UEFA Euro 2024 Puzzle of Experience versus Youth.docx
 
Euro 2024 Belgium's Rebirth the New Generation Match the Golden Era.docx
Euro 2024 Belgium's Rebirth the New Generation Match the Golden Era.docxEuro 2024 Belgium's Rebirth the New Generation Match the Golden Era.docx
Euro 2024 Belgium's Rebirth the New Generation Match the Golden Era.docx
 
Luciano Spalletti Leads Italy's Transition at UEFA Euro 2024.docx
Luciano Spalletti Leads Italy's Transition at UEFA Euro 2024.docxLuciano Spalletti Leads Italy's Transition at UEFA Euro 2024.docx
Luciano Spalletti Leads Italy's Transition at UEFA Euro 2024.docx
 
Croatia vs Italy Modric's Last Dance Croatia's UEFA Euro 2024 Journey and Ita...
Croatia vs Italy Modric's Last Dance Croatia's UEFA Euro 2024 Journey and Ita...Croatia vs Italy Modric's Last Dance Croatia's UEFA Euro 2024 Journey and Ita...
Croatia vs Italy Modric's Last Dance Croatia's UEFA Euro 2024 Journey and Ita...
 
快速制作加拿大西蒙菲莎大学毕业证(sfu毕业证书)硕士学位证书原版一模一样
快速制作加拿大西蒙菲莎大学毕业证(sfu毕业证书)硕士学位证书原版一模一样快速制作加拿大西蒙菲莎大学毕业证(sfu毕业证书)硕士学位证书原版一模一样
快速制作加拿大西蒙菲莎大学毕业证(sfu毕业证书)硕士学位证书原版一模一样
 
Euro Cup Group E Preview, Team Strategies, Key Players, and Tactical Insights...
Euro Cup Group E Preview, Team Strategies, Key Players, and Tactical Insights...Euro Cup Group E Preview, Team Strategies, Key Players, and Tactical Insights...
Euro Cup Group E Preview, Team Strategies, Key Players, and Tactical Insights...
 
Paris 2024 History-making Matildas team selected for Olympic Games.pdf
Paris 2024 History-making Matildas team selected for Olympic Games.pdfParis 2024 History-making Matildas team selected for Olympic Games.pdf
Paris 2024 History-making Matildas team selected for Olympic Games.pdf
 
Olympic 2024 Key Players and Teams to Watch in Men's and Women's Football at ...
Olympic 2024 Key Players and Teams to Watch in Men's and Women's Football at ...Olympic 2024 Key Players and Teams to Watch in Men's and Women's Football at ...
Olympic 2024 Key Players and Teams to Watch in Men's and Women's Football at ...
 
JORNADA 11 LIGA MURO 2024BASQUETBOL1.pdf
JORNADA 11 LIGA MURO 2024BASQUETBOL1.pdfJORNADA 11 LIGA MURO 2024BASQUETBOL1.pdf
JORNADA 11 LIGA MURO 2024BASQUETBOL1.pdf
 
Turkey UEFA Euro 2024 Journey A Quest for Redemption and Success.docx
Turkey UEFA Euro 2024 Journey A Quest for Redemption and Success.docxTurkey UEFA Euro 2024 Journey A Quest for Redemption and Success.docx
Turkey UEFA Euro 2024 Journey A Quest for Redemption and Success.docx
 
Spain vs Italy Spain Route to The Euro Cup 2024 Final Who La Roja Will Face I...
Spain vs Italy Spain Route to The Euro Cup 2024 Final Who La Roja Will Face I...Spain vs Italy Spain Route to The Euro Cup 2024 Final Who La Roja Will Face I...
Spain vs Italy Spain Route to The Euro Cup 2024 Final Who La Roja Will Face I...
 
Tennis rules and techniques with information
Tennis rules and techniques with informationTennis rules and techniques with information
Tennis rules and techniques with information
 
Georgia vs Portugal Euro Cup 2024 Clash Unites a Nation Amid Turmoil.pdf
Georgia vs Portugal Euro Cup 2024 Clash Unites a Nation Amid Turmoil.pdfGeorgia vs Portugal Euro Cup 2024 Clash Unites a Nation Amid Turmoil.pdf
Georgia vs Portugal Euro Cup 2024 Clash Unites a Nation Amid Turmoil.pdf
 
Sportr pitch deck for our saas based platform
Sportr pitch deck for our saas based platformSportr pitch deck for our saas based platform
Sportr pitch deck for our saas based platform
 
MESH IPL 2024 REport_Wavemaker India.pdf
MESH IPL 2024 REport_Wavemaker India.pdfMESH IPL 2024 REport_Wavemaker India.pdf
MESH IPL 2024 REport_Wavemaker India.pdf
 
Turkey vs Georgia Prospects and Challenges in Euro Cup Germany.docx
Turkey vs Georgia Prospects and Challenges in Euro Cup Germany.docxTurkey vs Georgia Prospects and Challenges in Euro Cup Germany.docx
Turkey vs Georgia Prospects and Challenges in Euro Cup Germany.docx
 
Georgia vs Portugal Georgia UEFA Euro 2024 Squad Khvicha Kvaratskhelia Leads ...
Georgia vs Portugal Georgia UEFA Euro 2024 Squad Khvicha Kvaratskhelia Leads ...Georgia vs Portugal Georgia UEFA Euro 2024 Squad Khvicha Kvaratskhelia Leads ...
Georgia vs Portugal Georgia UEFA Euro 2024 Squad Khvicha Kvaratskhelia Leads ...
 
