1
                                                                 6.       sec 2t tan 2t dt =       sec 2t + c
                                                                                                 2

                                                                 7.       (x2 + 4)2 dx =       (x4 + 8x2 + 16)dx
                                                                          x5  8
                                                                      =      + x3 + 16x + c
                                                                          5   3
Chapter 6
                                                                 8.       x(x2 + 4)2 dx =         (x5 + 8x3 + 16x)dx
                                                                          x6
                                                                      =      + 2x4 + 8x2 + c
Integration                                                              3
                                                                          6
                                                                                  3     x
                                                                 9.           dx = tan−1 + c
Techniques                                                            16 + x2
                                                                         2
                                                                                  4
                                                                                   1
                                                                                        4

                                                                10.          2
                                                                               dx = tan−1 x + c
                                                                      4 + 4x       2
                                                                                  1
                                                                11.       √               dx
                                                                              3 − 2x − x2
6.1       Review of Formulas                                                         1                          x+1
                                                                      =                          dx = arcsin           +c
          and Techniques                                                        4 − (x +   1)2                   2

                     1 ax                                                  x+1
 1.       eax dx =     e + c, for a = 0.                        12.       √          dx
                     a                                                   3 − 2x − x2
                                                                         1      −2(x + 1)
                                                                      =−                      dx
                           1                                             2      4 − (x + 1)2
 2.       cos(ax)dx =        sin(ax) + c, for a = 0.
                           a                                             1
                                                                      = − · 2[4 − (x + 1)2 ]1/2 + C
                                                                         2
                1                     1          1
 3.       √           dx =                           dx               = − 4 − (x + 1)2 + c
              a2 − x2                      x 2   a
                                     1−    a                                4
                x         1                                     13.                dx
      Let u =     , du = dx.                                           5 + 2x + x2
                a         a                                                     1                               x+1
                1                                                     =4                dx = 2 tan−1                     +c
      =     √          du = sin−1 (u) + c                                  4 + (x + 1)2                          2
              1 − u2
           −1 x
      = sin          + c, a > 0.                                          4x + 4
                 a                                              14.                dx
                                                                       5 + 2x + x2
               b                                                             2(x + 1)
 4.          √        dx                                              =2                dx = 2 ln | 4 + (x + 1)2 | + c
          |x| x2 − a2                                                      4 + (x + 1)2
                  b              1                                          4t
      =                               dx                        15.                 dt
                     x 2         a                                      5 + 2t + t2
              |x|    a −1
                                                                             4t + 4                       4
               x        1                                             =                dt −                      dt
      Let u = , du = dx and |au| = |x| .                                  5 + 2t + t2                5 + 2t + t2
               a        a                                                                                    t+1
                  b                                                   = 2 ln 4 + (t + 1)
                                                                                           2
                                                                                                 − 2tan−1           +c
      =         √         du                                                                                   2
            |au| u2 − 1
         b           1                                                    t+1             2 (t + 1)
      =            √        du                                  16.                dt =             dt
        |a|    |u| u2 − 1                                              t2 + 2t + 4              2
                                                                                        (t + 1) + 3
         b                                                             1
      =     sec−1 (u) + c                                                          2
                                                                      = ln (t + 1) + 3 + c
        |a|                                                            2
           b        x
      =       sec−1   + c, a > 0.                               17.
                                                                                      1
                                                                          e3−2x dx = − e3−2x + c
          |a|       a                                                                 2
                       1                                                              3
 5.       sin(6t)dt = − cos(6t) + c                             18.       3e−6x dx = − e−6x + c
                       6                                                              6

                                                          360
6.1. REVIEW OF FORMULAS AND TECHNIQUES                                                                                                                  361

                                 2 −1/3                          30. Let u = ex , du = ex dx
19. Let u = 1 + x2/3 , du =        x    dx
                                 3                                       ex                 1
                   4                 3                               √         dx =     √        du
                            dx = 4        u−1 du                       1 − e2x            1 − u2
           x1/3 (1 + x2/3 )          2
                                                                       = sin−1 u + C = sin−1 ex + c
                                                     2/3
      = 6 ln |u| + C = 6 ln |1 + x                         |+c
                                                                 31. Let u = x2 , du = 2xdx
                             3                                              x          1       1
20. Let u = 1 + x3/4 , du = x−1/4 dx                                    √        dx =      √        du
                             4                                            1 − x4       2     1 − u2
           2                     2
                dx =                      dx                           1                 1
       x1/4 + x          x1/4 (1 + x3/4 )                            = sin−1 u + C = sin−1 x2 + c
          4                8                                           2                 2
    =2          u−1 du = ln |u| + C
          3                3                                     32. Let u = 1 − x4 , du = −4x3 dx
      8                                                                   2x3            1
    = ln |1 + x3/4 | + c                                                √        dx = −     u−1/2 du
      3                                                                   1−x  4         2
            √         1                                                = −u1/2 + C = −(1 − x4 )1/2 + c
21. Let u = x, du = √ dx
          √          2 x
       sin x                                                              1+x
         √ dx = 2 sin udu                                        33.             dx
          x                                                               1 + x2
                           √                                                   1        1     2x
    = −2 cos u + C = −2 cos x + c                                      =           dx +             dx
                                                                            1 + x2      2  1 + x2
               1          1                                                         1
22. Let u =      , du = − 2 dx                                         = tan−1 x + ln |1 + x2 | + c
               x         x                                                          2
        cos(1/x)
                   dx = − cos udu                                                    1
            x2                                                   34.        √           dx
                             1                                                      x+x
      = − sin u + C = − sin + c
                             x                                                                    1
                                                                       =            x−1/2 ·             dx
23. Let u = sin x, du = cos xdx                                                                1 + x1/2
           π                             0
                                                                       = 2 ln | 1 + x1/2 | + c
               cos xesin x dx =              eu du = 0
       0                             0
                                                                            ln x2                                1
                                             2                   35.              dx = 2                 ln x                 dx
24. Let u = tan x, du = sec xdx                                               x                                  x
           π/2                                   1                                                  1
                   sec2 xetan x dx =                 eu du             Let u = ln x, du =             dx.
                                                                                                    x
       0                                     0
                                                                                                              2
               u
                   1
                                                                       =2               u du = u2 + c = (ln x) + c
      =e               =e−1
                   0
                                                                            3                            3                         3
           0                                                                                                                 x3            26
25.                sec x tan xdx                                 36.            e2 ln x dx =                 x2 dx =                   =
       −π/4                                                             1                            1                       3     1        3
                       0             √                                      4
      = sec x                  =1−       2                                       √
                       −π/4                                      37.            x x − 3dx
                                                                        3
           π/2                                                                      4              √
                                                 π/2
26.                csc2 xdx = − cot x                   =1             =                (x − 3 + 3) x − 3dx
       π/4                                       π/4                            3
                                                                                    4                                    4
                           3         2                                 =                (x − 3)3/2 dx + 3                    (x − 3)1/2 dx
27. Let u = x , du = 3x dx                                                      3                                    3
      x2         1      1                                                   2
                                                                                                 4
                                                                                                        2
                                                                                                                                           4
                                                                                                                                                   12
           dx =             du                                         =      (x − 3)5/2           + 3 · (x − 3)3/2                            =
    1 + x6       3   1 + u2                                                 5                           3                                           5
                                                                                                 3                                         3
      1                1
    = tan−1 u + C = tan−1 x3 + c                                            1
      3                3                                         38.            x(x − 3)2 dx
                                                                        0
             x5       1                                                             1
28.               dx = ln(1 + x6 ) + c                                 =                (x3 − 6x2 + 9x)dx
           1 + x6     6
                                                                                0
                                                                                                                 1
         1              x                                                           x4        9                               11
29. √         dx = sin−1 + c                                           =               − 2x3 + x2                    =
        4−x 2           2                                                           4         2                  0             4
362                                                                       CHAPTER 6. INTEGRATION TECHNIQUES

            4                                                                      2
                x2 + 1
 39.             √ dx                                                   47.            f (x)dx
        1          x                                                           0
                    4                    4                                                 1                    2
                                                                                                  x                   x2
       =                x3/2 dx +            x−1/2 dx                         =                  2+1
                                                                                                     dx +                  dx
                1                    1                                                 0       x            1       x2 + 1
                                                                                              1      2
                            4                                                 1                                  1
            2 5/2                            4       72                     = ln |x2 + 1| +              1− 2         dx
       =      x                 + 2x1/2          =                            2               0    1         x +1
            5               1                1        5                       1                           2
                                                                            = ln 2 + (x − arctan x)
            0                                        0
                                                                              2                           1
                            2            1 −x2                e−4 − 1         ln 2         π
 40.            xe−x dx = −                e              =                 =      + 1 + − arctan 2
        −2                               2           −2          2              2          4
                                                                                   4x + 1
               5         5       x                                      48.                     dx
 41.               dx = √ arctan √ + c                                         2x2 + 4x + 10
            3 + x2        3       3
               5                                                                       4x + 4                       3
                   dx: N/A                                                  =        2 + 4x + 10
                                                                                                  dx −         2 + 4x + 10
                                                                                                                           dx
            3 + x3                                                                2x                        2x
                                                                                                       3           1
                                                                            = ln |2x2 + 4x + 10| −                       dx
                       1                                                                               2    (x + 1)2 + 4
 42.        sin(3x)dx =    sin(3x)3dx
                       3                                                                                            3           x+1
       Let u = 3x, du = 3dx.                                                  = ln |2x2 + 4x + 10| −                  tan−1           +c
         1                  1                                                                                       4            2
       =      (sin u)du = − cos u + c
         3                  3                                                       1
           1                                                            49.                dx = tan−1 (x) + c.
       = − cos(3x) + c.                                                         (1 + x2 )
           3                                                                        x            1       2x
                                                                                        2)
                                                                                           dx =                 dx
                                                                                (1 + x           2    (1 + x2 )
            sin3 xdx =              (sin2 x) sin xdx                            1
                                                                              = ln 1 + x2 + c.
                                                                                2
       =            (1 − cos2 x)sin xdx                                            x2              x2 + 1 − 1
                                                                                           dx =                 dx
       Let u = cos x, du = − sin xdx.                                           (1 + x2 )            (1 + x2 )
                                                                                      2
       =                1 − u2 (−du) =                u2 du −     du                x +1                  1
                                                                              =       2 + 1)
                                                                                             dx −                dx
                                                                                   (x                 (1 + x2 )
            u3     cos3 x                                                                       1
       =       −u=        − cos x.                                            = dx −                  dx
            3        3                                                                      (1 + x2 )
                                                                              = x − tan−1 (x) + c.
 43.        ln xdx: N/A                                                             x3          1       x2
                                                                                        2)
                                                                                           dx =               2xdx
       Substituting u = ln x,                                                    (1 + x         2   (1 + x2 )
         ln x      1
              dx = ln2 x + c                                                  Let u = x2 , du = 2xdx.
          2x       4                                                            1       u         1    u+1−1
                                                                              =             du =                du
                                                                                2     1+u         2      1+u
 44. Substituting u = x4                                                        1       u+1             1
                                                                              =               du −         du
         x3         1                                                           2       1+u           1+u
              dx = arctan x4 + c
       1 + x8       4                                                           1                 1
                                                                              =        du −           du
         x4                                                                     2               1+u
              dx: N/A                                                           1
       1 + x8                                                                 = (u − ln (1 + u)) + c
                                                                                2
                                                                                1       1
 45.        e−x dx: N/A
                        2
                                                                              = x2 − ln 1 + x2 + c.
                                                                                2       2
       Substituting u = −x2                                                   Hence we can generalize this as follows,
              2        1   2                                                         xn
         xe−x dx = − e−x + c                                                       1 + x2
                                                                                            dx
                       2
                                                                                    1                            xn−2
                                                                              =        xn−1 −                          dx
 46.        sec xdx: N/A                                                           n−1                          1 + x2
                                                                                     x         1                   1
            sec2 xdx = tan x + c                                        50.               dx =                         2xdx
                                                                                   1 + x4      2                1 + x4
6.2. INTEGRATION BY PARTS                                                                               363

      Let u = x2 , du = 2xdx.                                          1 2x               1 2x
                                                                xe2x dx =xe −               e dx
        1         1           1                                        2                  2
      =                du = tan−1 (u) + c                      1      1
        2     1 + u2          2                               = xe2x − e2x + c.
        1                                                      2      4
      = tan−1 x2 + c.
        2                                                  4. Let u = ln x, dv = x dx
           x3            1        1                                 1              x2
               4
                  dx =                4x3 dx                  du = dx and v =         .
         1+x             4     1 + x4                               x              2
      Let u = 1 + x4 , du = 4x3 .                                            1              1
                                                                x ln x dx = x2 ln x −         x dx
        1     1         1                                                    2              2
      =         du = ln (u) + c                                 1            1
        4     u         4                                     = x2 ln x − x2 + c.
        1                                                       2            4
      = ln 1 + x4 + c.
        4                                                  5. Let u = ln x, dv = x2 dx
           x5                                                       1          1
                  dx                                          du = dx, v = x3 .
         1 + x4                                                     x          3
        1        x4                                               2          1 3             1 3 1
      =                2xdx                                     x ln xdx = x ln x −            x · dx
        2     1 + x4                                                         3               3    x
      Let u = x2 , du = 2xdx.                                   1 3         1
                                                              = x ln x −         x2 dx
        1        u2           1     u2 + 1 − 1                  3           3
      =                du =                    du               1           1
        2     1+u    2        2       1 + u2                  = x3 ln x − x3 + c.
        1        u2 + 1               1                         3           9
      =                  du −             du
        2        1 + u2            1 + u2                                       1
                                                           6. Let u = ln x, du =  dx.
        1                     1                                                 x
      =         du −               du                            ln x              u2      1
        2                  1 + u2                                     dx =   udu =    + c = (ln x)2 + c.
        1                                                         x                2       2
      =     u − tan−1 (u) + c
        2
        1 2                                                7. Let u = x2 , dv = e−3x dx
      =     x − tan−1 x2 + c.                                                    1
        2                                                     du = 2xdx, v = − e−3x
      Hence we can generalize this as follows,                                   3
         x4n+1          1 x2n−2             x4(n−1)+1         I = x2 e−3x dx
                 dx =                  −              dx
         1 + x4         2 n−1                1 + x4               1                1
      and                                                     = − x2 e−3x −      − e−3x · 2xdx
                                                                  3                3
         x4n+3      1      x2n         x4(n−1)+3                  1          2
               dx =              −               dx           = − x2 e−3x +      xe−3x dx
        1+x  4      4       n           1 + x4                    3          3
                                                              Let u = x, dv = e−3x dx
                                                                             1
6.2      Integration by Parts                                 du = dx, v = − e−3x
                                                                             3
                                                                    1
                                                              I = − x2 e−3x
 1. Let u = x, dv = cos xdx                                         3
    du = dx, v = sin x.                                             2    1                1
                                                                  +    − xe−3x −       − e−3x dx
        x cos xdx = x sin x −      sin xdx                          3    3                3
                                                                  1          2          2
      = x sin x + cos x + c                                   = − x2 e−3x − xe−3x +           e−3x dx
                                                                  3          9          9
                                                                  1          2           2 −3x
 2. Let u = x, dv = sin 4xdx                                  = − x2 e−3x − xe−3x −         e    +c
                   1                                              3          9          27
    du = dx, v = − cos 4x
                   4                                       8. Let u = x3 , du = 3x2 dx.
                                                                     3       1          1
      x sin 4x dx                                               x2 ex dx =       eu dx = eu + c
                                                                             3          3
         1                1                                     1 x3
      = − x cos 4x − − cos 4x dx                              = e + c.
         4                4                                     3
         1            1
      = − x cos 4x +    sin 4x + c.
         4           16                                    9. Let I =    ex sin 4xdx
 3. Let u = x, dv = e2x dx                                    u = ex , dv = sin 4xdx
                  1                                                              1
    du = dx, v = e2x .                                        du = ex dx, v = − cos 4x
                  2                                                              4
364                                                            CHAPTER 6. INTEGRATION TECHNIQUES