Belgium vs Romania Ultimate Guide to Euro Cup 2024 Tactics, Ticketing, and Qu...
Belgium vs Romania Ultimate Guide to Euro Cup 2024 Tactics, Ticketing, and Qu...Belgium vs Romania Ultimate Guide to Euro Cup 2024 Tactics, Ticketing, and Qu...
Belgium vs Romania Ultimate Guide to Euro Cup 2024 Tactics, Ticketing, and Qu...
 
Psaroudakis: Family and Football – The Psaroudakis Success Story
Psaroudakis: Family and Football – The Psaroudakis Success StoryPsaroudakis: Family and Football – The Psaroudakis Success Story
Psaroudakis: Family and Football – The Psaroudakis Success Story
 

Ism et chapter_2

  • 1. 3 2 1 0 −3 −2 −1 0 1 2 3 x Chapter 2 y −1 −2 −3 Differentiation 3. Slope is f (−2 + h) − f (−2) lim h→0 h 2 (−2 + h) − 3(−2 + h) − (10) = lim h→0 h −7h + h2 = lim = −7. h→0 h Tangent line is y = −7(x + 2) + 10 2.1 Tangent Line and 120 Velocity 100 80 60 1. Slope is 40 f (1 + h) − f (1) lim 20 h→0 h 2 0 (1 + h) − 2 − (−1) −10 −8 −6 −4 −2 0 2 4 6 8 10 = lim x −20 h→0 h h2 + 2h −40 = lim −60 h→0 h = lim (h + 2) = 2. h→0 Tangent line is y = 2(x−1)−1 or y = 2x−3. 4. Slope is f (1 + h) − f (1) lim 5.0 h→0 h (1 + 3h + 3h2 + h3 ) + (1 + h) − 2 = lim x 2.5 h→0 h −3 −2 −1 0 1 2 3 4h + 3h2 + h3 0.0 = lim = lim 4 + 3h + h2 = 4. h→0 h h→0 −2.5 Tangent line is y = 4(x − 1) + 2. 30 −5.0 25 −7.5 20 y 15 10 5 2. Slope is 0 f (0 + h) − f (0) −1 0 1 2 3 lim x h→0 h −5 h2 = lim = 0. h→0 h Tangent line is y = −2. 5. Slope is 78
  • 2. 2.1. TANGENT LINE AND VELOCITY 79 f (1 + h) − f (1) (h + 1) − 1 lim = lim √ h→0 h h→0 h( h + 1 + 1) 2 2 (1+h)+1 − 1+1 1 1 = lim = lim √ = . h→0 h h→0 h+1+1 2 2 2−(2+h) 1 1 2+h −1 2+h Tangent line is y = (x+2)+1 or y = x+2. = lim = lim 2 2 h→0 h h→0 h 4.0 −h 3.2 2+h −1 1 = lim =− . = lim 2.4 h→0 h h→0 2 + h 2 1 1.6 Tangent line is y = − (x − 1) + 1 or 2 0.8 x 3 y=− + . 0.0 2 2 −4 −2 x −0.8 0 2 4 4.0 −1.6 3.2 y −2.4 2.4 −3.2 1.6 −4.0 0.8 0.0 8. Slope is −5 −4 −3 −2 −1 −0.8 0 1 2 3 4 5 f (1 + h) − f (x) x lim −1.6 h→0 h √ y −2.4 (1 + h) + 3 − 1 + 3 = lim −3.2 h→0 √ h −4.0 h+4−2 = lim h→0 √ h √ 6. Slope is h+4−2 h+4+2 = lim ·√ f (0 + h) − f (0) h→0 h h+4+2 lim h+4−4 1 h→0 h = lim ·√ h h h+4+2 −0 h→0 = lim h−1 1 1 h→0 h = lim √ = . 1 h→0 h+4+2 4 = lim = −1 1 h→0 h − 1 Tangent line is y = (x − 1) + 2. Tangent line is y = −x. 4 4.0 4 3.2 2.4 3 1.6 0.8 2 0.0 −2 −1 0 1 2 x −0.8 1 −1.6 y −2.4 −3.2 −2.5 0.0 2.5 5.0 7.5 10.0 −4.0 9. f (x) = x3 − x 7. Slope is No. Points (x, y) Slope f (−2 + h) − f (−2) lim (a) (1,0) and (2,6) 6 h→0 h (b) (2,6) and (3,24) 18 (−2 + h) + 3 − 1 (c) (1.5,1.875) and (2,6) 8.25 = lim h→0 √ h (d) (2,6) and (2.5,13.125) 14.25 h+1−1 (e) (1.9,4.959) and (2,6) 10.41 = lim h→0 √ h √ (f) (2,6) and (2.1,7.161) 11.61 h+1−1 h+1+1 = lim ·√ (g) Slope seems to be approximately 11. h→0 h h+1+1
  • 3. 80 CHAPTER 2. DIFFERENTIATION 2 10. f (x) = x2 + 1 −4.9(2 + h) + 5 − (−14.6) = lim No. Points (x, y) Slope h→0 h (a) (1,1.414) and (2,2.236) 0.504 −4.9(4 + 4h + h2 ) + 5 − (−14.6) = lim (b) (2,2.236) and (3,3.162) 0.926 h→0 h (c) (1.5,1.803) and (2,2.236) 0.867 −19.6h − 4.9h2 = lim (d) (2,2.236) and (2.5,2.269) 0.913 h→0 h (e) (1.9,2.147) and (2,2.236) 0.89 h (−19.6 − 4.9h) = lim = −19.6 (f) (2,2.236) and (2.1,2.325) 0.899 h→0 h (g) Slope seems to be approximately 0.89. 16. (a) Velocity at time t = 0 is, s(0 + h) − s(0) x−1 lim 11. f (x) = h→0 h x+1 4h − 4.9h2 No. Points (x, y) Slope = lim h→0 h (a) (1,0) and (2,0.33) 0.33 h (4 − 4.9h) = lim (b) (2,0.33) and (3,0.5) 0.17 h→0 h (c) (1.5,0.2) and (2,0.33) 0.26 = 4 − lim 4.9h = 4. h→0 (d) (2,0.33) and (2.5,0.43) 0.2 (b) Velocity at time t = 1 is, (e) (1.9,0.31) and (2,0.33) 0.2 s(1 + h) − s(1) (f) (2,0.33) and (2.1,0.35) 0.2 lim h→0 h 2 (g) Slope seems to be approximately 0.2. 4(1 + h) − 4.9(1 + h) − (−0.9) = lim h→0 h 12. f (x) = ex 4 + 4h − 4.9 − 9.8h − 4.9h2 + 0.9 No. Points (x, y) Slope = lim h→0 h (a) (1,2.718) and (2,7.389) 4.671 −5.8h − 4.9h2 = lim (b) (2,7.389) and (3,20.085) 12.696 h→0 h (c) (1.5,4.481) and (2,7.389) 5.814 h (−5.8 − 4.9h) = lim = −5.8 (d) (2,7.389) and (2.5,12.182) 9.586 h→0 h (e) (1.9,6.686) and (2,7.389) 7.03 17. (a) Velocity at time t = 0 is, (f) (2,7.389) and (2.1,8.166) 7.77 s(0 + h) − s(0) lim (g) Slope seems to be approximately 7.4 h→0 √ h √ h + 16 − 4 h + 16 + 4 13. C, B, A, D. At the point labeled C, the slope = lim ·√ h→0 h h + 16 + 4 is very steep and negative. At the point B, (h + 16) − 16 the slope is zero and at the point A, the slope = lim √ h→0 h( h + 16 + 4) is just more than zero. The slope of the line 1 1 tangent to the point D is large and positive. = lim √ = h→0 h + 16 + 4 8 14. In order of increasing slope: D (large nega- (b) Velocity at time t = 2 is, tive), C (small negative), B (small positive), s(2 + h) − s(2) and A (large positive). lim h→0 √ h √ 15. (a) Velocity at time t = 1 is, 18 + h − 18 = lim s(1 + h) − s(1) h→0 h√ √ lim h + 18 + 18 h→0 h Multiplying by √ √ gives 2 −4.9(1 + h) + 5 − (0.1) h + 18 + 18 = lim (h + 18) − 18 h→0 h = lim √ √ −4.9(1 + 2h + h2 ) + 5 − (0.1) h→0 h( h + 18 + 18) = lim 1 1 h→0 h = lim √ √ = √ −9.8h − 4.9h2 h→0 h + 18 + 18 2 18 = lim h→0 h h (−9.8 − 4.9h) 18. (a) Velocity at time t = 2 is, = lim = −9.8. s(2 + h) − s(2) h→0 h lim (b) Velocity at time t = 2 is, h→0 h 4 4−4−2h s(2 + h) − s(2) (2+h) − 2 (2+h) lim = lim = lim h→0 h h→0 h h→0 h
  • 4. 2.1. TANGENT LINE AND VELOCITY 81 √ −2h −2 (c) Second point: (1.9, 18.81) = lim = lim = −1. h→0 h(2 + h) h→0 2 + h Average velocity: √ √ 20 − 18.81 (b) Velocity at time t = 4 is, = 1.3508627 4 −1 2 − 1.9 s(4 + h) − s(4) (4+h) lim = lim √ h→0 h h→0 h (d) Second point: (1.99, 19.8801) 4−1(4+h) 4−4−h (4+h) (4+h) Average velocity: √ √ = lim = lim 20 − 19.88 h→0 h h→0 h = 1.3425375 −h −1 1 2 − 1.99 = lim = lim =− h→0 h(4 + h) h→0 4 + h 4 (e) One might conjecture that these num- 19. (a) Points: (0, 10) and (2, 74) bers are approaching 1.34. The exact 74 − 10 6 Average velocity: = 32 limit is √ ≈ 1.341641. 2 20 (b) Second point: (1, 26) 22. (a) Points: (0, −2.7279) and (2, 0) 74 − 26 Average velocity: Average velocity: = 48 1 0 − (−2.7279) = 1.3639 2−0 (c) Second point: (1.9, 67.76) 74 − 67.76 (b) Second point: (1, −2.5244) Average velocity: = 62.4 0.1 Average velocity: 0 − (−2.5244) (d) Second point: (1.99, 73.3616) = 2.5244 74 − 73.3616 2−1 Average velocity: = 63.84 0.01 (c) Second point: (1.9, −0.2995) (e) The instantaneous velocity seems to be Average velocity: 64. 0 − (−0.2995) = 2.995 2 − 1.9 20. (a) Points: (0, 0) and (2, 26) (d) Second point: (1.99, −0.03) 26 − 0 0 − (−0.03) Average velocity: = 13 Average velocity: =3 2−0 2 − 1.99 (e) The instantaneous velocity seems to be (b) Second point: (1, 4) 3. 26 − 4 Average velocity: = 22 2−1 23. A graph makes it apparent that this function (c) Second point: (1.9, 22.477) 26 − 22.477 has a corner at x = 1. Average velocity: = 35.23 5 2 − 1.9 4 3 (d) Second point: (1.99, 25.6318) Average velocity: 2 26 − 25.6318 1 = 36.8203 2 − 1.99 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 x −1 (e) The instantaneous velocity seems to be −2 approaching 37. y −3 √ −4 21. (a) Points: (0, 0) and √ (2, 20) −5 20 − 0 Average velocity: = 2.236068 Numerical evidence suggests that, 2−0 f (1 + h) − f (1) lim+ =1 (b) Second point: (1, 3) h→0 h √ f (1 + h) − f (1) 20 − 3 while lim− = −1. Average velocity: = 1.472136 h→0 h 2−1 Since these are not equal, there is no tangent