             1                   1                                                   1
      I = − ex cos 4x −        − cos 4x ex dx                     du = cos xdx v = − cos 2x
             4                   4                                                   2
             1 x          1                                           1              1   1
        = − e cos 4x +          x
                               e cos 4xdx                         I = cos x sin 2x +   − cos 2x sin x
             4            4                                           2              2   2
                                                                             1
      Use integration by parts again, this time let                 −      − cos 2x cos xdx
      u = ex , dv = cos 4xdx                                                 2
                       1                                                  1               1              1
      du = ex dx, v = sin 4x                                          =     cos x sin 2x − cos 2x sin x + Idx
                       4                                                  2               4              4
             1 x
      I = − e cos 4x                                               So,
             4                                                    3      1             1
             1 1 x               1                                  I = cos x sin 2x − cos 2x sin x + c1
           +      e sin 4x −       (sin 4x)ex dx                  4      2             4
             4 4                 4
             1             1               1                           2             1
      I = − ex cos 4x + ex sin 4x − I                             I = cos x sin 2x − cos 2x sin x + c
             4            16              16                           3             3
       So,
      17        1             1                               12. Here we use the trigonometric identity:
         I = − ex cos 4x + ex sin 4x + c1                         sin 2x = 2 sin x cos x.
      16        4            16
             4              1                                     We then make the substitution
      I = − ex cos 4x + ex sin 4x + c
             17             17                                    u = sin x, du = cos x dx.
 10. Let, u = e2x , dv = cos x dx so that,                            sin x sin 2x dx =      2 sin2 x cos x dx
     du = 2e2x dx and v = sin x.
       e2x cos x dx                                                               2 3       2
                                                                  =       2u2 du =  u + c = sin3 x + c
                                                                                  3         3
      = e2x sin x − 2         e2x sin x dx                        This integral can also be done by parts, twice.
                                                                  If this is done, an equivalent answer is ob-
      Let, u = e2x , dv = sin x dx so that,                       tained:
      du = 2e2x dx and v = − cos x.                               1                2
                                                                    cos x sin 2x − cos 2x sin x + c
          e2x sin x dx                                            3                3
                                                              13. Let u = x, dv = sec2 xdx
             2x                     2x
      = −e        cos x + 2     e        cos x dx                 du = dx, v = tan x

          e2x cos x dx                                                x sec2 xdx = x tan x −        tan xdx
                                                                                  sin x
      = e2x sin x + 2e2x cos x − 4             e2x cos x dx       = x tan x −           dx
                                                                                  cos x
      Now we notice that the integral on both of                  Let u = cos x, du = − sin xdx
                                                                                              1
      these is the same, so we bring them to one side               x sec2 xdx = x tan x +      du
      of the equation.                                                                        u
                                                                  = x tan x + ln |u| + c
      5    e2x cos x dx                                           = x tan x + ln |cos x| + c

      = e2x sin x + 2e2x cos x + c1                           14. Let u = (ln x)2 , dv = dx
                                                                         ln x
          e2x cos x dx                                            du = 2      dx, v = x
                                                                          x
          1 2x       2
      =     e sin x + e2x cos x + c                               I = (ln x)2 dx
          5          5
                                                                                             ln x
                                                                      = x(ln x)2 −     x·2        dx
 11. Let I =         cos x cos 2xdx                                                           x
      and u = cos x, dv = cos 2xdx                                    = x(ln x)2 − 2      ln xdx
                         1
      du = sin xdx, v = sin 2x                                    Integration by parts again,
                         2                                                               1
          1                   1                                   u = ln x, dv = dxdu = dx, v = x
      I = cos x sin 2x −        sin 2x(− sin x)dx                                        x
          2                   2                                                               1
                                                                             2
          1                1                                      I = x(ln x) − 2 x ln x − x · dx
        = cos x sin 2x +        sin x sin 2xdx                                                x
          2                2
      Let,u = sin x, dv = sin 2xdx                                = x(ln x)2 − 2x ln x + 2         dx
6.2. INTEGRATION BY PARTS                                                                                                 365

    = x(ln x)2 − 2x ln x + 2x + c                  20. Let u = 2x, dv = cos x dx
                                                       duπ= 2 dxandv = sin x.                               π
                              2
15. Let u = x2 , dv = xex dx so that, du = 2x dx                  2x cos xdx = 2x sin x|0 − 2
                                                                                               π
                                                                                                                sin xdx
                1 2                                       0                                             0
    and v = ex (v is obtained using substitu-            = (2x sin x +
                                                                                       π
                                                                              2 cos x)|0   = −4.
                2
    tion).
            2       1   2        2                            1
       x3 ex dx = x2 ex − xex dx                   21.            x2 cos πxdx
                    2
                                                          0
       1      2   1 2
    = x2 ex − ex + c                                     Let u = x2 , dv = cos πxdx,
       2          2                                                          sin πx
                                                         du = 2xdx, v =             .
                                                                                π
                                  x                         1                              1       1
16. Let u = x2 , dv =                 dx                                          sin πx             sin πx
                                 3/2                          x2 cos πxdx = x2               −              2xdx
                        (4 + x2 )                         0                           π 0        0      π
                           1                                             2 1
    du = 2xdx, v = − √                                   = (0 − 0) −           x sin (πx) dx
                         4 + x2                                          π 0
              3                                                     1
            x                         x                        2
                3/2
                    dx = x2               3/2
                                              dx         =−           x sin (πx) dx
       (4 + x2 )                 (4 + x2 )                     π 0
            x2              1                            Let u = x, dv = sin(πx)dx,
    = −√           +    √        2xdx                                       cos(πx)
           4+x   2        4 + x2                         du = dx, v = −               .
             x2                                                                 π
                                                                  1
    =−               + 2 (4 + x2 ) + c.                     2
           (4 + x2 )                                     −          xsin(πx)dx
                                                            π 0
                                                                                  1       1
17. Let u = ln(sin x), dv = cos xdx                            2      x cos(πx)                cos(πx)
                                                         =−         −               −        −           dx
            1                                                  π           π      0     0          π
    du =        · cos xdx, v = sin x                                                                             1
          sin x                                             2            cos π        1 sin(πx)
                                                         =−            (−      − 0) +
    I = cos x ln(sin x)dx                                   π              π          π     π                    0
    = sin x ln(sin x)                                       2          1   1              2
                     1                                   =−              + (0 − 0) = − 2
      − sin x ·          · cos xdx                          π          π π               π
                   sin x
                                                              1
    = sin x ln(sin x) −       cos xdx
                                                   22.            x2 e3x dx
    = sin x ln(sin x) − sin x + c                         0
                                                         Let u = x2 , dv = e3x dx,
                                                                            e3x
18. This is a substitution u = x2 .                      du = 2xdx, v =           .
                    1                                                         3
      x sin x2 dx =      sin udu                            1
                                                                           x2 e3x
                                                                                    1       1 3x
                                                                                             e
                    2                                         x2 e3x dx =             −          2xdx
        1                1                                                    3 0             3
    = − cos u + c = − cos x2 + c.                         0                               0
        2                2                                  1 3             2 1 3x
                                                         =      e −0 −              xe dx.
19. Let u = x, dv = sin 2xdx                                3               3 0
                  1                                      Let u = x, dv = e3x dx,
    du = dx, v = − cos 2x                                                e3x
                  2                                      dv = dx, v =        .
         1
                                                                          3
             x sin 2xdx                                  e3     2 1 3x
     0                                                       −         xe dx
       1
                          1
                          1
                              1                           3     3 0
    = − x cos 2x −          − cos 2x dx                     e3     2      e3x
                                                                                1       1 3x
                                                                                         e
       2          0     0     2                          =      −      x          −          dx
       1                      1 1                            3     3       3 0        0   3
    = − (1 cos 2 − 0 cos 0) +     cos 2xdx                                                 1
       2                      2 0                          e3    2            e3               e3x
                              1                          =     −                   −               dx
       1         1 1                                       3     3            3        0        3
    = − cos 2 +        sin 2x                                3                                     1
       2         2 2          0                            e     2            e3       e3x
       1         1                                       =     −                   −
    = − cos 2 + (sin 2 − sin 0)                            3     3             3        9          0
       2         4                                         e 3
                                                                 2            e3     1 3
       1         1                                       =     −                   −   e −1
    = − cos 2 + sin 2                                      3     3            3      9
       2         4
366                                                                CHAPTER 6. INTEGRATION TECHNIQUES

         e3   2e3    2 3                                                      x cos (ax) sin (ax)
       =    −     +     e −1                                            =−              +         + c, a = 0.
         3     9    27                                                            a         a2
         e3   2e3   2e3    2   5e3   2
       =    −     +     −    =     −
         3     9    27    27   27    27                           27.       (xn ) (ln x) dx =    (ln x) (xn ) dx
            10
                                                                        Let u = ln x, dv = xn dx,
 23.             ln 2xdx                                                      1          xn+1
        1                                                               du = dx, v =            .
       Let u = ln 2x, dv = dx                                                 x         (n + 1)
             1
       du = dx, v = x.                                                      (ln x)(xn ) dx
             x
            10                                        10
                                         10                 1                     xn+1          xn+1 dx
                 ln (2x)dx = x ln (2x)|1 −                 x dx         = (ln x)         −
        1                                         1         x                    (n + 1)       (n + 1) x
                                        10
       = (10 ln(20) − ln 2) −                dx                           xn+1 (ln x)          xn
                                                                        =              −            dx
                                    1
                                        10
                                                                            (n + 1)         (n + 1)
       = (10 ln(20) − ln 2) − [x]1                                        x n+1
                                                                                (ln x)     x n+1
       = (10 ln(20) − ln 2) − (10 − 1)                                  =              −         2 + c, n = −1.
                                                                            (n + 1)      (n + 1)
       = (10 ln(20) − ln 2) − 9.

 24. Let, u = ln x, dv = x dx
                                                                  28.       (sin ax) (cos bx) dx
             1        x2
     du = dx, v =        .
             x         2                                                Let u = sin ax, dv = (cos bx) dx
        2                    2      2                                                           sin bx
                     1                1                                 du = a (cos ax) dx, v =        .
          x ln xdx = x2 ln x −          xdx                                                        b
      1              2       1     1 2
                           2
           1 2       1                   3                                sin ax cos bx dx
     =       x ln x − x2     = 2 ln 2 − .
           2         4     1             4                                           sin bx            sin bx
                                                                        = (sin ax)           − a                  (cos ax) dx
                                                                                        b                 b
 25.        x2 eax dx                                                      (sin ax) (sin bx) a
                                                                        =                     −        (cos ax) (sin bx) dx
                                                                                   b             b
       Let u = x2 , dv = eax dx,                                        Let u = cos ax, dv = sin bxdx,
                         eax                                                                            cos bx
       du = 2xdx, v =         .                                         du = −a (sin ax) dx, v = −              .
                          aax                                                                               b
                         e           eax
          x2 eax dx = x2        −         2xdx                          sin ax sin bx a
                           a           a                                               −        cos ax sin bx dx
                                                                              b            b
          x2 eax    2                                                      sin ax sin bx a               − cos bx
       =          −      xeax dx.                                       =                 −      cos ax
            a       a                                                            b           b                b
       Let u = x, dv = eax dx,
                      eax                                                                    − cos bx
       dv = dx, v =       .                                                            −                (− sin ax) adx
                       a                                                                          b
        2 ax
       x e        2                                                        sin ax sin bx a − cos ax cos bx
               −      xeax dx                                           =                 −
         a        a                                                              b           b            b
          x2 eax    2     eax         eax                                                 a
       =          −     x       −         dx                                           −       cos bx sin ax dx
            a       a       a          a                                                  b
          x2 eax    2 xeax         eax                                     sin ax sin bx a cos ax cos bx
       =          −             − 2 +c                                  =                 +
            a       a     a        a                                             b                  b2
                                                                                              a 2
          x2 eax    2xeax       2eax                                                      +           sin ax cos bx dx
       =          −         + 3 + c, a = 0.                                                   b
            a         a2         a
                                                                            sin ax cos bx dx
 26.        x sin (ax) dx                                                 sin ax sin bx a cos ax cos bx
                                                                        =              +
       Let u = x, dv = sin axdx,                                                b                b2
                      cos ax                                                               a 2
       du = dx, v = −        .                                                         +           sin ax cos bx dx
                         a                                                                 b
                                                                                               a   2
         xsin (ax) dx                                                     sin ax cos bx dx −            sin ax cos bx dx
                                                                                               b
             − cos (ax)            cos (ax)                               sin ax sin bx a cos ax cos bx
       =x               −      −            dx                          =              +
                 a                     a                                        b                b2
6.2. INTEGRATION BY PARTS                                                                                            367

          a2
        1−        sin ax cos bx dx                                  + (n − 1)        sinn xdx
          b2
      sin ax sin bx a cos ax cos bx                            n        sinn xdx
    =               +
             b               b2
                                                               = − sinn−1 x cos x
      sin ax cos bx dx
                                                                    − (n − 1)        sinn−2 xdx
             b2        sin ax sin bx a cos ax cos bx
    =                               +                                                 1
          b2 − a2            b              b2                      sinn xdx = −        sinn−1 x cos x
                                                                                      n
        sin ax cos bx dx                                                 n−1
                                                                    −              sinn−2 xdx
            1                                                             n
    =     2 − a2
                 (b sin ax sin bx + a cos ax cos bx) ,
        b
    a = 0 b = 0.                                         31.        x3 ex dx = ex (x3 − 3x2 + 6x − 6) + c
29. Letu = cosn−1 x, dv = cos xdx
    du = (n − 1)(cosn−2 x)(− sin x)dx, v = sin x         32.        cos5 xdx
        cosn xdx                                                1               4
                                                               =  cos4 sin x +       cos3 xdx
    = sin x cos n−1
                x                                               5               5
                                                                1
      − (sin x)(n − 1)(cosn−2 x)(− sin x)dx                    = cos4 sin x
                                                                5
    = sin x cosn−1 x                                              4 1                   2
                                                                +        cos2 x sin x +      cos xdx
                                                                  5 3                   3
      + (n − 1)(cosn−2 x)(sin2 x)dx                             1                4
                                                               = cos4 sin x +      cos2 x sin x
    = sin x cosn−1 x                                            5               15
                                                                   8
      + (n − 1)(cosn−2 x)(1 − cos2 x)dx                         +    sin x + c
                                                                  15
    = sin x cosn−1 x
      + (n − 1)(cosn−2 x − cosn x)dx                     33.        cos3 xdx
                                                                1                       2
    Thus,      cosn xdx                                        =  cos2 x sin x +             cos xdx
                                                                3                       3
                                                                1                       2
    = sin x cosn−1 x +       (n − 1) cosn−2 xdx                = cos2 x sin x +           sin x + c
                                                                3                       3
        − (n − 1)     cosn xdx.                          34.        sin4 xdx
    n     cosn xdx = sin x cosn−1 x                               1
                                                               = − sin3 x cos x +
                                                                                          3
                                                                                                sin2 xdx
                                                                  4                       4
        + (n − 1)     cosn−2 xdx                                  1                       3     1    1
                                                               = − sin3 x cos x +                 x − sin 2x
                                                                  4                       4     2    4
        cosn xdx
                                                                    1
     1                 n−1                               35.            x4 ex dx
    = sin x cosn−1 x +                cos   n−2
                                                  xdx           0
     n                  n                                                                                  1
                                                               = ex (x4 − 4x3 + 12x2 − 24x + 24)           0
30. Let u = sinn−1 x, dv = sin x dx                            = 9e − 24
    du = (n − 1) sinn−2 x cos x, v = − cos x.
        sinn xdx                                         36. Using the work done in Exercise 34,
                                                                    π/2

    = − sinn−1 x cos x                                                    sin4 xdx
                                                                0
        + (n − 1)     cos2 x sinn−2 xdx                             1             3     3
                                                                                                               π/2
                                                               =  − sin3 x cos x + x −    sin 2x
    = − sinn−1 x cos x                                              4             8    16                      0
                                                                 3π
        + (n − 1)     (1 − sin2 x) sinn−2 xdx                  =
                                                                 16
    = − sinn−1 x cos x                                              π/2
        − (n − 1)     sinn−2 xdx                         37.              sin5 xdx
                                                                0
368                                                     CHAPTER 6. INTEGRATION TECHNIQUES