  • 5. 82 CHAPTER 2. DIFFERENTIATION 5 line. 4 3 24. Tangent line does not exist at x = 1 because 2 the function is not defined there. −5 −4 −3 −2 −1 1 0 1 2 3 4 5 10 0 8 −1 6 −2 4 −3 2 −4 0 −5 −10 −8 −6 −4 −2 0 2 4 6 8 10 −2 x Also, −4 y f (0 + h) − f (0) −2h −6 lim− = lim− = −2 h→0 h h→0 h −8 f (0 + h) − f (0) lim+ = lim+ (h − 4) = −4. −10 h→0 h h→0 25. From the graph it is clear that, curve is not Numerical evidence suggest that, continuous at x = 0 therefore tangent line f (0 + h) − f (0) lim− at y = f (x) at x = 0 does not exist. h→0 h 10.0 f (0 + h) − f (0) = lim+ . h→0 h Therefore tangent line does not exist at x = 7.5 0. 5.0 27. Tangent line at x = π to y = sin x as below: 3 2.5 2 0.0 1 x −10 −8 −6 −4 −2 0 2 4 6 8 10 0 1 2 3 4 5 6 0 −2.5 Also, −1 f (0 + h) − f (0) lim −2 h→0− h h2 − 1 − (−1) −3 = lim− h→0 h h2 = lim− = lim− h = 0 h→0 h h→0 28. Tangent line at x = 0 to y = tan−1 x as be- Similarly, low: f (0 + h) − f (0) 5.0 lim+ h→0 h h + 1 − (1) h = lim+ = lim+ = 1. 2.5 h→0 h h→0 h Numerical evidence suggest that, f (0 + h) − f (0) lim− 0.0 h→0 h −10 −5 0 5 10 f (0 + h) − f (0) = lim . h→0+ h −2.5 Therefore tangent line does not exist at x = 0. −5.0 26. From the graph it is clear that, the curve of y = f (x) is not smooth at x = 0 therefore 29. Since the graph has a corner at x = 0, tan- tangent line at x = 0 does not exist. gent line does not exist.
  • 6. 2.1. TANGENT LINE AND VELOCITY 83 30. The tangent line overlays the line: f (s) − f (r) 33. vavg = s−r f (s) − f (r) vavg = 2 s−r as + bs + c − (ar2 + br + c) 2 = 1.5 s−r a(s2 − r2 ) + b(s − r) = 1 s−r a(s + r)(s − r) + b(s − r) = 0.5 s−r = a(s + r) + b 0 0 0.5 1 1.5 2 Let v(r) be the velocity at t = r. We have, x v(r) = f (4) − f (2) f (r + h) − f (r) 31. (a) = 21,034 lim 2 h→0 h f (b)−f (a) Since b−a is the average rate of 2 a(r + h) + b(r + h) + c − (ar2 + bh + c) change of function f between a and b. = lim h→0 h The expression tells us that the average a(r + 2rh + h ) + bh − ar2 2 2 rate of change of f between a = 2 to = lim b = 4 is 21,034. That is the average h→0 h rate of change in the bank balance be- h(2ar + ah + b) = lim tween Jan. 1, 2002 and Jan. 1, 2004 was h→0 h 21,034 ($ per year). = lim (2ar + ah + b) = 2ar + b h→0 (b) 2 [f (4) − f (3.5)] = 25,036 So, v(r) = 2ar + b. Note that 2[f (4) − f (3.5)] = f (4) − The same argument shows that v(s) = f (3.5)/2. The expression says that the 2as + b. average rate of change in balance be- Finally tween July 1, 2003 and Jan. 1, 2004 v(r) + v(s) (2ar + b) + (2as + b) = was 25,036 ($ per year). 2 2 f (4 + h) − f (4) 2a(s + r) + 2b (c) lim = 30,000 = h→0 h 2 The expression says that the instanta- = a(s + r) + b = vavg neous rate of change in the balance on Jan. 1, 2004 was 30,000 ($ per year). 34. f (t) = t3 −t works with r = 0, s = 2. The av- f (40) − f (38) 6−0 32. (a) = −2103 erage velocity between r and s is, = 3. 