                            π/2                                 π/2
           1                  4 π/2 3
      = − sin4 x cos x     +        sin xdx                           cosm xdx
           5           0      5 0                           0
           1
                       π/2                                      (n − 1)(n − 3)(n − 5) · · · 2
      = − sin4 x cos x                                     =                                  .
           5                                                       n(n − 2)(n − 4) · · · 3
                       0
                                        π/2
           4    1               2                      41. Let u = cos−1 x, dv = dx
        +     − sin2 x cos x − cos x                                  1
           5    3               3       0                  du = − √        dx, v = x
      (Using Exercise 30)                                           1 − x2
           1       π      π                                            cos−1 xdx
      =−     sin4     cos − sin4 0 cos 0                   I=
           5       2      2
           4    1    2 π       π 2       π                                                          1
        +     − sin        cos − cos                           = x cos−1 x −               x −√            dx
           5    3       2      2  3      2                                                        1 − x2
         8                                                                        x
      =                                                        = x cos−1 x +            dx  √
        15                                                                      1 − x2
                                                            Substituting u = 1 − x2 , du = −2xdx
 38. Here we will again use the work we did in Ex-
                                                                               1       1
     ercise 34.                                            I = x cos−1 x +    √     − du
                                                                                u      2
        sin6 xdx                                                          1
                                                             = x cos1 x −     u−1/2 du
          1               5                                               2
      = − sin5 x cos x +       sin4 xdx                                     1
          6               6                                  = x cos−1 x − · 2u1/2 + c
          1                                                                 2
      = − sin5 x cos x                                       = x cos−1 x − 1 − x2 + c
          6
          5    1                 3      3
        +    − sin3 x cos x + x −         sin 2x + c   42. Let u = tan−1 x, dv = dx
          6    4                 8     16                           1
          1               5                                du =         dx, v = x
      = − sin5 x cos x −     sin3 x cos x                        1 + x2
          6               24                                                                                 x
          15
        + x−
                 15
                    sin 2x + c                             I=          tan−1 xdx = x tan−1 x −                    dx
          48     96                                                                                        1 + x2
                                                            Substituting u = 1 + x2 ,
      We now just have to plug in the endpoints:                           1
           π/2                                             I = x tan−1 x − ln(1 + x2 ) + c.
                 sin6 xdx                                                  2
       0                                                                    √          1
            1              5                           43. Substituting u = x, du = √ dx
      =   − sin5 x cos x −    sin3 x cos x                                            2 x
            6              24                                        √
                            π/2                            I = sin xdx = 2 u sin udu
          15    15
        + x−        sin 2x
          48    96          0                               = 2(−u cos u + sin u) + c
                                                                   √     √         √
        15π                                                 = 2(− x cos x + sin x) + c
      =
         96                                                                 √
                                                       44. Substituting w = x
 39. m even :                                                      1        1
           π/2                                             dw = √ dx =        dx
                 sinm xdx                                        2 x       2w
                                                                           √
                                                                               x
       0
        (m − 1)(m − 3) . . . 1 π                           I=          e           dx =     2wew dx
      =                       ·                            Next, using integration by parts
          m(m − 2) . . . 2      2
      m odd:                                               u = 2w, dv = ew dw
           π/2
                                                           du = 2dw, v = ew
                 sinm xdx
       0                                                   I = 2wew − 2                   ew dw
        (m − 1)(m − 3) . . . 2                                                     √ √       √
      =
          m(m − 2) . . . 3                                     = 2wew − 2ew + c = 2 xe x − 2e x + c

 40. m even:                                           45. Let u = sin(ln x), dv = dx
           π/2                                                           dx
                 cosm xdx                                  du = cos(ln x) , v = x
       0
                                                                          x
           π(n − 1)(n − 3)(n − 5) · · · 1                  I = sin(ln x)dx
      =
              2n(n − 2)(n − 4) · · · 2
      m odd:                                                   = x sin(ln x) −              cos(ln x)dx
6.2. INTEGRATION BY PARTS                                                                                                  369

    Integration by parts again,                              = 3 u2 eu − 2                   ueu du
    u = cos(ln x), dv = dx
                     dx
    du = − sin(ln x) , v = x                                 = 3u2 eu − 6 ueu −                      eu du
                      x
       cos(ln x)dx                                           = 3u2 eu − 6ueu + 6eu + c
                                                                       8       √                2
                                                                               3   x
                                                         Hence             e           dx =         3u2 eu du
    = x cos(ln x) +       sin(ln x)dx                              0                           0
                                                                                                    2
    I = x sin(ln x) − x cos(ln x) − I                    = 3u e − 6ueu + 6e
                                                                 2 u                           u
                                                                                                    0
                                                                                                        = 6e2 − 6
    2I = x sin(ln x) − x cos(ln x) + c1
        1               1                            50. Let u = tan−1 x, dv = xdx
    I = x sin(ln x) − x cos(ln x) + c                            dx        x2
        2               2                                du =         , v=
                                                               1 + x2       2
46. Let u = 4 + x2 , du = 2xdx                           I=      x tan−1 xdx
    I=     x ln(4 + x2 )dx                                             x2                1        x2
                                                             = tan−1 x    −                            dx
       1               1                                               2                 2      1 + x2
      =     ln udu = (u ln u − u) + C                                  x2
       2               2                                     = tan−1 x
       1                                                               2
      = [(4 + x ) ln(4 + x2 ) − 4 − x2 ] + c
                2
                                                                1                                1
       2                                                     −       1dx −                           dx
                                                                2                             1 + x2
47. Let u = e2x , du = 2e2x dx                                         x2                1
                             1                               = tan−1 x −                   x − tan−1 x + C
    I = e6x sin(e2x )dx =        u2 sin udu                            2                 2
                             2                                    −1 x
                                                                        2
                                                                                         x 1
    Let v = u2 , dw = sin udu                                = tan x −                     + tan−1 x + c
                                                                       2                 2 2
    dv = 2udu, w = − cos u                                             1
        1                                                Hence             x tan−1 xdx
    I=      −u2 cos u + 2 u cos udu                                0
        2                                                                      x2  x 1
                                                                                                                1
                                                                                                                        π 1
          1                                              =     tan−1 x            − + tan−1 x                       =     −
      = − u2 cos u + u cos udu                                                 2   2 2                          0       4   2
          2
          1 2                                        51. n times. Each integration reduces the power of
      = − u cos u + (u sin u + cos u) + c
          2                                              x by 1.
          1
      = − e4x cos(e2x ) + e2x sin(e2x )
          2                                          52. 1 time. The first integration by parts gets rid
            + cos(e2x ) + c                              of the ln x and turns the integrand into a sim-
                                                         ple integral. See, for example, Problem 4.
               √                     1 −2/3
48. Let u =    3
                   x = x1/3 , du =     x    dx,      53. (a) As the given problem, x sin x2 dx can
                                     3                       be simplified by substituting x2 = u, we
    3u2 du = dx
                                                             can solve the example using substitution
    I = cos x1/3 dx = 3          u2 cos udu                  method.
    Let v = u2 , dw = cos udu                             (b) As the given integral, x2 sin x dx can not
    dv = 2udu, w = sin u                                      be simplified by substitution method and
    I = 3 u2 sin u − 2        u sin udu                       can be solved using method of integration
                                                              by parts.
      = 3u2 sin u − 6       u sin udu                     (c) As the integral, x ln x dx can not be sim-
                                                              plified by substitution and can be solved
      = 3u2 sin u − 6 −u cos u +           cos udu            using the method of integration by parts.
           3                                                                              ln x
      = 3u sin u + 6u√ u −√ sin u + c √
               √       cos      6                         (d) As the given problem,            dx can be
      = 3x sin 3 x + 6 3 x cos 3 x − 6 sin 3 x + c                                         x
                                                              simplified by substituting , ln x = u we
               √                     1 −2/3                   can solve the example by substitution
49. Let u =    3
                   x = x1/3 , du =     x    dx,               method.
                                     3
    3u2 du = dx
            √
            3                                        54. (a) As this integral, x3 e4x dx can not be
    I = e x dx = 3           u2 eu du                        simplified by substitution method and can
370                                                        CHAPTER 6. INTEGRATION TECHNIQUES

           be solved by using the method of integra-      59.
           tion by parts.                                                         e2x
                                        4                                4        2x
       (b) As the given problem, x3 ex dx can be                   x           e /2      +
           simplified by substituting x4 = u, we can               4x3          e2x /4    −
           solve the example using the substitution              12x2          e2x /8    +
                                                                               2x
           method.                                                24x         e /16      −
                                              4                    24         e2x /32    +
        (c) As the given problem,     x−2 e x dx can be
                                     1
           simplified by substituting = u, we can                    x4 e2x dx
                                     x
           solve the example using the substitution                   x4        3x2   3x 3
                                                                =        − x3 +     −    +               e2x + c
           method.                                                    2          2     2   4
       (d) As this integral, x2 e−4x dx can not be        60.
           simplified by substitution and can be                                     cos 2x
           solved by using the method of integration               x     5
                                                                                 sin 2x/2        +
           by parts.
                                                                  5x4          − cos 2x/4        −
 55. First column: each row is the derivative of the             20x3          − sin 2x/8        +
     previous row; Second column: each row is the                60x2           cos 2x/16        −
     antiderivative of the previous row.                         120x           sin 2x/32        +
                                                                  120         − cos 2x/64        −
 56.
                 sin x
           4                                                        x5 cos 2xdx
          x    − cos x      +
         4x3   − sin x      −                                       1 5              5
                                                                =     x sin 2x + x4 cos 2x
        12x2     cos x      +                                       2                4
         24x     sin x      −                                          20              60
                                                                    − x3 sin 2x − x2 cos 2x
          24   − cos x      +                                           8              16
                                                                       120             120
         x4 sin xdx                                                 +      x sin 2x +      cos 2x + c
                                                                        32              64
       = −x4 cos x + 4x3 sin x + 12x2 cos x               61.
         − 24x sin x − 24 cos x + c                                      e−3x
                                                                     3             −3x
 57.                                                              x   −e    /3               +
                 cos x                                           3x2   e−3x /9               −
          x4     sin x      +                                     6x −e−3x /27               +
         4x3   − cos x      −                                      6  e−3x /81               −
        12x2   − sin x      +
                                                                    x3 e−3x dx
         24x     cos x      −
          24     sin x      +                                                x3   x2   2x    2
                                                                =    −          −    −    −           e−3x + c
                                                                             3    3     9   27
         x4 cos xdx
                                                          62.
       = x4 sin x + 4x3 cos x − 12x2 sin x                                 x2
         − 24x cos x + 24 sin x + c                               ln x  x3 /3 +
                                                                    −1
 58.                                                              x    x4 /12 +
               ex                                                −x −2
                                                                       x5 /60 +
           4
          x    ex       +                                       The table will never terminate.
         4x3   ex       −
        12x2   ex       +                                 63. (a) Use the identity
         24x   ex       −                                         cos A cos B
                                                                     1
          24   ex       +                                         = [cos(A − B) + cos(A + B)]
                                                                     2
         x4 ex dx                                                 This identity gives
                                                                              π
           4        3       2
       = (x − 4x + 12x − 24x + 24)e + c  x                                        cos(mx) cos(nx)dx
                                                                             −π
6.2. INTEGRATION BY PARTS                                                                                              371

                π                                                        nπ
                1                                                1
        =         [cos((m − n)x)                             =                 cos2 udu
             −π 2                                                n       −nπ
            + cos((m + n)x)]dx                                                                    nπ
                                                                 1       1    1
            1 sin((m − n)x)                                  =             u + cos(2u)                     =π
        =                                                        n       2    4                   −nπ
            2     m−n                                                            π
                                  π                          And then                sin2 (nx)dx
              sin((m + n)x)                                                     −π
           +                                                         π
                  m+n        −π                              =           (1 − cos2 (nx))dx
        =0                                                       −π
                                                                  π                  π
        It is important that m = n because oth-              =           dx −            cos2 (nx)dx
        erwise cos((m − n)x) = cos 0 = 1                         −π               −π

    (b) Use the identity                                     = 2π − π = π
        sin A sin B
           1                                      65. The only mistake is the misunderstanding of
        = [cos(A − B) − cos(A + B)]
           2                                          antiderivatives. In this problem,                           ex e−x dx
        This identity gives
            π                                         is understood as a group of antiderivatives of
                sin(mx) sin(nx)dx                     ex e−x , not a fixed function. So the subtraction
         −π
                π
                     1                                by      ex e−x dx on both sides of
        =              [cos((m − n)x)
                −π   2
                                                           ex e−x dx = −1 +               ex e−x dx
            − cos((m + n)x)]dx
            1 sin((m − n)x)                           does not make sense.
        =                                                      π √                                    π
            2     m−n
                                  π
                                                  66. V = π     (x sin x)2 dx = π                         x2 sin xdx
                sin((m + n)x)                                    0                                0
            −
                    m+n           −π
                                                      Using integration by parts twice we get
        =0                                                 x2 sin xdx
        It is important that m = n because oth-
        erwise cos((m − n)x) = cos 0 = 1              = −x2 cos x + 2                x cos xdx

64. (a) Use the identity                              = −x2 cos x + 2(x sin x −                  sin xdx)
        cos A sin B                                   = −x2 cos x + 2x sin x + 2 cos x + c
           1
        = [sin(B + A) − sin(B − A)]                   Hence,
           2                                                                                                  π
        This identity gives                           V = (−x2 cos x + 2x sin x + 2 cos x)                    0
            π                                         = π 2 − 4 ≈ 5.87
                cos(mx) sin(nx) dx
         −π
                π
                     1                            67. Let u = ln x, dv = ex dx
        =              [sin((n + m)x)                       dx
                −π   2                                du =     , v = ex
                                                             x
            − sin((n − m)x)] dx                                                               ex
                                                        ex ln xdx = ex ln x −                    dx
            1   cos((n + m)x)                                                                 x
        =     −                                                                 ex
            2       n+m                                    ex ln xdx +             dx = ex ln x + C
                                   π                                            x
                cos((n − m)x)                         Hence,
            +
                    n−m                                                    1
                                   −π                      ex ln x +            dx = ex ln x + c
        =0                                                                 x
    (b) We have seen that                         68. We can guess the formula:
                      1     1
          cos2 xdx = x + cos(2x) + c                       ex (f (x) + f (x))dx = ex f (x) + c
                      2     4
        Hence by letting u = nx:                      and prove it by taking the derivative:
            π
                cos2 (nx)dx                            d x
                                                         (e f (x)) = ex f (x) + ex f (x)
         −π                                           dx
372                                                                                                      CHAPTER 6. INTEGRATION TECHNIQUES

                                                                                                                                                          b
                                            = ex (f (x) + f (x))                                                                             +                f (x) (b − x) dx
                                                                                                                                                      a
                                            1                                                                                            b
 69. Consider,                                  f (x)g (x) dx                                                Consider                        x sin (b − x) dx
                                        0                                                                                            0
      Choose u = g (x) and dv = f (x)dx,                                                                               b                                                        b

      so that du = g (x) dx and , v = f (x) .                                                                =             (b − x) sin xdx =                                        (sin x) (b − x) dx
                                                                                                                   0                                                        0
      Hence, we have                                                                                         Now, consider
           1
               g (x)f (x)dx                                                                                  f (x) = x − sin x ⇒ f (x) = 1 − cos x
       0                                                                                                     and f (x) = sin x.
                                                                1
                                    1
      = g (x) f                 (x)|0               −               f (x)g (x) dx                            Therefore, using
                                                            0                                                f (b) = f (a) + f (a) (b − a)
      = (g (1) f (1) − g (0) f (0))                                                                                                                               b
                                    1                                                                                                            +                    f (x) (b − x) dx,
                       −                g (x)f (x) dx                                                                                                         a
                                0                                                                            we get
      From the given data.                                                                                   b − sin b = 0 − sin 0 + f (0) (b − 0)
                                                1
                                                                                                                                                                  b
      = (0 − 0) −                                   g (x)f (x) dx.                                                                               +                    (sin x) (b − x) dx
                                            0
                                                                                                                                                              0
      Choose, u = g (x) and dv = f (x)dx,                                                                                                                     b
      so that,du = g (x) dx and v = f (x) .                                                                  ⇒ |sin b − b| =                                      x sin (b − x) dx .
                                                                                                                                                      0
      Hence, we have
                   1                                                                                         Further,
      −                g (x)f (x) dx                                                                                                              b                                                b
               0                                                                                             |sin b − b| =                            x sin (b − x) dx ≤                               xdx ,
                                                                            1                                                                 0                                                0
                                                    1
      =−               g (x) f                  (x)|0       −                   f (x) g (x) dx               as sin (b − x) ≤ 1.
                                                                        0
      = − {(g (1) f (1) − g (0) f (0) )                                                                                         b2
                                                                                                             Thus, |sin b − b| ≤ .
                           1                                                                                                    2
           −                   f (x) g (x) dx                                                                Therefore the error in the approximation
                       0                                                                                                           1
      From the given data.                                                                                   sin x ≈ x is at most x2 .
                                                            1                                                                      2
      = − (0 − 0 ) −                                            f (x) g (x) dx
                   1
                                                        0
                                                                                                       6.3        Trigonometric
      =                f (x) g (x) dx.
               0
                                                                                                                  Techniques of
 70. Consider,                                                                                                    Integration
           b                                                                    b
               f (x) (b − x) dx =                                                   (b − x) f (x) dx    1. Let u = sin x, du = cos xdx
       a                                                                    a
      Choose u = (b − x) and dv = f (x) dx,                                                                       cos x sin4 xdx =                                    u4 du
      so that du = −dx and v = f (x) .                                                                            1 5      1
                                                                                                             =      u + c = sin5 x + c
      Hence, we have:                                                                                             5        5
           b
               (b − x)f (x) dx                                                                          2. Let u = sin x, du = cos xdx
       a
                                                                        b                                         cos3 x sin4 xdx =                                    (1 − u2 )u4 du
                                            b
      = (b − x) f                       (x)|a           +                   f (x) dx
                                                                    a                                          u5    u7
                                                                                    b                        =     −    +c
                                                                                                                5    7
      = (0 − [(b − a) f (a)]) +                                                         f (x) dx               sin x sin7 x
                                                                                                                   5
                                                                               a
                                                                                b
                                                                                                             =       −      +c
      = − [(b − a) f (a)] + f                                               (x)|a                                 5      7
      = − [(b − a) f (a)] + f (b) − f (a)                                                               3. Let u = sin 2x, du = 2 cos 2xdx.
           b                                                                                                      π/4
               f (x) (b − x) dx                                                                                            cos 2xsin3 2xdx
       a                                                                                                      0
      = − [(b − a) f (a)] + f (b) − f (a)                                                                                      1                                        1
                                                                                                                  1                                   1 u4                           1
                                                                                                             =                     u3 du =                                  =
      f (b) = f (a) + (b − a) f (a)                                                                               2        0                          2 4               0            8
6.3. TRIGONOMETRIC TECHNIQUES OF INTEGRATION                                                                                     373