2 2−0 Since f (b)−f (a) is the average rate of The instantaneous velocity at r is b−a 3 change of function between a and b. The (0 + h) − (0 + h) − 0 lim =0 expression tells us that the average rate h→0 h of change of f between a = 38 to b = 40 and the instantaneous velocity at s is, 3 is −2103. That is the average rate of de- (2 + h) − (2 + h) − 6 lim preciation between 38 and 40 thousand h→0 h miles. 8 + 12h + 6h2 + h3 − 2 − h − 6 = lim (b) f (40) − f (39) = −2040 h→0 h = lim 11 + 6h + h2 = 11 The expression says that the average h→0 rate of depreciation between 39 and 40 so, the average between the instantaneous thousand miles is −2040. velocities is 5.5. f (40 + h) − f (40) (c) lim = −2000 35. (a) y = x3 + 3x + 1 h→0 h The expression says that the instanta- y = 3x2 + 3 neous rate of depreciation in the value Since the slope needed to be 5, y = 5. of the car when it has 40 thousand miles 3x2 + 3 = 5 is −2000. ⇒ 3x2 = 5 − 3
  • 7. 84 CHAPTER 2. DIFFERENTIATION 2 gent line is y = 6x − 1. ⇒ x2 = 3 Given that y = x3 + 3x + 1. 2 Therefore, we write ⇒x=± 3 x3 + 3x + 1 = 6x − 1 Therefore, slope of tangent line at x = x3 − 3x + 2 = 0 2 2 (x − 1) x2 + x − 2 = 0 and x = − to y = x3 + 3x + 1 3 3 (x − 1)(x − 1) (x + 2) = 0 equals 5. 2 (x − 1) (x + 2) = 0. (b) Since the slope needed to be 1, y = 1. Therefore, tangent line intersects y = 3x2 + 3 = 1 which has no real roots. x3 + 3x + 1 at more then one point that Therefore slope of tangent line to y = is at x = 1 and x = −2. x3 + 3x + 1 cannot equals 1. 36. (a) From the graph it is clear that y = x2 +1 (c) y = x2 + 1 and y = x do not intersect. f (c + h) − f (c) 10 lim h→0 h (c + h)2 + 1 − c2 + 1 = lim 5 h→0 h (c2 + 2ch + h2 ) + 1 − c2 + 1 = lim h→0 h 0 c2 + 2ch + h2 + 1 − c2 − 1 = lim −10 −5 0 5 10 h→0 h 2ch + h2 −5 = lim h→0 h h (2c + h) = lim = 2c −10 h→0 h The point correponding to x = c is c, c2 + 1 . So, line with slope 2c (b) y = x2 + 1 and y = x through point c, c2 + 1 has equation y = x2 + 1 ⇒ y = 2x y = 2c (x − c)+c2 +1 or y = 2cx−c2 +1. y=x⇒y =1 Given that y = x2 + 1 For, y = x2 + 1 Therefore, y = 2x = 1. x2 + 1 = 2cx − c2 + 1 2x = 1 x2 − 2cx + c2 = 0 1 2 ⇒x= (x − c) = 0. 2 1 Therefore, tangent line intersects y = Therefore, tangent line at x = to x2 + 1 only at one point that is at x = c. 2 2 y = x +1 is parallel to the tangent lines to y = x. 38. Let x = h + a. Then h = x − a and clearly f (a + h) − f (a) f (x) − f (a) 37. (a) y = x3 + 3x + 1 = . h x−a f (1 + h) − f (x) It is also clear that, x → a if and only if lim h→0 h h → 0. Therefore, if one of the two limits (1 + h)3 + 3(1 + h) + 1 − 5 exists, then so does the other and = lim h→0 h f (a + h) − f (a) f (x) − f (a) 2 3 lim = lim . = lim (1+3h+3h +h h)+(3+3h)+1−5 h→0 h x→a x−a h→0 6h + 3h2 + h3 39. The slope of the tangent line at p = 1 is ap- = lim h→0 h proximately h 6 + 3h + h2 −20 − 0 = lim =6 = −10 h→0 h 2−0 The point correponding to x = 1 is which means that at p = 1 the freezing tem- (1, 5). So, line with slope 6 through perature of water decreases by 10 degrees point (1,5) has equation y = 6 (x − 1)+5 Celsius per 1 atm increase in pressure. The or y = 6x − 1. slope of the tangent line at p = 3 is approx- (b) From part (a) we have, equation of tan- imately