 4. Let u = cos 3x, du = −3 sin xdx.                                          =−          cot x(1 + cot2 x) · csc2 xdx
           π/3
                    cos3 3x         sin3 3x dx                                                               u2   u4
       π/4                                                                    =−          (u + u3 )du = −       −    +C
                     −1                                                                                      2    4
               1
      =−               √ u
                          3
                            1−              u2 du                                    cot2 x cot4
               3    −1/ 2                                                     =−           −     +c
                                                                                       2     4
                     4    6 −1
               1 u   u
      =−           −                                                      11. Let u = x2 + 1, so that du = 2xdx.
               3 4   6               −1
                                     √
                                      2
               1     3   7                    1                                    xtan3 x2 + 1          sec x2 + 1    dx
      =−               −                =−
               3     16 48                   72                                 1
                                                                              =      tan3 u (sec u) du
 5. Let u = cos x, du = − sin xdx                                               2
           π/2                                   0                              1
                                                                              =        sec2 u − 1 tan u (sec u) du
                   cos2 x sin xdx =                  u2 (−du)                   2
       0                                     1                                Let sec u = t, dt = tan u sec udu
                              0
                1                   1                                           1                   1 t3
      =        − u3               =                                           =       t2 − 1 dt =         −t +c
                3             1     3                                           2                   2 3
                                                                                1 sec3 u
 6. Let u = cos x, du = − sin xdx                                             =           − sec u + c
           0                                             1                      2     3
                   cos3 x sin xdx = −                        u3 du = −1         1                   1
       −π/2                                          0                        = sec3 x2 + 1 − sec x2 + 1 + c.
                                                                                6                   2

 7.        cos2 (x + 1) dx                                                12. Let u = 2x + 1, so that du = 2dx.
       1                                                                           tan (2x + 1) .sec3 (2x + 1) dx
      =    (1 + cos 2 (x + 1))dx
       2                                                                        1
       1    1                                                                 =      tan u. sec u.sec2 udu
      = x + (sin 2 (x + 1)) + c.                                                2
       2    4                                                                   1
                                                                              =      sec2 utan u sec udu
 8. Let u = x − 3, du = dx                                                      2
                                                                              Let t = sec u, so that dt = tan u sec udu.
           sin4 (x − 3)dx =                 sin4 udu                            1            1 t3
                                                                              =      t2 dt =         +c
                              2                                                 2            2 3
      =            sin2 u du
                                                                                1 sec3 u           1
          (1 − cos 2u) (1 − cos 2u)                                           =             + c = sec3 (2x + 1) + c.
      =                 ×            du                                         2     3            6
                2              2
          1                                                               13. Let u = cot x, du = −csc2 x dx
      =      1 − 2 cos 2u + cos2 2u
          4
        1                   1                                                      cot2 x csc4 xdx =        cot2 x 1 + cot2 x csc2 xdx
      =      1 − 2 cos 2u + (1 + cos 4u) du
        4                   2
                                                                              =−          u2 1 + u2 du
       3     1           1
      = u − sin 2u +       cos 4u + c                                            u3    u5
       8     4          32                                                    =−    −      +c
       3            1                                                             3     5
                                                                                         3          5
      = (x − 3) − sin 2 (x − 3)                                                  (cot x)     (cot x)
       8            4                                                         =−           −          + c.
         1                                                                          3           5
       +    cos 4 (x − 3) + c.
         32
                                                                          14. Let u = cot x, du = −csc2 x dx.
 9. Let u = sec x, du = sec x tan xdx
                          3
                                                                                   cot2 x csc2 xdx = −         u2 du
           tan x sec xdx
                                                                                     u3     cot3 x
                                        2
                                                                              =−        +c=        + c.
      =        tan x sec x sec xdx                                                   3        3
                                  1 3      1                              15. Let u = tan x, du = sec2 xdx
      =        u2 du =              u + c = sec3 x + c                             π/4
                                  3        3
                                                                                         tan4 x sec4 xdx
                                                 2
10. Let u = cot x, du = − csc xdx                                              0
                                                                                        π/4
           cot x csc4 xdx                                                     =               tan4 x sec2 x sec2 xdx
                                                                                    0
374                                                                           CHAPTER 6. INTEGRATION TECHNIQUES

                π/4                                                                               π          π
                                                                            21. Let x = 3 sin θ, − < θ <
       =                    tan4 x(1 + tan2 x) sec2 xdx                                           2          2
            0                                                                   dx = 3 cos θ dθ
                1                                                                       1                    3 cos θ
       =            u4 (1 + u2 ) du                                                   √        dx =                       dθ
            0                                                                      x 2 9 − x2          9 sin2 θ · 3 cos θ
                1
                                                   u5   u7
                                                               1
                                                                       12         1                  1
       =            (u4 + u6 )du =                    +            =            =       csc2 θdθ = − cot θ + C
                                                   5    7              35         9                  9
            0                                                  0
                                                                                By drawing a diagram, √ see that if
                                                                                                         we
 16. Let u = tan x, du = sec2 xdx.                                                                         9 − x2
           π/4                                                                  x = sin θ, then cot θ =            .
                                                                                                             x
                    tan4 x sec2 xdx                                                                     √
        π/4                                                                                               9 − x2
                1                          1                                    Thus the integral = −              +c
                                    u5                 2                                                   9x
       =            u4 du =                        =                                              π          π
            −1                      5      −1          5                    22. Let x = 4 sin θ, − < θ < ,
                                                                                                  2          2
                                                                                dx = 4 cos θdθ
 17.       cos2 x sin2 xdx                                                               1                    cos θ
                                                                                      √         dx =                     dθ
                 1               1                                                 x 2 16 − x2           16 sin2 θ cos θ
       =           (1 + cos 2x) · (1 − cos 2x)dx                                   1                   1
                 2               2                                              =        csc2 θdθ = − cot θ + c
         1                                                                        16 √                16
       =    (1 − cos2 2x)dx                                                            16 − x2
         4                                                                      =−              +c
         1        1                                                                     16x
       =     1 − (1 + cos 4x) dx
         4        2                                                         23. Let x = 4sinθ, so that dx = 4 cos θdθ.
         1 1     1                                                                    x2              16sin2 θ 4 cos θ
       =     x − sin 4x + c                                                        √         dx =                      dθ
         4 2     8                                                                   16 − x2                         2
         1    1                                                                                        16 − (4 sin θ)
       = x−     sin 4x + c                                                                   sin2 θ cos θ
         8   32                                                                 = 64                         dθ
                                                                                             16 − 16sin2 θ
 18.       (cos2 x + sin2 x)dx =                           1dx = x + c                       sin2 θ cos θ
                                                                                = 64                         dθ
 19. Let u = cosx, du = − sin xdx                                                        4      1 − sin2 θ
       0   √                                                                             sin2 θ cos θ
             cos x sin3 xdx                                                     = 16                  dθ = 16     sin2 θdθ
        −π/3                                                                                cos θ
           0                √                                                              1 − cos 2θ
       =                        cos x(1 − cos2 x) sin xdx                       = 16                     dθ
                                                                                                 2
            −π/3
             1 √
                                                                                =8       dθ −      (cos 2θ) dθ
       =                    u(1 − u2 )(−du)
            1/2                                                                          sin 2θ
             1                                                                  =8 θ−            +c
       =            (u      5/2
                                  −u 1/2
                                           )du                                              2
                                                                                           x                  x
            1/2
                                               1
                                                                                = 8sin−1       − 4 sin 2sin−1            + c.
            2 7/2 2 3/2                                    25 √    8                       4       √          4
       =      u − u                                    =        2−                    −1 x       x 16 − x2
            7     3                            1/2         168     21           = 8sin         −             +c
                                                                                           4          2
 20. Let u = cot x,                    du = − csc2 xdx                      24. Let x = 3 sin θ, so that dx = 3 cos θdθ.
           π/2                                                                        x3
                    cot2 x csc4 xdx                                                √        dx
        π/4                                                                          9 − x2
                π/2                                                                     27 sin3 θ
       =                    cot2 x csc2 x csc2 xdx                              =                       (3 cos θ) dθ
                                                                                                      2
            π/4                                                                         9 − (3 sin θ)
             π/2
       =                    cot2 x(1 + cot2 x) csc2 xdx                                      sin3 θ
                                                                                = 81                    (cos θ) dθ
            π/4
                        0
                                                                                           9 − 9sin2 θ
       =−                   u2 (1 + u2 )du                                                 sin3 θ
                                                                                = 81                 cos θdθ = 27 sin3 θdθ
                    1                                                                     3 cos θ
                                       0
                    u3   u5                     1 1   8                                   3 sin θ − sin 3θ
       =−              +                   =     + =                            = 27                          dθ
                    3    5             1        3 5  15                                            4
6.3. TRIGONOMETRIC TECHNIQUES OF INTEGRATION                                                                 375

      27                                                        Putting all these together and using
    =      3 sin θdθ − sin 3θdθ                                                       √
       4                                                                  x             x2 − 9
      27               cos 3θ                                   sec θ = , tan θ =               :
    =      −3 cos θ +          +c                                         3               3
                                                                         2
       4                 3                                             x
      27                    x
                                                                   √          dx = 9 sec3 θ dθ
    =      −3 cos sin−1                                               x2 − 9
       4                    3                                      9                9
                                                                = sec θ tan θ +          sec θ dθ
         cos sin−1 x 3                                             2                2
      +                     + c.                                   9                9
                3                                               = sec θ tan θ + ln | sec θ + tan θ| + c
                                                                   2          √     2
25. This is the area of a quarter of a circle of radius            9 x          x2 − 9
    2,                                                          =
            2
                                                                   2 3           3
                                                                                 √
                 4 − x2 dx = π                                        9     x      x2 − 9
        0                                                         + ln         +            +c
                                                                      2     3        3
26. Let u = 4 − x2 , du = −2xdx                                      √                      √
       1
            x               3
                               du                                  x x2 − 9 9          x + x2 − 9
         √        dx = −       √                                =               + ln               +c
           4−x  2             2 u                                       2         2           3
     0                    4
              3       √
    = −u1/2 = 2 − 3                                       28. Let u = x2 − 1, du = 2xdx
                      4

27. Let x = 3 sec θ, dx = 3 sec θ tan θdθ.                          x3   x2 − 1dx
              x2                                                  1
    I=     √         dx
             x2 − 9                                             =        x2   x2 − 1(2x)dx
                                                                  2
         27 sec2 θ sec θ tan θ                                    1             √
    =       √                  dθ                               =        (u + 1) udu
              9 sec2 θ − 9                                        2
    =           9 sec3 θdθ                                        1
                                                                =        u3/2 + u1/2 du
                                                                  2
    Use integration by parts.                                     1      2u5/2   2u3/2
    Let u = sec θ and dv = sec2 θdθ. This gives                 =              +           +c
                                                                  2        5       3
            sec3 θdθ                                                1 2           1
                                                                =     (x − 1)5/2 + (x2 − 1)3/2 + c
                                                                    5             3
    = sec θ tan θ −          sec θ tan2 θdθ
                                                          29. Let x = 2 sec θ, dx = 2 sec θ tan θdθ
    = sec θ tan θ −          sec θ(sec2 θ − 1)dθ                     2             4 sec θ tan θ
                                                                 √        dx =                   dθ
                                                                   x 2−4              2 tan θ
    = sec θ tan θ +          sec θdθ −      sec3 θdθ            =2       sec θdθ
                                                                = 2 ln |2 sec θ + 2 tan θ| + c
    2           sec3 θdθ
                                                                = 2 ln x +         x2 − 4 + c
    = sec θ tan θ +          sec θdθ
                                                          30. Let x = 2 sec θ, dx = 2 sec θ tan θdθ
            sec3 θdθ                                                x              4 sec2 θ tan θ
                                                                 √        dx =                    dθ
            1               1                                      x2 − 4             2 tan θ
    =         sec θ tan θ +      sec θ dθ
            2               2                                   =2       sec2 θdθ = 2 tan θ + C =   x2 − 4 + c

    This leaves us to compute               sec θdθ.                √                √
                                                                     4x2 − 9           4x2 − 9
    For this notice if u = sec θ + tan θ then             31.                dx =              4xdx
                                                                       x                4x2
    du = sec θ tan θ + sec2 θ.
                                                                 Let u = 4x2 − 9,
            sec θdθ                                                       1               1
                                                                du = √           8xdx =     8xdx
          sec θ(sec θ + tan θ)                                        2 4x2 − 9          2u
    =                          dθ                               or udu = 4xdx.
              sec θ + tan θ
          1                                                     Hence, we have
    =       du = ln |u| + c                                       √
          u                                                         4x2 − 9
    = ln | sec θ + tan θ| + c                                               dx
                                                                      x
376                                                  CHAPTER 6. INTEGRATION TECHNIQUES

              u               u2                               √           √
      =           udu =            du                  =    (16 2 tan3 θ)(2 2 sec θ)dθ
               u2
              +9            u2+9
                2
           u +9−9                         9            = 64     tan3 θ sec θ dθ
      =               du = du −               du
             u2 + 9                    u2 + 9
                     u
      = u − 9tan−1       +c                            = 64     (sec2 θ − 1)(sec θ tan θ dθ)
                      3       √
                                4x2 − 9                                           64 3
      = 4x   2 − 9 − 9tan−1               + c.         = 64     (u2 − 1)du =         u − 64u + c
                                  3                                                3
                                                         64
                                                       =     sec3 θ − 64 sec θ + c
 32. Let√ = 2 sec θ, dx = 2 tan θ sec θdθ.
         x                                                3
                                                                √          3       √
          x2 − 4                                         64       8 + x2             8 + x2
                  dx                                   =           √         − 64     √       +c
          √x2                                             3       2 2                2 2
             4sec2 θ − 4                                   √
     =                    (2 tan θ sec θ) dθ             2 2                    √
              4sec2 θ                                  =       (8 + x2 )3/2 − 16 2(8 + x2 )1/2 + c
          2 tan θ                                          3
     =             (2 tan θ sec θ) dθ
           4sec2 θ                                 35. Let x = 4 tan θ, dx = 4 sec2 θdθ
              2
          tan θ            sec2 θ − 1
     =            dθ =                dθ                      16 + x2 dx
           sec θ              sec θ
                           1
     = sec θdθ −               dθ                      =        16 + 16 tan2 θ · 4 sec2 θdθ
                         sec θ
      =        sec θdθ −     cos θdθ                   = 16     sec3 θdθ
      = ln |sec θ + tan θ| − sin θ + c                          1               1
                         x                x            = 16       sec θ tan θ +       sec θdθ
      = ln sec sec−1          + tan sec−1                       2               2
                         2                2
                        x                              = 8 sec θ tan θ + 8       sec θdθ
        − sin sec−1          +c
                        2
              x                   x                    = 8 sec θ tan θ + 8 ln |sec θ + tan θ| + c
      = ln        + tan sec−1                            1
              2                   2                    = x 16 + x2
                        x
        − sin sec−1          + c.                        2
                        2                                         1               x
                                                         + 8 ln       16 + x2 +      +c
                                                                  4               4
 33. Let x = 3 tan θ, dx = 3 sec2 θdθ
           x2                                      36. Let x = 2 tan θ, dx = 2 sec2 θdθ
        √        dx
          9 + x2                                              1             2 sec2 θ
          27 tan2 θ sec2 θ                                √        dx =              dθ
     =     √               dθ                               4 + x2          2 sec θ
             9 + 9 tan2 θ                              =    sec θdθ = ln | sec θ + tan θ| + c
      =        9 tan2 θ sec θdθ                                  √
                                                             x + 4 + x2
                                                       = ln                 +c
      =9        (sec2 θ − 1) sec θdθ                               2