  • 8. 2.2. THE DERIVATIVE 85 −11 − (−20) = 4.5 x 4−2 0 0 5 10 15 20 which means that at p = 3 the freezing tem- perature of water increases by 4.5 degrees Celsius per 1 atm increase in pressure. -4 y -8 40. The slope of the tangent line at v = 50 is 47 − 28 -12 approximately = .95. 60 − 40 This means that at an initial speed of 50mph the range of the soccer kick increases by .95 yards per 1 mph increase in initial speed. 44. Possible graph of bungee-jumpers height: 350 41. The hiker reached the top at the highest 300 point on the graph (about1.75 hours). The hiker was going the fastest on the way up at 250 about 1.5 hours. The hiker was going the 200 fastest on the way down at the point where the tangent line has the least (i.e most neg- 150 ative) slope, at about 4 hours at the end of 100 the hike. Where the graph is level the hiker was either resting or walking on flat ground. 50 0 5 10 15 20 x A graph of the bungee-jumper s velocity: 42. The tank is the fullest at the first spike (at around 8 A.M.). The tank is the emptiest just before this at the lowest dip (around 50 x 7 A.M.). The tank is filling up the fastest 0 5 10 15 20 0 where the graph has the steepest positive slope (in between 7 and 8 A.M.). The tank -50 is emptying the fastest just after 8 A.M. where the graph has the steepest negative -100 slope. The level portions most likely repre- sent night when waterusage is at a minimum. -150 43. A possible graph of the temperature with respect to time: 100 2.2 The Derivative 80 1. Using (2.1): f (1 + h) − f (1) f (1) = lim 60 h→0 h y 3(1 + h) + 1 − (4) = lim 40 h→0 h 3h 20 = lim = lim 3 = 3 h→0 h h→0 Using (2.2): 0 0 5 10 15 20 f (b) − f (1) x lim b→1 b−1 Graph of the rate of change of the tem- 3b + 1 − (3 + 1) perature: = lim b→1 b−1
  • 9. 86 CHAPTER 2. DIFFERENTIATION 3b − 3 f (b) − f (1) = lim f (1) = lim b→1 b − 1 b→1 b−1 3(b − 1) 3 = lim = lim √ b→1 b − 1 b→1 3b + 1 + 2 = lim 3 = 3 b→1 3 3 =√ = 2. Using (2.1): 4+2 4 f (1 + h) − f (1) 4. Using (2.1): f (1) = lim h→0 h f (2 + h) − f (2) 2 f (2) = lim 3(1 + h) + 1 − 4 h→0 h = lim 3 (2+h)+1 − 1 h→0 h 6h + 3h 2 = lim = lim h→0 h h→0 h 3 3+h − 3+h 3+h = lim 6 + 3h = 6 = lim h→0 h→0 h Using (2.2): −h 3+h f (x) − f (1) = lim f (1) = lim h→0 h x→1 x−1 −1 1 (3x2 + 1) − 4 = lim =− = lim h→0 3 + h 3 x→1 x−1 Using (2.2): 3(x − 1)(x + 1) f (x) − f (2) = lim f (2) = lim x→1 x−1 x→2 x−2 3 = lim 3(x + 1) = 6 −1 x→1 = lim x+1 x→2 x − 2 3. Using (2.1): Since 3 − x+1 f (1 + h) − f (1) = lim x+1 x+1 h x→2 x−2 −(x−2) 3(1 + h) + 1 − 2 x+1 = = lim √ h √ x→2 x−2 4 + 3h − 2 4 + 3h + 2 −1 1 = ·√ = lim =− h 4 + 3h + 2 x→2 x + 1 3 4 + 3h − 4 3h = √ = √ f (x + h) − f (x) h( 4 + 3h + 2) h( 4 + 3h + 2) 5. lim 3 3 h→0 h =√ =√ , 2 2 3(x + h) + 1 − (3(x) + 1) 4 + 3h + 2 4 + 3h + 2 = lim we have h→0 h f (1 + h) − f (1) 3x2 + 6xh + 3h2 + 1 − (3x2 + 1) f (1) = lim = lim h→0 h h→0 h 3 6xh + 3h2 = lim √ = lim h→0 4 + 3h + 2 h→0 h = lim (6x + 3h) = 6x 3 3 h→0 = = 4 + 3(0) + 2 4 f (x + h) − f (x) Using (2.2): Since 6. f (x) = lim h→0 h f (b) − f (1) 2 (x + h) − 2(x + h) + 1 − f (x) √− 1 b = lim 3b + 1 − 2 h→0 h = 2xh + h2 − 2h √ b−1 √ = lim ( 3b + 1 − 2)( 3b + 1 + 2) h→0 h = √ (b − 1)( 3b + 1 + 2) h(2x + h − 2) = lim = 2x − 2 (3b + 1) − 4 h→0 h = √ (b − 1) 3b + 1 + 2 f (b) − f (x) 3(b − 1) 3 7. lim = √ =√ , b→x b−x (b − 1) 3b + 1 + 2 3b + 1 + 2 b3 + 2b − 1 − x3 + 2x − 1 we have = lim b→x b−x