      =9        sec3 θdθ − 9      sec θdθ          37. Let u = x2 + 8, du = 2xdx
                                                          1
        9                9                                                1 9 1/2
      =   sec θ tan θ − ln | sec θ + tan θ| + c             x x2 + 8dx =       u du
        2 √              2                              0                 2√ 8
                                                                9
        9      9 + x2      x                               1        27 − 16 2
      =                                                = u3/2 =
        2        3         3                               3    8        3
                 √
          9        9 + x2     x                    38. Let x = 3 tan θ, dx = 3 sec2 θ dθ
        − ln               +    +c
          2          3        3                        I=       x2   x2 + 9dx
          √                     √
        x 9 + x2       9     x + 9 + x2
      =             − ln                  +c           =      27 tan2 θ sec2 θ    9 tan2 θ + 9dx
            2          2          3
              √               √                        = 81     tan2 θ sec3 θdx
 34. Let x = 2 2 tan θ, dx = 2 2 sec2 θdθ
          x3     8 + x2 dx                             = 81     (sec2 θ − 1) sec3 θdx
6.3. TRIGONOMETRIC TECHNIQUES OF INTEGRATION                                                                              377

                                                                        √            √
   = 81             (sec5 θ − sec3 θ)dx                               17 13 81    2 + 13
                                                                    =      −   ln
                                                                        4    8       3
   To compute sec5 θ dθ, we use integration by
                                                              39. Let x = tan θ, dx = sec2 θdθ.
   parts with u = sec3 θ and dv = sec2 θdθ.                             x3              tan3 θ
                                                                     √        dx =              sec2 θdθ
           sec5 θ dθ                                                   1 + x2            sec θ

   = sec3 θ tan θ −              3 sec3 θ tan2 θdθ                  =        tan2 θ (tan θ sec θ) dθ
                                                                    Let t = sec θ, dt = tan θ sec θdθ.
   = sec3 θ tan θ           −3         sec3 θ(sec2 θ − 1)dθ
                                                                    =        sec2 θ − 1 tan θ sec θdθ
   = sec3 θ tan θ − 3                (sec5 θ − sec3 θ)dθ                                      t3
                                                                    =        t2 − 1 dt =         −t +c
                                                                                              3
   4           sec5 θdθ                                               sec3 θ
                                                                    =        − sec θ + c
                                                                        3
   = sec3 θ tan θ + 3                sec3 θdθ      sec5 θdθ
                                                                      sec3 tan−1 x
           1                3                                       =                − sec tan−1 x                + c.
   =         sec3 θ tan θ +             sec3 θdθ                             3
           4                4
                                                              40. Let x = 2 tan θ, dθ = 2sec2 θ dθ.
                                 3
   To compute sec θdθ and sec θ dθ, see Ex-                           x+1
   ercise 27.                                                        √         dx
                                                                       4 + x2
   Putting all this together gives:                                       2 tan θ + 1
                                                                  =      √              2sec2 θdθ
   I = 81            (sec5 θ − sec3 θ)dx                                   4 + 4tan2 θ
           81                243                                         2 tan θ + 1
   =          sec3 θ tan θ +               sec3 θdθ               =                    2sec2 θ dθ
            4                 4                                             2 sec θ

           − 81       sec3 θdθ                                      =       (2 tan θ + 1) (sec θ) dθ

     81                  81                                         =2       sec θ tan θdθ +       sec θdθ
   =     sec3 θ tan θ −        sec3 θdθ
      4                   4
     81                  81                                       = 2 sec θ + ln |sec θ + tan θ| + c
   =     sec3 θ tan θ −     sec θ tan θ                                              x                        x
      4                   8                                       = 2 sec tan−1            + ln sec tan−1
        81                                                                           2                        2
     −     ln | sec θ + tan θ| + c                                                     x
        8                                                           + tan tan−1              +c
                                                                                       2
                                                                                     x
   We don’t worry about the result being in terms                 = 2 sec tan−1
                                                                                     2
   of x since this is a definite integral. Our lim-                                  −1 x           x
                                                                    + ln sec tan               +        + c.
   its of integration are x = 0 and x = 2. In                                             2        2
   terms of θ this means the limits of integration                        x
                                     2                        41.    √          dx
   correspond to θ = 0 and tan θ = .                                   x 2 + 4x
                                     3                              1      2x + 4 − 4
           2
                                                                  =        √           dx
                                                                    2        x2 + 4x
               x2   x2 + 9dx                                        1       2x + 4           1         4
       0                                                          =        √          dx −        √          dx
      81                  81                                        2        x2 + 4x         2      x2 + 4x
   =      sec3 θ tan θ −     sec θ tan θ                          Let u = x2 + 4x, du = (2x + 4) dx.
       4                   8
                               x=2                                  1      du     1              4
      81                                                          =        √ −           √                  dx
    − ln | sec θ + tan θ|                                           2        u 2           x2 + 4x − 4 + 4
     8                        x=0                                           1             4
             √     3                √                             = u1/2 −                          dx
      81       13       2     81      13      2                              2                2
   =                       −                                                        (x + 2) − 4
       4      3         3      8      3       3
                                                                    =     (x2 + 4x)
              √
      81        13 2                                                    − 2 log      x2 + 4x +
                                                                                                              2
                                                                                                        (x + 2) − 4 + c.
    − ln           +
      8         3     3
         81           81           81                                            2                         2
    −       (1)(0) − (1)(0) −         ln |1 + 0|              42.       √              dx =    √                     dx
          4            8            8                                       x2    − 6x             x2   − 6x + 9 − 9
378                                                       CHAPTER 6. INTEGRATION TECHNIQUES

                     2                                                    2
       =                      dx                             =                     dx
                         2                                                       2
              (x − 3) − 9                                           4 − (x − 2)
       Let u = x − 3, du = dx.                               Let u = x − 2, du = dx.
               2                                                      2
       =    √         du                                     =    √         du
              u2 − 9                                                4 − u2
       Let u = 3 sec θ, du = 3 sec θ tan θdθ.                Let u = 2 sin θ, du = 2 cos dθ.
                    2                                                     2
       =                     3 sec θ tan θdθ                 =                      2 cos θdθ
                       2                                                          2
              (3 sec θ) − 9                                         4 − (2 sin θ)
                   1                                                     1
       =2 √                sec θ tan θdθ                     =2                  cos θdθ
                   2θ − 1
               sec                                                    1 − sin2 θ
               1                                                     1
       =2           sec θ tan θdθ                            =2           cos θdθ = 2 dθ = 2θ + c
             tan θ                                                 cos θ
       =2     sec θdθ = 2 ln |sec θ + tan θ| + c                        u                     x−2
                                                             = 2sin−1       + c = 2sin−1          + c.
                           u                                            2                      2
       = 2 ln sec sec−1
                           3                             45. Using u = tan x, gives
                     −1 u
         + tan sec             +c                                tan x sec4 xdx
                         3
                u              −1 u
       = 2 ln       + tan sec             +c
                3                   3                        =     tan x(1 + tan2 x) sec2 xdx
                x−3
       = 2 ln
                   3                                         =     u(1 + u2 )du =     (u + u3 )du
                         x−3
         + tan sec−1                 + c.                      1 2 1 4
                            3                                =   u + u +c
                                                               2      4
                 x                                             1          1
 43.       √               dx                                = tan2 x + tan4 x + c
            10 + 2x + x2                                       2          4
                      x                                      Using u = sec x, gives
       =    √                   dx
              9 + 1 + 2x + x2
                    x                                            tan x sec4 xdx
       =                     dx
                       2
               (x + 1) + 9                                   =     tan x sec x sec3 xdx
               x+1−1                                                          1 4      1
       =                     dx                              =     u3 du =      u + c = sec4 x + c
                       2                                                      4        4
               (x + 1) + 9
                 x+1                        1            46. Using u = tan x gives
       =                     dx −                   dx
                       2
               (x + 1) + 9
                                               2
                                        (x + 1) + 9              tan3 x sec4 xdx =    u3 (u2 + 1)du
       Let u = x + 1, du = dx.                                 u6    u4
                u                 1                          =     +    + c1
       =    √         du− √            du                       6    4
              u 2+9             u2+9
                                                               tan6 x tan4 x
                                                             =        +         + c2
         1        2u                 1                            6        4
       =       √         du− √             du
         2       u 2+9            u 2 + 32                   Using u = sec x gives
       Let t = u2 + 9, dt = 2udu.                                tan3 x sec4 xdx =    (u2 − 1)u3 du
         1     dt                                              u6     u4   sec6 x sec4 x
       =      √ dt− log u + u2 + 32 + c                      =     −     =         −
         2      t                                               6     4        6        4
         √
                                                                    2      3         2
       = t − log u + u2 + 32 + c                               (tan x + 1)       (tan x + 1)2
                                                             =                −
                                                                      6                4
       =     u2 + 9 − log u +       u2 + 9 + c                 tan6 x tan4 x        1
                                                             =         +         −     + c1
       =
                     2
             (x + 1) + 9                                          6        4        12
                                                                   6         4
                                                               tan x tan x
                                        2                    =         +         + c2
           − log (x + 1) +     (x + 1) + 9 + c.                   6        4

                 2                       2               47. (a) This is using integration by parts followed
 44.       √           dx =    √                   dx            by substitution
               4x − x2             4 − 4 + 4x − x2
6.3. TRIGONOMETRIC TECHNIQUES OF INTEGRATION                                                                                     379

             u = secn−2 x, dv = sec2 xdx                                    = − ln |csc x + cot x| + c.
             du = (n − 2) secn−2 x tan xdx, v = tan x                       = ln |csc x − cot x| + c.
             I=             secn xdx = secn−2 x tan x                           csc3 xdx =      csc x.csc2 xdx
                  − (n − 2)        secn−2 (sec2 x − 1)dx                    u = csc x, dv = csc2 xdx
                                                                            du = − csc x. cot x, v = − cot x
             = secn−2 x tan x
                                                                                csc3 xdx
               − (n − 2) (secn x − secn−2 x)dx
                                                                            = − csc x. cot x
             = secn−2 x tan x − (n − 2)I
                                                                                −     (− cot x) (− csc x. cot x)dx
                  + (n − 2)        secn−2 xdx (n − 1)I
                                                                            = − csc x cot x −        csc x.cot2 x dx
                        n−2                                 n−2
             = sec             x tan x + (n − 2)      sec         xdx
                    sec     n−2
                              x tan x n − 2                                 = − csc x cot x −       csc x. csc2 x − 1 dx
                                                            n−2
             I=                      +                sec         xdx
                             n−1       n−1
                                                                            = − csc x cot x −        csc3 x dx+        csc xdx
                        3
      (b)         sec xdx
                                                                            2       csc3 xdx = − csc x cot x +       csc xdx
              1                        1
             = sec x tan x +                 sec xdx                        = − csc x cot x + ln |csc x − cot x| + c
              2                        2
              1                        1                                        csc3 xdx
             = sec x tan x +             ln | sec x + tan x| + c
              2                        2                                      1
                        4
                                                                            =   (− csc x cot x + ln |csc x − cot x|) + c
       (c)        sec xdx                                                     2
              1                         2                                         1
             =  sec3 x tan x +              sec2 xdx                    50.             dx
              3                         3                                     cos x − 1
              1                         2                                               cos x + 1
             = sec3 x tan x +             tan x + c                         =                            dx
              3                         3                                        (cos x − 1) (cos x + 1)
                                                                                   cos x + 1
      (d)         sec5 xdx                                                  =−               dx
                                                                                     sin2 x
              1                3                                                       1       cos x      1
             =  sec3 x tan x +     sec3 xdx                                 =−                        +        dx
              4                4                                                     sin x     sin x    sin x
              1                3                                            =−         csc x (cot x + csc x) dx
             = sec3 x tan x + sec x tan x
              4                8
                3
              + ln | sec x + tan x| + c                                     =       − csc x cot x − csc2 xdx
                8
48. Make the substitution x = a sin θ.                                      =       (− csc x cot x) dx +       −csc2 x dx
    4b a                 4b a                                               = csc x + cot x + c and,
            a2 − x2 dx =           a2 − x2 dx                                      1
    a 0                   a 0                                                            dx
      4b π/2                                                                   cos x + 1
    =         a cos θ a2 − a2 sin2 θdθ                                                   cos x − 1
      a 0                                                                   =                            dx
                  π/2                                                            (cos x − 1) (cos x + 1)
      = 4b              a cos2 θdθ                                                  cos x − 1
              0                                                             =−                dx
                                        π/2                                           sin2 x
                   1    1                                                               1       cos x     1
      = 4ab          x + sin 2x               = abπ                         =−                        −              dx
                   2    4               0                                             sin x     sin x   sin x
                             csc x + cot x                                  =−         csc x (cot x − csc x) dx
49.     csc xdx =              csc x       dx
                             csc x + cot x
            (csc x) cot x + csc2 x                                          =       − csc x cot x + csc2 xdx
      =                            dx
                csc x + cot x
      Let u = csc x + cot x,                                                =       (− csc x cot x) dx −       −csc2 x dx
      du = − (csc x) cot x − csc2 x.                                        = csc x − cot x + c
              1
      =−        du = − ln |u| + c                                       51. Using a CAS we get
              u
380                                                       CHAPTER 6. INTEGRATION TECHNIQUES


 (Ex 3.2)        cos4 x sin3 xdx                        6.4        Integration of
             1                 2                                   Rational Functions
          = − sin x2 cos x5 −    cos x5 + c
             7                35                                   Using Partial
            √
 (Ex 3.3)     sin x cos5 xdx                                       Fractions
                  2             4                             x−5          x−5
             =       sin x11/2 − sin x7/2                1.          =
                 11             7                             x2 − 1   (x + 1)(x − 1)
                    2      3/2                                    A       B
                 + sin x + c                                  =       +
                    3                                           x+1 x−1
 (Ex 3.5)        cos4 xdx                                     x − 5 = A(x − 1) + B(x + 1)
                                                              x = −1 : −6 = −2A; A = 3
                 1               3             3
             =     cos x3 sin x + cos x sin x + x + c         x = 1 : −4 = 2B; B = −2
                 4               8             8
                                                              x−5        3     2
 (Ex 3.6)        tan3 x sec3 xdx                                2−1
                                                                     =      −
                                                              x         x+1 x−1
                     sin x4         sin x4                       x−5            3   2
             = 1/5           + 1/15                                    dx =       −                 dx
                     cos x5         cos x3                       x 2−1        x+1 x−1
                         sin x4
                 − 1/15         − 1/15 sin x2 cos x           = 3 ln | x + 1| − 2 ln | x − 1| + c
                         cos x
                 − 2/15 cos x + c                             5x − 2       5x − 2
                                                         2.          =
             Obviously my CAS used different tech-             x 2−4    (x + 2)(x − 2)
             niques. The answers given by the book                A       B
                                                              =       +
             are simpler.                                        x+2 x−2