  • 10. 2.2. THE DERIVATIVE 87 (b − x) b2 + bx + x2 + 2 (3b + 1) − (3t + 1) = lim f (t) = lim √ √ b→x b−x b→t (b − t) 3b + 1 + 3t + 1 = lim b2 + bx + x2 + 2 3(b − t) b→x = lim √ √ = 3x2 + 2 b→t (b − t) 3b + 1 + 3t + 1 3 = lim √ √ b→t 3b + 1 + 3t + 1 8. f (x) = 3 f (x + h) − f (x) = √ lim 2 3t + 1 h→0 h √ (x+h)4 −2(x+h)2 +1−f (x) 12. f (t) = 2t + 4 = lim h h→0 f (b) − f (t) = lim 4x3 + 6x2 h + 4xh2 + h3 − 4x − 2h f (t) = lim h→0 b→t (b − t) √ √ = 4x3 − 4x 2b + 4 − 2t + 4 = lim b→t √ (b − t) √ 2b + 4 + 2t + 4 f (b) − f (x) Multiplying by √ √ gives 9. lim 2b + 4 + 2t + 4 b→x b−x (2b + 4) − (2t + 4) 3 3 f (t) = lim √ √ b+1 − x+1 b→t (b − t) 2b + 4 + 2t + 4 = lim b→x b−x 3(x+1)−3(b+1) 2(b − t) (b+1)(x+1) = lim √ √ = lim b→t (b − t) 2b + 4 + 2t + 4 b→x b−x −3(b − x) 2 = lim = lim √ √ b→x (b + 1)(x + 1)(b − x) b→t 2b + 4 + 2t + 4 −3 2 1 = lim = √ =√ b→x (b + 1)(x + 1) 2 2t + 4 2t + 4 −3 = 13. (a) The derivative should look like: (x + 1)2 10 8 6 f (x + h) − f (x) 4 10. f (x) = lim h→0 h 2 2 2 2(x+h)−1 − 2x−1 0 = lim −10 −8 −6 −4 −2 0 2 4 6 8 10 h→0 h −2 2(2x−1)−2(2x+2h−1) −4 (2x+2h−1)(2x−1) = lim −6 h→0 h −8 −4h (2x+2h−1)(2x−1) −10 = lim h→0 h −4 = lim h→0 (2x + 2h − 1)(2x − 1) (b) The derivative should look like: −4 = 5.0 (2x − 1)2 2.5 √ 11. f (t) = 3t + 1 f (b) − f (t) 0.0 f (t) = lim −5 −4 −3 −2 −1 0 1 2 3 4 5 b→t (b − t) √ √ 3b + 1 − 3t + 1 −2.5 = lim b→t √ (b − t) √ 3b + 1 + 3t + 1 −5.0 Multiplying by √ √ gives 3b + 1 + 3t + 1
  • 11. 88 CHAPTER 2. DIFFERENTIATION 5 4 3 2 1 14. (a) The derivative should look like: 0 5 −5 −4 −3 −2 −1 0 1 2 3 4 5 x −1 4 −2 3 y −3 2 −4 1 −5 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 −1 x −2 y −3 −4 −5 16. (a) The derivative should look like: 10 8 (b) The derivative should look like: 6 5 4 4 2 3 0 2 −5 −4 −3 −2 −1 0 1 2 3 4 5 x −2 1 −4 0 y −5 −4 −3 −2 −1 0 1 2 3 4 5 −6 −1 x −8 −2 y −10 −3 −4 −5 (b) The derivative should look like: 4.0 3.2 15. (a) The derivative should look like: 2.4 3 1.6 0.8 2 0.0 −4 −2 0 2 4 x −0.8 1 −1.6 y 0 −2.4 −3 −2 −1 0 1 2 3 −3.2 x −1 −4.0 y −2 −3 (b) The derivative should look like: 17. (a) The function should look like:
  • 12. 2.2. THE DERIVATIVE 89 10 25 8 20 6 15 4 y 2 10 0 −10 −8 −6 −4 −2 0 2 4 6 8 10 5 x −2 −4 0 y −5.0 −2.5 0.0 2.5 5.0 7.5 10.0 −6 x −5 −8 −10 −10 19. The left-hand derivative is f (h) − f (0) (b) The function should look like: D− f (0) = lim 10 h→0− h 2h + 1 − 1 8 = lim− =2 6 h→0 h 4 The right-hand derivative is 2 0 f (h) − f (0) −10 −8 −6 −4 −2 0 2 4 6 8 10 D+ f (0) = lim+ x −2 h→0 h −4 3h + 1 − 1 y = lim+ =3 −6 h→0 h −8 Since the one-sided limits do not agree (2 = −10 3), f (0) does not exist. 20. The left-hand derivative is f (h) − f (0) D− f (0) = lim h→0+ h 0−0 = lim− =0 h→0 h 18. (a) The function should look like: The right-hand derivative is 10 8 f (h) − f (0) D+ f (0) = lim− 6 h→0 h 4 2h = lim+ =2 2 h→0 h −10 −8 −6 −4 −2 0 0 2 4 6 8 10 Since the one-sided limits do not agree (0 = x −2 2), f (0) does not exist. −4 y −6 21. The left-hand derivative is −8 f (h) − f (0) −10 D− f (0) = lim h→0− h h2 − 0 = lim− =0 h→0 h The right-hand derivative is (b) The function should look like:
  • 13. 90 CHAPTER 2. DIFFERENTIATION f (h) − f (0) f (x) − f (2) D+ f (0) = lim+ x f (x) h→0 h x−2 h3 − 0 1.1 172.7658734 635.6957329 = lim =0 1.01 114.2323717 503.6071639 h→0+ h 1.001 109.6888867 492.5866054 Since the one-sided limits are same (0 = 0), 1.0001 109.2454504 491.5034872 f (0) exist. 