          1                 2                                 5x − 2 = A(x − 2) + B(x + 2)
 52. (a) − sin2 x cos5 x −     cos5 x                         x = −2 : −12 = −4A; A = 3
          7                 35
             1                        2                       x = 2 : 8 = 4B; B = 2
         = − (1 − cos2 x) cos5 x −      cos5 x
             7                       35                       5x − 2      3     2
           1          1                                              =       +
         = cos7 x − cos5 x                                    x2 − 4     x+2 x−2
           7          5
         The conclusion is c = 0                                 5x − 2          3   2
                                                                        dx =       +                dx
           2          1                                          x2 − 4        x+2 x−2
     (b) − tan x −       sec2 x tan x
          15         15                                       = 3 ln | x + 2| + 2 ln | x − 2| + c
             1
           + sec4 x tan x
             5                                                    6x             6x
              2          1                               3.              =
         = − tan x − (1 + tan2 x) tan x                       x2 − x − 2   (x − 2)(x + 1)
             15         15                                        A       B
             1                                                =       +
           + (1 + tan2 x)2 tan x                                x−2 x+1
             5
           1          1                                       6x = A(x + 1) + B(x − 2)
         = tan3 x + tan5 x                                    x = 2 : 12 = 3A; A = 4
           3          5
         The conclusion is c = 0                              x = −1 : −6 = −3B; B = 2
                                                                  6x           4     2
                                                                          =       +
                                                              x2 − x − 2     x−2 x+1
 53. The average power                                               6x
            2π/ω                                                            dx
       1
     = 2π        RI 2 cos2 (ωt) dt                               x 2−x−2

         ω       0
                                                                         4        2
        ωRI 2 2π/ω 1                                          =              +           dx
      =               [1 + cos(2ωt)] dt                               x−2 x+1
         2π   0    2                                          = 4 ln | x − 2| + 2 ln | x + 1| + c
                                 2π/ω
        ωRI 2     1
      =       t+      sin(2ωt)                                   3x              3x
         4π      2ω              0                       4.              =
            2
        ωRI 2π       1       4ωπ          1                   x2− 3x − 4   (x + 1)(x − 4)
      =          +      sin          − 0 = RI 2                  A       B
         4π    ω    2ω         ω          2                   =      +
                                                                x+1 x−4
6.4. INTEGRATION OF RATIONAL FUNCTIONS USING PARTIAL FRACTIONS                                 381

                                                     4                        1
                                                   =   ln | x| − ln |x + 2| − ln |x + 3| + c
      3x = A(x − 4) + B(x + 1)                       3                        3
                                 3                    5x − 23               5x − 23
      x = −1 : −3 = −5A; A =                    7.                  =
                                 5                 6x2 − 11x − 7       (2x + 1)(3x − 7)
                            12
      x = 3 : 12 = 5B; B =                              A           B
                             5                     =          +
                                                     2x + 1 3x − 7
            3x         3/5     12/5
                   =        +                      5x − 23 = A(3x − 7) + B(2x + 1)
      x2 − 3x − 4      x+1 x−4
                                                          1     51        17
               3x                                  x=− :−           = − A; A = 3
           2 − 3x − 4
                      dx                                  2      2         2
         x                                              7     34     17
               3/5     12/5                        x= :−          =      B; B = −2
      =             +         dx                        3     3       3
              x+1 x−4                                  5x − 23             3       2
                                                      2 − 11x − 7
                                                                    =          −
           3               12                      6x                   2x + 1 3x − 7
      =      ln | x + 1| +    ln | x − 4| + c
           5                5                             5x − 23
                                                                      dx
         −x + 5          −x + 5                       6x2 − 11x − 7
 5.                =                                         3            2
      x3 − x2 − 2x   x(x − 2)(x + 1)               =               −           dx
        A      B      C                                    2x + 1 3x − 7
      = +          +
         x   x−2 x+1                                 3                2
                                                   =   ln | 2x + 1| − ln | 3x − 7| + c
      − x + 5 = A(x − 2)(x + 1) + Bx(x + 1)          2                3
                   + cx(x − 2)                        3x + 5             3x + 5
                               5                8.                =
      x = 0 : 5 = −2A : A = −                      5x2 − 4x − 1      (5x + 1)(x − 1)
                               2                        A         B
                            1                      =          +
      x = 2 : 3 = 6B : B =                           5x + 1 x − 1
                            2
      x = −1 : 6 = 3C : C = 2                      3x + 5 = A(x − 1) + B(5x + 1)
                                                          1 22      6         11
        −x + 5          5/2   1/2    2             x=− :         = − A; A = −
                   =−       +     +                       5 5       5          3
      x3−x  2 − 2x       x    x−2 x+1                                  4
           −x + 5                                  x = 1 : 8 = 6B; B =
                     dx                                                3
        x3 − x2 − 2x                                   3x + 5         11/3    4/3
              5/2     1/2      2                      2 − 4x − 1
                                                                 =−        +
      =     −      +       +      dx               5x                5x + 1 x − 1
               x     x−2 x+1
                                                         3x + 5
          5           1                                            dx
      = − ln | x| + ln | x − 2|                       5x2 − 4x − 1
          2           2                                      11/3     4/3
        + 2 ln | x + 1| + c                        =      −        +       dx
                                                            5x + 1 x − 1
          3x + 8           3x + 8                       11               4
 6.                 =                              =−      ln |5x + 1| + ln |x − 1| + c
      x3 + 5x2 + 6x   x(x + 2)(x + 3))                  15               3
        A      B      C
      = +          +                                    x−1              x−1
         x   x+2 x+3                            9. 3                =
                                                   x + 4x2 + 4x        x(x + 2)2
      3x + 8 = A(x + 2)(x + 3) + Bx(x + 3)           A        B         C
        + cx(x + 2)                               = +             +
                                                      x     x + 2 (x + 2)2
                            4
      x = 0 : 8 = 6A; A =                         x − 1 = A(x + 2)2 + Bx(x + 2) + Cx
                            3                                                1
      x = −2 : 2 = −2B; B = −1                    x = 0 : −1 = 4A; A = −
                                 1                                           4
      x = −3 : −1 = 3C; C = −                                                  3
                                 3                x = −2 : −3 = −2C; C =
                                                                               2
          3x + 8         4/3      1    1/3                                         1
                      =       −     −             x = 1 : 0 = 9A + 3B + C; B =
      x3 + 5x2 + 6x       x     x+2 x+3                                            4
             3x + 8                                     x−1
                        dx
         x 3 + 5x2 + 6x                            x3 + 4x2 + 4x
              4/3     1        1/3                      1/4      1/4       3/2
      =           −        −        dx            =−         +        +
               x    x+2 x+3                              x      x + 2 (x + 2)2
382                                               CHAPTER 6. INTEGRATION TECHNIQUES

                  x−1
                            dx                                1
            x3   + 4x2 + 4x                                       dx
                    1/4    1/4    3/2                     x3 + 4x
       =          −     +      +           dx                  1    −x
                     x    x + 2 (x + 2)2               =         +        dx
          1         1                 3                        x x2 + 4
       = − ln | x| + ln | x + 2| −          +c                    1
          4         4              2(x + 2)            = ln |x| − ln(x2 + 4) + c
                                                                  2
        4x − 5     4x − 5
 10.     3 − 3x2
                 = 2                                   4x2 − 7x − 17
       x          x (x − 3)                      13.
          A    B     C                                 6x2 − 11x − 10
       = + 2+                                            2 1        x − 31
           x   x   x−3                                 = +
                                                         3 3 (2x − 5)(3x + 2)
       4x − 5 = Ax(x − 3) + B(x − 3) + Cx2
       = (A + C)x2 + (−3A + B)x + (−3B)                =
                                                           2 1
                                                            +
                                                                 A
                                                                     +
                                                                        B
            5         7     7                              3 3 2x − 5 3x + 2
       B = ;A = − ;C =
            3         9     9                          x − 31 = A(3x + 2) + B(2x − 5)
        4x − 5       7/9 5/3        7/9                     5      57     19
                 =−       + 2 +                        x= :−           =     A, A = −3;
       x3 − 3x2        x    x      x−3                      2      2       2
           4x − 5                                             2      95        19
                   dx                                  x=− :−            = − B, B = 5;
          x3 − 3x2                                            3       3         3
                                                        4x2 − 7x − 17
                7/9 5/3       7/9
       =      −     + 2 +            dx                6x2 − 11x − 10
                 x      x    x−3                          2 1        −3           5
           7/9       51 7                              = +                   +
       =−      |x| −      + ln |x − 3| + c                3 3 2x − 5 3x + 2
            ln       3x 9                                  4x2 − 7x − 17
       x+2        x+2                                                        dx
 11.          =                                           6x2 − 11x − 10
       x3 + x   x(x2 + 1)                                      2        1         5/3
                                                       =         −            +         dx
            A Bx + C                                           3 2x − 5 3x + 2
       =      + 2                                         2      1                 5
            x   x +1                                   = x − ln | 2x − 5| + ln | 3x + 2| + c
                                                          3      2                 9
       x + 2 = A(x2 + 1) + (Bx + C)x
                                                       x3 + x           2x
       = Ax2 + A + Bx2 + Cx                      14.    2−1
                                                              =x+
                                                       x          (x + 1)(x − 1)
       = (A + B)x2 + Cx + A                                    A     B
                                                       =x+       +
       A = 2; C = 1; B = −2                                   x+1 x−1
                                                       2x = A(x − 1) + B(x + 1)
       x+2       2 −2x + 1
         3+x
              = + 2                                    A=B=1
       x         x   x +1
          x+2           2 −2x + 1                      x3 + x           1         1
                dx =      + 2              dx           2−1
                                                              =x+            +
          x 3+x         x    x +1                      x               x+1 x−1
              2    2x      1                              x3 + x
       =        −      +        dx                               dx
              x x2 + 1 x2 + 1                             x2 − 1
       = 2 ln | x| − ln(x2 + 1) + tan−1 x + c                        1        1
                                                       =      x+          +          dx
                                                                   x+1 x−1
          1          1                                   x2
 12.           =                                       =     + ln |x + 1| + ln |x − 1| + c
       x3 + 4x   x(x2 + 4)                                2
         A Bx + C
       = + 2                                              2x + 3      2x + 3
          x    x +4                              15.               =
                   2                                   x2 + 2x + 1   (x + 1)2
       1 = A(x + 1) + (Bx + C)x                            A        B
       1 = (A + B)x2 + Cx + A                          =        +
                                                         x + 1 (x + 1)2
                                                       2x + 3 = A(x + 1) + B
       A = 1; B = −1; C = 0
            1     1  −x                                x = −1 : B = 1; A = 2
                 = + 2
       x3   + 4x  x x +4
6.4. INTEGRATION OF RATIONAL FUNCTIONS USING PARTIAL FRACTIONS                                     383

      2x + 3           2        1                                  1   −x + 2
                 =         +                              =          +                dx
      x2
      + 2x + 1       x + 1 (x + 1)2                                x x2 − 2x + 4
         2x + 3                                                    1 1 2x − 2           1
                    dx                                    =         −             +                dx
      x2 + 2x + 1                                                  x 2 x2 − 2x + 4 (x − 1)2 + 3
              2          1
   =              +            dx                                   1
           x + 1 (x + 1)2                                 = ln |x| −  ln(x2 − 2x + 4)
                        1                                           2
   = 2 ln | x + 1| −        +c
                      x+1                                        1        x−1
                                                              + √ tan−1     √     +c
        2x              2x                                        3           3
16. 2            =
    x − 6x + 9       (x − 3)2                                 3x3 + 1
        A          B                                19.
   =         +                                            x3 − x2 + x − 1
      x − 3 (x − 3)2                                              3x2 − 3x + 4
                                                          =3+ 3
      2x = A(x − 3) + B                                         x − x2 + x − 1
      A = 2; B = 6                                               3x2 − 3x + 4
                                                          =3+ 2
                                                                (x + 1)(x − 1)
           2x            2       6                              Ax + B       C
                    =        +                            =3+ 2          +
      x2 − 6x + 9      x − 3 (x − 3)2                            x +1      x−1
              2x
                      dx                                  3x2 − 3x + 4 = (Ax + B)(x − 1) + C(x2 + 1)
        x2 − 6x + 9
                                                          = Ax2 − Ax + Bx − B + Cx2 + C
                2          6
      =              +          dx                        x = 1 : 4 = 2C; C = 2
              x − 3 (x − 3)2                              A+c=3:A=1
                         6
      = 2 ln |x − 3| −       +c                           − A + B = −3 : B = −2
                       x−3
          x3 − 4          −2x2 − 2x − 4                       3x3 + 1             x−2     2
17.                 =1+                                                   =3+ 2       +
      x3 + 2x2 + 2x       x(x2 + 2x + 2)                  x3− x2 + x − 1         x +1 x−1
             A     Bx + c                                        3x3 + 1
      =1+ + 2                                                                dx
             x   x + 2x + 2                                 x 3 − x2 + x − 1

      − 2x2 − 2x − 4 = A(x2 + 2x + 2) + (Bx + c)x                    x−2        2
                                                          =      3+ 2       +       dx
      = (A + B)x2 + (2A + c)x + 2A                                   x +1 x−1
      A = −2; B = 0; C = 2                                             x        2       2
                                                          =      3+ 2       −       +       dx
                                                                     x + 1 x2 + 1 x − 1
          x3 − 4                                                    1
      x3 + 2x2 + 2x                                       = 3x +       ln(x2 + 1) − 2 tan−1 x
             −2           2                                         2
      =1+        + 2                                          + 2 ln | x − 1| + c
              x     x + 2x + 2
             x3 − 4                                       2x4 + 9x2 + x − 4        x2 + x − 4
                         dx                         20.                     = 2x +
         x3 + 2x2 + 2x                                         x3 + 4x             x(x2 + 4)
                  −2          2                                   A Bx + C
      =      1+       +                 dx                = 2x + + 2
                   x     (x + 1)2 + 1                             x    x +4
      = x − 2 ln |x| + 2 tan−1 (x + 1) + c                x2 + x − 4 = A(x2 + 4) + (Bx + C)x
            4               4                             = (A + B)x2 + Cx + 4A
18.                 =                                     A = −1; B = 2; C = 1
      x3 − 2x2 + 4x   x(x2 − 2x + 4)
        A      Bx + C                                     2x4 + 9x2 + x − 4           1 2x + 1
      = + 2                                                                   = 2x − + 2
         x   x − 2x + 4                                        x 3 + 4x               x x +4
      4 = A(x2 − 2x + 4) + (Bx + C)x                               1     2x         1
                                                          = 2x − + 2           + 2
      = (A + B)x2 + (−2A + C)x + 4A                                x x +4 x +4
      A = 1; B = −1; C = 2                                  2x + 9x2 + x − 4
                                                               4
                                                                                dx
                                                                   x3 + 4x
              4           1   −x + 2                                   1      2x        1
                       = + 2                              =      2x − + 2          +       dx
      x3   − 2x 2 + 4x    x x − 2x + 4                                 x x + 4 x2 + 4
                  4                                                                    1    x
                         dx                               = x2 − ln |x| + ln(x2 + 4) + tan−1 + c
           x3 − 2x2 + 4x                                                               2    2
384                                                     CHAPTER 6. INTEGRATION TECHNIQUES