1.00001 109.201214 491.3953621 1.000001 109.1967915 491.3845515 1.0000001 109.1963492 491.3834702 22. The left-hand derivative is 1.00000001 109.1963050 491.3833622 The evidence of this table strongly suggests that the difference quotients (essentially) in- f (h) − f (0) distinguishable from the values (themselves) D− f (0) = lim+ h→0 h 491.383. If true, this would mean that f (2) 2h ≈ 491.383. = lim− =2 h→0 h 25. f (x) = cos 3x f (x) − f (0) The right-hand derivative is x f (x) x−0 0.1 0.9553365 −0.4466351 f (h) − f (0) 0.01 0.9995500 −0.0449966 D+ f (0) = lim− h→0 h 0.001 0.9999955 −0.0045000 h2 + 2h 0.0001 1.0000000 −0.0004500 = lim 0.00001 1.0000000 −0.0000450 h→0+ h h(h + 2) The evidence of this table strongly suggests = lim that the difference quotients (essentially) in- h→0+ h distinguishable from the values (themselves) = lim+ h + 2 = 2 0. If true, this would mean that f (0) ≈ 0. h→0 26. f (x) = ln 3x Since the one-sided limits are same (2 = 2), f (x) − f (2) f (0) exist. x f (x) x−2 2.1 1.8405496 0.4879016 2.01 1.7967470 0.4987542 x 23. f (x) = √ 2.001 1.7922593 0.4998757 x2 +1 2.0001 1.7918095 0.4999875 f (x) − f (1) 2.00001 1.7917645 0.4999988 x f (x) x−1 2.000001 1.7917600 0.4999999 1.1 0.7399401 0.3283329 2.0000001 1.7917595 0.5000000 1.01 0.7106159 0.3509150 The evidence of this table strongly suggests 1.001 0.7074601 0.3532884 that the difference quotients (essentially) in- 1.0001 0.7071421 0.3535268 distinguishable from the values (themselves) 1.00001 0.7071103 0.3535507 0.5. If true, this would mean that f (2) ≈ 0.5. 27. Compute average velocities: The evidence of this table strongly suggests Time Interval Average Velocity that the difference quotients (essentially) in- (1.7, 2.0) 9.0 distinguishable from the values (themselves) 0.353. If true, this would mean that f (1) (1.8, 2.0) 9.5 ≈ 0.353. (1.8, 2.0) 10.0 (2.0, 2.1) 10.0 (2.0, 2.2) 9.5 (2.0, 2.3) 9.0 2 Our best estimate of velocity at t = 2 is 10. 24. f (x) = xex 28. Compute average velocities:
  • 14. 2.2. THE DERIVATIVE 91 3 (b) g(x) = e−2/(x −x) Time Interval Average Velocity 5 (1.7, 2.0) 8 4 (1.8, 2.0) 8.5 3 (1.8, 2.0) 9.0 2 (2.0, 2.1) 8.0 1 (2.0, 2.2) 8.0 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 (2.0, 2.3) 7.67 x −1 A velocity of between 8 and 9 seems to be a −2 y good guess. −3 29. (a) f (x) = |x| + |x − 2| −4 10 −5 8 g(x) is not differentiable at x = 0 and 6 x = ±1. p 4 (0 + h) − 0p hp 2 31. lim = lim = lim hp−1 h→0 h h→0 h h→0 0 The last limit does not exist when p < 1, −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 −2 equals 1 when p = 1 and is 0 when p > 1. −4 Thus f (0) exists when p ≥ 1. −6 x2 + 2x x < 0 32. f (x) = −8 ax + b x ≥ 0 −10 For h < 0, f (h) = h2 + 2h, f (0) = b f (x) is not differentiable at x = 0 and f (h) − f (0) D− f (0) = lim x = 2. h→0− h (b) f (x) = |x2 − 4x| 2 h + 2h − b = lim− 5.0 h→0 h For f to be differentiable D− f (0) must ex- ist. 2.5 D− f (0) exists if and only if b = 0. Substituting b = 0, we get 0.0 h2 + 2h D− f (0) = lim− = lim− (h + 2) = 2 −6 −5 −4 −3 −2 −1 0 1 2 3 x 4 5 6 h→0 h h→0 For h > 0, f (h) = ah + b, f (0) = b y −2.5 f (h) − f (0) D+ f (0) = lim+ h→0 h −5.0 ah + b − b = lim+ h→0 h f (x) is not differentiable at x = 0 and ah x = 4. = lim+ =a h→0 h 30. (a) g(x) = e−2/x D+ f (0) = 2 if and only if a = 2. 33. Let f (x) = −1 − x2 then for all, we have 5 4 f (x) ≤ x. But at x = −1, we find f (−1) = 3 −2 and 2 f (−1 + h) − f (−1) f (−1) = lim 1 h→0 h 2 0 −1 − (−1 + h) − (−2) −5 −4 −3 −2 −1 −1 0 1 2 3 4 5 = lim x h→0 h y −2 1 − (1 − 2h + h2 ) −3 = lim h→0 h −4 2h − h2 −5 = lim = lim (2 − h) = 2. h→0 h h→0 g(x) is not differentiable at x = 0. So, f (x) is not always less than 1.