       x3 + x + 2                 11      2            26. Let u = x2 , du = (2x) dx.
 21.                 =x−2+           +
       x2 + 2x − 8              x+4 x−2                         x          1      2x
                                                                     dx =              dx
          x3 + x + 2                                          x4 + 1       2    x4 + 1
                       dx                                    1       du      1
          x2 + 2x − 8                                      =        2+1
                                                                          = tan (u) + c
                         11        2                         2    u          2
       =      x−2+            +        dx                    1        2
                        x+4 x−2                            = tan x + c.
                                                             2
         x2
       =     − 2x + 11 ln | x + 4|
          2                                                   4x − 2     −4x + 1     1
         + 2 ln | x − 2| + c                           27.            =          +
                                                             16x4 − 1    4x2 + 1   2x + 1
           x2 + 1         2/7     37/7                          4x − 2
 22.                 =−        +                                        dx
       x 2 − 5x − 6      x+1 x−6                               16x4 − 1
                                                                   −4x + 1       1
              x2 + 1                                         =         2+1
                                                                            +         dx
                       dx                                           4x        2x + 1
           x2 − 5x − 6
                  2/7     37/7                                      1 8x          1        1
       =       −       +         dx                          =       −         +        +               dx
                 x+1 x−6                                            2 4x2 + 1 4x2 + 1 2x + 1
                                                                1               1
          2              37                                  = − ln |4x2 + 1| + tan−1 (2x)
       = − ln | x + 1| +    ln |x − 6| + c                      2               2
          7               7
                                                                1
                                                               + ln |2x + 1| + c
          x+4           2   1    3                              2
 23.                  = +      −
       x3+ 3x 2 + 2x    x x+2 x+1
                                                             3x + 7      13/32    1/32    3x/8 + 7/8
             x+4                                       28.           =         −       −
                       dx                                    x4 − 16     x−2     x+2        x2 + 4
         x3 + 3x2 + 2x
             2      1     3                                     3x + 7
       =        +       −     dx                                        dx
             x x+2 x+1                                          x4 − 16
                                                                    13/32     1/32    3x/8 + 7/8
       = 2 ln | x| + ln | x + 2| − 3 ln | x + 1| + c         =             −       −               dx
                                                                    x−2      x+2        x2 + 4
          1         1/3    (x + 2)/3                                 13/32   1/32          3 2x
 24.           =         −                                   =             −          −
       x3 − 1     (x − 1) (x2 + x + 1)                               x−2     x+2          16 x2 + 4
             1
                 dx                                              7 1
          x3 − 1                                                 −           dx
         1        1        x+2                                   8 x2 + 4
       =               −            dx                         13                1
         3     (x − 1) (x2 + x + 1)                          =    ln |x − 2| −     ln |x + 2|
                                                               32               32
         1        1      1    2x + 4                              3                  7        x
       =               −             dx                        −     ln(x2 + 4) −      tan−1 + c
         3    (x − 1) 2 (x2 + x + 1)                             16                 16        2
         1        1      1    2x + 1
       =               −                                        x3 + x
         3    (x − 1) 2 (x2 + x + 1)                   29.
           1        3                                        3x2 + 2x + 1
         −                 dx
           2 (x2 + x + 1)                                      x 2 1 10x + 2
         1        1      1    2x + 1                         = − +
       =               −                                       3 9 9 3x2 + 2x + 1
         3    (x − 1) 2 (x2 + x + 1)                               x3 + x
                                                                            dx
           1          3                                        3x2 + 2x + 1
         −                     dx
           2 (x + 1/2)2 + 3/4                                       x 2 1 10x + 2
         1               1                                   =        − +                       dx
       =    ln |x − 1| − ln x2 + x + 1                              3 9 9 3x2 + 2x + 1
         3               2                                          x 2 15            6x + 2
           √           2x + 1                                =        − +            2 + 2x + 1
         − 3tan   −1
                         √       +c                                 3 9 9 3 3x
                           3                                     14           1
                                                               −                           dx
                                                                 9 3 3(x + 1/3)2 + 2/3
 25. Let u = x4 − x, du = 4x3 − 1 dx.                          x2    2      5
         4x3 − 1           du                                =    − x+         ln(3x2 + 2x + 1)
                   dx =                                         6 √9       27
         x 4−x              u                                    2 2            3x + 1
     = ln |u| + c = ln x4 − x + c.                             −       tan−1      √       +c
                                                                  27                2
6.4. INTEGRATION OF RATIONAL FUNCTIONS USING PARTIAL FRACTIONS                                       385

        x3 − 2x                                          = −x2 cos x + 2 {x sin x + cos x} + c.
30.
      2x2 − 3x + 2
        x 4 1 21x − 6                              34. Let u = x, dv = e2x dx .
      = + +
        2 3 4 2x2 − 3x + 2                                                         e2x
                                                         so that du = dx and v =       .
           x3 − 2x                                                                  2
                      dx                                                 e2x      e2x
        2x2 − 3x + 2                                       xe2x dx = x       −        dx
             x 4 1 21x − 6                                                2        2
      =        + +                    dx                      e2x   e2x
             2 3 4 2x2 − 3x + 2                          =x       −     +c
             x 4 21         4x − 3                             2     4
      =        + +         2 − 3x + 2
             2 3 16 2x
          39         1                             35. Let u = sin2 x − 4 ,
        +                        dx
          32 (x − 3/4)2 + 7/16                           so that du = 2 sin x cos x dx.
        x2    4     21                                      sin x cos x      1     du
      =    + x+        ln(2x2 − 3x + 2)                                 dx =
         4 √  3     16                                      sin2 x − 4       2      u
          39 7           4x − 3                             1              1
        −       tan−1      √     +c                      = ln |u| + c = ln sin2 x − 4 + c
            56               7                              2              2
        4x2 + 3        3      x−3                  36. Let t = ex , dt = ex dx and e3x = t3
31.                 = + 2                                    2ex                2
      x3 + x2 + x      x x +x+1                                      dx =           dt.
                                                          e 3x + ex          t3 + t
            4x2 + 3
                      dx                                     2       2t
         x 3 + x2 + x                                  =        − 2      dt = 2 ln |t| − ln t2 + 1 + c
               3      x−3                                     t    t +1
      =          +              dx                     = 2 ln |ex | − ln e2x + 1 + c
               x x2 + x + 1
               3    x + 1/2          7/2
      =          +            −               dx          4x2 + 2   Ax + B   Cx + D
               x x2 + x + 1 x2 + x + 1             37.             = 2     + 2
                   1                                     (x2 + 1)2   x +1   (x + 1)2
      = 3 ln | x| + ln | x2 + x + 1|
                   2                                     4x2 + 2 = (Ax + B)(x2 + 1) + (Cx + D)
             7     −1   2x + 1                           = Ax3 + Bx2 + (A + C)x + (B + D)
        − √ tan           √      +c
              3             3                            A = 0; B = 4; C = 0; D = −2
          4x + 4        1    2     −x − 3
32.                  = + 2+ 2                             4x2 + 2      4     −2
      x4 +x  3 + 2x2    x x      x +x+2                            = 2   +
                                                         (x2 + 1)2  x + 1 (x2 + 1)2
             4x + 4
                       dx
         x4 + x3 + 2x2                                    x3 + 2    Ax + B   Cx + D
              1   2       −x − 3                   38.             = 2     + 2
      =         +    + 2           dx                    (x2 + 1)2   x +1   (x + 1)2
              x x2      x +x+2
                 2 1                                     x3 + 2 = (Ax + B)(x2 + 1) + cx + D
      = ln |x| − − ln(x2 + x + 2)                        = Ax3 + Bx2 + (A + c)x + (B + D)
                 x 2
            5          2x + 1                            A = 1; B = 0; C = −1; D = 2
        − √ tan−1        √      +c
             7             7
                                                          x3 + 2       x   −x + 2
                  2
33. Let u = x , dv = (sin x) dx                                    = 2   +
                                                         (x2 + 1)2  x + 1 (x2 + 1)2
      So that du = (2x) dx and v = − cos x.
                                                            4x2 + 3
           x2 sin xdx                              39.
                                                         (x2 + x + 1)2
                                                             Ax + B      Cx + D
      = x2 (− cos x) −   (− cos x) (2x) dx               = 2           +
                                                           x + x + 1 (x2 + x + 1)2
      = −x2 cos x + 2    x (cos x) dx                    4x2 + 3 = (Ax + B)(x2 + x + 1) + cx + D
                                                         = Ax3 + Ax2 + Ax + Bx2 + Bx + B + cx + D
      Let u = x, dv = cos xdx,
                                                         A=0
      so that du = dx and v = sin x.
                                                         A+B =4:B =4
         x2 sin xdx                                      A + B + c = 0 : C = −4
                                                         B + D = 3 : D = −1
      = −x2 cos x + 2    x cos xdx
386                                                    CHAPTER 6. INTEGRATION TECHNIQUES

         4x2 + 3                                           To see that the two answers are equivalent,
       (x2+ x + 1)2                                        note that
             4          4x + 1                                  x2          x2 + 1             1
       = 2          − 2                                    ln 2      = − ln     2
                                                                                   = − ln 1 + 2
        x + x + 1 (x + x + 1)2                                x +1            x               x
        x4 + x3       x3 − 8x2 − 8                   43. (a) Partial fractions
 40.      2 + 4)2
                  =1+
       (x               (x2 + 4)2
              Ax + B    Cx + D                             (b) Substitution method
       =1+ 2         + 2
               x +4    (x + 4)2                             (c) Substitution and Partial fractions.
       x3 − 8x2 − 8 = (Ax + B)(x2 + 4) + cx + D            (d) Substitution
       = Ax3 + Bx2 + (4A + c)x + (4B + D)
       A = 1; B = −8; C = −4; D = 24                 44. (a) Partial fractions
           4    3
        x +x          x−8  −4x + 24                        (b) Substitution and Partial fractions.
          2 + 4)2
                  =1+ 2   + 2
       (x            x +4  (x + 4)2
                                                            (c) Partial fractions
                    3              2
 41. Let u = x + 1, du = 3x dx                             (d) Partial fractions
           3              3x2
               dx =               dx
        x4 + x        x3 (x3 + 1)                                                cos x
              1                                      45.       sec3 xdx =                 2 dx
     =             du                                                         1 − sin2 x
          (u − 1)u
                                                           Let u = sin x, so that du = cos xdx.
                 1   1                                          cos x dx              du
       =           −        du                                            2 =               2
                u−1 u                                                 2
                                                               1 − sin x          (1 − u2 )
       = ln |u − 1| − ln |u| + c                                        1
                                                           =            2        2 du
             u−1                                                 (1 − u) (1 + u)
       = ln         +c
               u                                           By partial fractions,
               x3                                                   1           1        1       1
       = ln          +c                                            2       2 = 4               +
                                                                                     (1 − u) (1 − u)2
               x3
                +1                                         (1 − u) (1 + u)
       On the other hand, we can let                                                       1        1
            1            1                                                          +          +
       u = , du = − 2 dx                                                                (1 + u) (1 + u)2
            x            x
             3                 3u2                         Hence,     sec3 xdx
                 dx = −              du
          x 4+x              1 + u3                          1                     1
                                                           =    − ln |1 − u| +          + ln |1 + u|
       = − ln |1 + u3 | + c = − ln |1 + 1/x3 | + c           4                  (1 − u)
       To see that the two answers are equivalent,                1
                                                             −           +c
       note that                                               (1 + u)
            x3          x3 + 1                               1                          1
       ln 3      = − ln        = − ln |1 + 1/x3 |          =    − ln |1 − sin x| +
          x +1            x3                                 4                     (1 − sin x)
                                                                                       1
 42. Let u = x2 + 1, du = 2xdx                                 + ln |1 + sin x| −               +c
                                                                                  (1 + sin x)
             2                  2x
                 dx =                  dx
          x3 + x           x2 (x2 + 1)
                du           u−1                     6.5       Integration Table
       =               = ln          +c
            u(u − 1)            u                              and Computer
               x2
       = ln 2
             x +1
                     +c                                        Algebra Systems
                 1           1                                   x
       Let u = , du = − 2 dx                          1.               dx
                 x          x                                (2 + 4x)2
             2                  2u                                2        1
                 dx = −             du                     =            +     ln | 2 + 4x| + c
          x3 + x             1 + u2                          16(2 + 4x) 16
                                         1                       1        1
       = − ln |1 + u2 | + c = − ln 1 + 2 + c               =           +     ln | 2 + 4x| + c
                                         x                   8(2 + 4x) 16
6.5. INTEGRATION TABLE AND COMPUTER ALGEBRA SYSTEMS                                                  387

            x2                                               1 3                         2    t3
 2.               dx                                   =       t 2t6 − 4        4 − t6 + sin−1 + c
        (2 + 4x)2                                           24                           3    2
         1               4                                  1
                                                                                     √
      =      2 + 4x −        − 4 ln |2 + 4x| + c                                π      3
        64            2 + 4x                                    t8   4 − t6 dt = −
                                                        0                       9    12
 3. Substitute u = 1 + ex
         √                   √                      8. Substitute u = et             √
      e2x 1 + ex dx = (u − 1) u du                                           16 − u2
                                                                 16 −   e2t dt   =   du
                                                                               u
      =       (u3/2 − u1/2 ) du                                               √
                                                                          4 + 16 − u2
       2 5/2 2 3/2                                     = 16 − u2 − 4 ln                 +c
      =  u − u +c                                                               u
       5        3                                                             √
       2              2                                         2t − 4 ln
                                                                          4 + 16 − e2t
      = (1 + ex )5/2 − (1 + ex )3/2 + c                = 16 − e                         +c
       5              3                                                         et
                                                        ln 4                 √          √
 4. Substitute u = ex                                        16 − e2t dt = − 15 + 4 ln    15 + 4
                                                        0
      e3x 1 + e2x dx =            u2   1 + u2 du
       1                                            9. Substitute u = ex
      =  u(1 + 2u2 ) 1 + u2                                     ex                  1
       8                                                   √           dx =    √        du
          1                                                   e 2x + 4            u 2+4
       − ln |u + 1 + u2 | + c
          8                                            = ln(u + 4 + u2 ) + c
       1
      = ex (1 + 2e2x ) 1 + e2x                         = ln(ex + 4 + e2x ) + c
       8                                                  ln 2
                                                                                      √
          1                                                        ex                2 2+2
       − ln |ex + 1 + e2x | + c                                √          dx = ln       √
          8                                             0         e2x + 4             1+ 5
 5. Substitute u = 2x
                                                   10. Substitute u = x2
                                                             √                    √
                                                         2
            x   2                                           x x4 − 9        1 4 u2 − 9
          √        dx                                   √             dx =              du
          1 + 4x2                                         3    x2           2 3      u
                                                                                      4
        1        u2                                      1                       |u|
      =      √         du                              =        u2 − 9 − 3 sec−1
        8       1 + u2                                   2                        3
        1 u                                              √                            3
      =       − 1 + u2                                      7 3      −1   4
        8 2                                            =     − sec
          1                                                2    2         3
        − ln(u + 1 + u2 ) + c
          2                                        11. Substitute u = x − 3
        1                                                √
      = x 1 + 4x2                                          6x − x2
        8                                                           dx
           1                                              (x − 3)2
        −     ln(2x + 1 + 4x2 ) + c                           (u + 3)(6 − (u + 3))
          16                                           =                           du
                                                            √          u2
 6. Substitute u = sin x
               cos x                                          9 − u2
                           dx                          =             du
         2
      sin x(3 + 2 sin x)                                       u2
                1                                          1                  u
    =                 du                               =−      9 − u2 − sin−1 + c
         u 2 (3 + 2u)                                      u                  3
                                                             1
      2      3 + 2u     1                              =−          9 − (x − 3)2
    = ln             −     +c                              x−3
      9         u      2u                                          x−3
      2 3 + 2 sin x         1                            − sin−1           +c
    =                 −          +c                                  3
      9       sin x      3 sin x
                                                   12. Substitute u = tan x
 7. Substitute u = t3                                             sec2 x
                                                               √                dx
      t8 4 − t6 dt                                       tan x 8 tan x − tan2 x
        1                                                        1
      =     u2    4 − u2 du                            =     √           du
        3                                                   u 8u − u2
                                                           √
        1 u                     16     u                     8u − u2
      =      2u2 − 4    4 − u2 + sin−1   +c            =−             +c
        3 8                      8     2                       4u
388                                                 CHAPTER 6. INTEGRATION TECHNIQUES
            √
                8 tan x − tan2 x                                   u
       =−                        +c                      = −2      √   du
                    4 tan x                                       1+u
                                                              2         √
 13.       tan6 udu                                      = −2   (u − 2) 1 + u + c
                                                              3
           1                                                4           √
       =     tan5 u −   tan4 udu                         = − (cos x − 2) 1 + cos x + c
           5                                                3
           1          1                            20. Substitute u = x2
                                                          √
       =     tan5 u − tan3 u −        tan2 udu                                 √
           5          3                                  x 1 + 4x2        1      1 + 4u
                                                                     dx =                du
           1         1                                        x4          2       u2
       =     tan5 u − tan3 u + tan u − u + c.              √              √
           5         3                                       1 + 4u         1 + 4u − 1
                                                       =−           + ln √              +c
                                                              2u            1 + 4u + 1
 14.       csc4 udu                                        √               √
                                                             1 + 4x2         1 + 4x2 − 1
          1                 2                          =−            + ln √                +c
       = − csc2 u cot u +        csc2 udu                     2x 2
                                                                             1 + 4x2 + 1
          3                 3
          1                 2                      21. Substitute u = sin t
       = − csc2 u cot u −     cot u + c.                  sin2 t cos t
          3                 3                                          dt
 15. Substitute u = sin x                                   sin2 t + 4
             cos x                 1                            u2
            √           dx =     √    du               =    √          du
       sin x 4 + sin x          u 4+u                          u2 + 4
               √                                         u              4
        1        4+u−2                                 =      4 + u2 − ln(u + 4 + u2 ) + c
     = √ ln √                +c                          2              2
         4       4+u+2                                   1
             √                                         = sin t 4 + sin2 t
       1       4 + sin x − 2                             2
     = ln √                   +c
       2       4 + sin x + 2                             − 2 ln sin t + 4 + sin2 t + c
                                                                        √
 16. Substitute u = x2                             22. Substitute u = t
          x5           1          u2                        √
       √         dx =          √        du               ln t
         4+x   2       2         4 + u2                    √ dt = 2 ln u du
                                                             t               √    √     √
            1     2                  √                 = 2u ln u − 2u + c = 2 t ln t − 2 t + c
       =            (3u2 − 16u + 128) 4 + u + c
            2    15                                                          2
                                                   23. Substitute u = −
          1                                                                  x2
       =    (3x4 − 16x2 + 128)        4 + x2 + c                  2
         15                                               e−2/x      1
                                                                dx =     eu du
 17. Substitute u = x2                                      x3       4
                      1                                   1        1     2

       x3 cos x2 dx =     u cos u du                     = eu + c = e−2/x + c
                      2                                   4        4
       1                                           24. Substitute u = 2x2
     = (cos u + u sin u) + c                                           1
       2                                                       2
                                                         x3 e2x dx =      ueu du
       1           1                                                   8
     = cos x2 + x2 sin x2 + c                            1                1          2
       2           2                                   = (u − 1)eu + c = (2x2 − 1)e2x + c
                                                         8                8
 18. Substitute u = x2                                        x
       x sin(3x2 ) cos(4x2 ) dx                    25.   √          dx
                                                           4x − x2
         1                                                                      2−x
       =      sin(3u) cos(4u) du                       = − 4x − x2 + 2 cos−1         +c
         2                                                                       2
         1 cos u cos 7u
       =           −          +c                   26.       e5x cos 3x dx
         2     2        14
         cos x2    cos 7x2                                1
       =        −          +c                            =  (5 cos 3x + 3 sin 3x)e5x + c
           4         28                                  34
 19. Substitute u = cos x                          27. Substitute u = ex
          sin 2x          2 sin x cos x
       √           dx =   √             dx               ex tan−1 (ex )dx = tan−1 u du
         1 + cos x           1 + cos x
6.6. IMPROPER INTEGRALS                                                                                                               389

                    1                                                1                                         1
      = u tan−1 u −   ln(1 + u2 ) + c                     (b)            x−4/3 dx = lim+                           x−4/3 dx
                    2                                            0                     R→0                 R
                      1
      = ex tan−1 ex − ln(1 + e2x ) + c                                                             1
                      2                                         = lim (−3x−1/3 )
                                                                     R→0+                          R
28. Substitute u = 4x                                                                              −1/3
                     1                                          = lim+ (−3)(1 − R                              )=∞
      (ln 4x)3 dx =      (ln u)3 dx                                  R→0
                     4                                          So the original integral diverges.
      1
    =      u(ln u)3 − 3 (ln u)2 dx                                   ∞                                         R
      4                                                4. (a)            x−4/5 dx = lim                            x−4/5 dx
      1                                                                                    R→∞
    = u(ln u)3                                                   1
                                                                                       R
                                                                                                           1
      4                                                         = lim 5x1/5
         3
      −     u(ln u)2 − 2u ln u + 2u + c                              R→∞               1
         4                                                      = lim 5R1/5 − 5 = ∞
    = x(ln 4x)3 − 3x(ln u)2 + 6x ln 4x − 6x + c                      R→∞
                                                                So the original integral diverges.
29. Answer depends on CAS used.                                      ∞                                         R
                                                          (b)            x−6/5 dx = lim                            dx
30. Answer depends on CAS used.                                  1                   R→∞                   1
                                                                                       R
                                                                                  −1/5
                                                                = lim −5x
31. Any answer is wrong because the integrand is                     R→∞                       1
    undefined for all x = 1.                                     = lim −5R−1/5 + 5 = 5
                                                                     R→∞
32. Answer depends on CAS used.                                      1                R
                                                                      1                    1
                                                       5. (a)            √
                                                                         dx = lim−      √     dx
33. Answer depends on CAS used.                                  0   1−x     R→1    0     1−x
                                                                         √      R
34. Answer depends on CAS used.                                 = lim − 2 1 − x 0
                                                                   R→1−
                                                                          √
35. Answer depends on CAS used.                                 = lim −2( 1 − R − 1) = 2
                                                                     R→1−
                                      bπ                             5
                                                                       2               R
                                                                                            2
36. Maple gives the result:                               (b)            √dx = lim−      √     dx
                                        1                        1   5−x      R→5    1     5−x
                                       a2                                 √      R
                                                                = lim− − 4 5 − x 1
                                                                   R→5
37. If the CAS is unable to compute an antideriva-                         √
    tive, f (x) dx is generally printed showing this            = lim− −4( 5 − R − 2) = −8
                                                                     R→5
    inability.
                                                                     1                                                 R
                                                                               2                                                 2
                                                       6. (a)            √          dx = lim−                              √          dx
                                                                             1 − x2     R→1                                    1 − x2
6.6     Improper Integrals                                       0
                                                                                               R
                                                                                                                   0

                                                                = lim− 2 sin−1 x
 1. (a) improper, function not defined at x = 0                       R→1                       0

      (b) not improper, function continuous on                  = lim− 2(sin−1 R − sin−1 0)
                                                                 R→1
          entire interval                                           π
                                                                =2     −0 =π
                                                                     2
       (c) not improper, function continuous on
                                                                     1/2
           on entire interval                                                 2
                                                          (b)               √       dx
                                                                 0         x 1 − x2
 2. (a) improper, interval is infinite                                            1/2
                                                                                  2
                                                                = lim+                  dx √
      (b) improper, function not defined at x = 0                  R→0    R    x 1 − x2
                                                                                    √           1/2
       (c) improper, interval is infinite                                        1 + 1 − x2
                                                                = lim −2 ln                         =∞
                1                       1                         R→0+                x
                                                                                                R
 3. (a)             x−1/3 dx = lim+         x−1/3 dx            Therefore the original integral diverges.
            0                   R→0    R
                                1
                        3 2/3                                        ∞                                     R
           = lim+         x
                R→0     2       R
                                                       7. (a)            xex dx = lim                          xex dx
                                                                 0                     R→∞             0
                        3            3                                                             R
           = lim+         1 − R2/3 =                            = lim (xex − ex )
                R→0     2            2                               R→∞                           0
390                                                              CHAPTER 6. INTEGRATION TECHNIQUES

         = lim eR (R − 1) + 1 = ∞                                                                     1
             R→∞                                                          Hence, I = −
                                                                                                     16
         So the original integral diverges.
                                                                               −1                 −1
      (b) Substitute u = −2x                                                    1                     1
                     ∞                          −∞               9. (a)           2
                                                                                    dx = lim            dx
                                            1                              −∞ x          R→−∞ R      x2
         I=              x2 e−2x dx = −              u2 eu du                             −1
                 1                          8   −2                                     1
                                                                          = lim −
             1 −2 2 u                                                       R→−∞       x R
             =       u e du                                                               1
             8 −∞                                                         = 1 + lim          =1
                         −2                                                      R→−∞ R
             1
          =      lim        u2 eu du                                        0
                                                                               1                R
                                                                                                   1
             8 R→−∞ R                                                             dx = lim+          dx
                                           −2                                 x 2       R→0       x2
             1                                                             −1                  −1
          =      lim (u2 eu − 2ueu + 2eu )                                            1
                                                                                         R
             8 R→−∞                        R                              = lim+ −
             10 −2 1              R  2                                      R→0       x −1
          =     e +       lim e (−R + 2R − 2)
             8         8 R→−∞                                                              1
                                                                          = −1 − lim         =∞
         But, lim e (−R2 + 2R − 2)
                       R
                                                                                    R→0+ R
                 R→−∞                                                     So the original integral diverges.
         = lim e−R (−R2 − 2R − 2)                                              −1                  −1
             R→∞                                                                 1                      1
                 −R2 − 2R − 2                                       (b)        √ dx = lim             √ dx
         = lim                                                             −∞
                                                                                3
                                                                                  x      R→−∞ R        3
                                                                                                         x
           R→∞         eR                                                                  −1
                 −2R − 2        −2                                                  3 2/3
         = lim            = lim R = 0                                     = lim       x
           R→∞     e R     R→∞ e                                            R→−∞ 2
                                                                                           R
                    5                                                       3 3
         Hence, I = e−2                                                   = +        lim R2/3 = ∞
                    4                                                       2 2 R→−∞
                                                                          So the original integral diverges.
  8. (a) Substitute u = 3x
                            1                                                  ∞                                      R
         I = lim                    x2 e3x dx                   10. (a)            cos xdx = lim                          cos xdx
                 −∞→1      −∞                                                                        R→∞
                                                                           0                                      0
                   3                                                                             R
            1
         =         u2 eu du                                               = lim sin x
           27 −∞                                                               R→∞               0
            1
                                          3                               = lim (sin R − sin 0)
                                                                               R→∞
         =      lim (u2 eu − 2ueu + 2eu )
           27 R→−∞                        R
                                                                          So the original integral diverges.
            5 3    1                                                           ∞
         =    e −       lim eR (R2 − 2R + 2)                        (b)            cos xe− sin x dx
           27      27 R→−∞
                                                                           0
         But, lim eR (R2 − 2R + 2)                                                          R
                 R→∞
                   −R           2                                         = lim                 cos xe− sin x dx
         = lim e           (R + 2R + 2)                                        R→∞      0
             R→∞                                                                                          R
                  R2 + 2R + 2                                             = lim −e− sin x
         = lim                =0                                               R→∞                        0
            R→∞        eR
                       5 3                                                = lim −e− sin R + 1
          Hence, I =     e                                                     R→∞
                      27                                                  So the original integral diverges.
      (b) Substitute u = −4x
                     0                                                         1
         I=              xe−4x dx                               11. (a)            ln xdx
                 −∞                                                        0
                   0                                                                        1
            1
         =           ueu du                                               = lim+                ln xdx
           16 −∞                                                               R→0      R
                         0                                                                                    1
            1
         =       lim       ueu du                                         = lim (x ln x − x)
           16 R→−∞ R                                                           R→0+                           R
            1
                                  0                                       = lim (−1 − R ln R + R)
         =       lim (ueu − eu )                                               R→0+
           16 R→−∞                R
                                                                                      ln R
               1     1                                                    = −1 − lim+
                                R                                               R→0 1/R
         =− +            lim e (R − 1)
              16 16 R→−∞                                                                1/R
                         R
         But, lim e (R − 1)                                               = −1 − lim+
                                                                                R→0 −1/R2
                  R→−∞
         = lim e−R (−R − 1) = 0                                           = −1 + lim+ R = −1
             R→∞                                                                       R→0
6.6. IMPROPER INTEGRALS                                                                                               391

               π/2                                                                   R
                                                                                           2x
    (b)              sec2 xdx                                   = lim−                          dx
           0                                                         R→1            −4   x2 − 1
                                 R                                                              R
          =        lim                     2
                                     sec xdx                    = lim− ln(x2 − 1)               −4
                                                                     R→1
               R→π/2−        0
                                       R                        = lim− ln(R2 − 1) − ln 15 = ∞
                                                                     R→1
          =        lim   tan x                                  So the original integral diverges.
               R→π/2−                  0
          =        lim   tan R − tan 0 = ∞                           π
               R→π/2−
          Therefore the original integral diverges.   14. (a)            xsec2 xdx
                                                                 0
               π/2                                                           π/2                     π
12. (a)              cot xdx                                    =                  xsec2 xdx +           xsec2 xdx
           0                                                             0                        π/2
                         π/2                                                                                  R
                                     cos x                      =        lim         (x tan x + ln |cos x|)|0
          = lim+                           dx                        R→π/2−
               R→0       R           sin x                           +         lim       (x tan x + ln |cos x|)|R
                                                                                                                  π
                                           π/2                           R→π/2+
          = lim+ ln | sin x|                                    =∞
               R→0                         R
          = ln | sin(π/2)| − lim+ ln | sin R| = ∞               So the original integral diverges.
                                           R→0
                                                                     2
          So the original integral diverges.                           2
               π/2                                        (b)               dx
                                                                 0  x3 − 1
    (b)              tan xdx                                         1
                                                                          2            2
                                                                                             2
           0                                                    =              dx +              dx
                             R                                           3−1               3−1
                                 sin x                              0 x               1 x
          = lim                        dx                                   R
                                                                                  2
               R→π/2     0       cos x                          = lim                 dx
                                                 R                 R→1− 0 x3 − 1
          =        lim − ln | cos x|                                          2
                                                                                    2
               R→π/2                             0                 + lim                dx
                                                                                   3−1
          = lim (− ln | cos R| + ln 1) = ∞                                   R x
                                                                     R→1  +

               R→π/2
                                                                                ln x2 + x + 1
          So the original integral diverges.                    = lim− 2 −
                                                                   R→1                 6
               3
                  2                                                                                 R
13. (a)                 dx                                           tan−1 2x+1√
           0  x2 − 1                                                             3       ln (x − 1) 
                3                                                  −       √          +
                         1        1                                          3                3
          =         −        +         dx                                                                         0
              0       x+1 x−1
                        R
                               1        1                                       ln x2 + x + 1
          = lim−            −       +       dx                       + lim+ 2 −
             R→1              x+1 x−1                                 R→1             6
                      0
                          3                                                                                 R
                                 1        1                        tan−1 2x+1
                                                                            √
             + lim+          −       +       dx                               3                  ln (x − 1) 
               R→1       R     x+1 x−1                           −      √                      +
          Both of these integrals behave like                             3                           3
                    1                                                                                             0
                      1                                         =∞
           lim+          dx
          R→0     R x                                                ∞
          = lim+ (ln 1 − ln R)                                         1
               R→0                                    15. (a)             2
                                                                            dx
                     1                                           −∞ 1 + x
          = lim ln        =∞                                        0                  ∞
                     R                                                   1                     1
               R→0+                                             =              dx +      ds        dx
        So the original integral diverges.                         −∞ 1 + x2         0      1 + x2
                                                                            0
          4
              2x                                                                1
    (b)            dx                                           = lim               dx
             2−1                                                  R→−∞ R 1 + x2
         1 x                                                                 R
                   4
                       2x                                                         1
        = lim+              dx                                    + lim              dx
          R→1        x2 − 1                                         R→∞ 0 1 + x2
                  R
        = lim ln(x2 − 1) R
                            4                                   = lim tan x|R + lim tan−1 x|R
                                                                           −1   0
                                                                                                   0
                                                                     R→∞                         R→∞
               R→1+
                                                                = lim (tan−1 0 − tan−1 R)
          = lim+ ln 15 − ln(R2 − 1) = ∞                              R→−∞
               R→1                                               + lim (tan−1 R − tan−1 0)
               1                                                  R→∞
                     2x                                                π     π
                          dx                                    =0− −      + −0=π
           −4      x2 − 1                                              2     2
392                                                      CHAPTER 6. INTEGRATION TECHNIQUES

                 2                                                                         −2   2
                        1
      (b)                   dx                                          + lim                 + R
             1       x2 − 1                                               R→∞               e  e
                          1   1                                    =1+1=2
            = lim+       2−1
                               dx                                       π/2
              R→1    R x
                                   2                         (b)              tan xdx
                    1     x−1                                       0
            = lim     ln                                                                       R
              R→1+ 2      x+1 R
                                                                   =      lim                      tan xdx
                    1     1      1     R−1                              R→π/2−             0
            = lim     ln      − ln                                                                            R
              R→1 + 2     3      2     R+1
            =∞                                                     =         lim       − ln cos x
                                                                        R→π/2−
            Therefore the original integral diverges.                                                         0
                                                                   =      lim − (− ln cos R) = ∞
                                                                        R→π/2
                 2
                x                                                  Therefore the original integral diverges.
 16. (a)             dx
          0  x2 − 1
              1
                  x             2
                                     x                  18. (a) Substitute u = ex
         =              dx +            dx                             ∞
                 2−1               2−1                                      ex
             0 x               1 x                              I=                dx
                     R
                           x                                         0   e2x + 1
                                                                     ∞
         = lim−                dx                                         1
            R→1    0    x2 − 1                                  =        2+1
                                                                               dx
                        2                                          1   u
                             x                                             R
            + lim+         2−1
                                dx                                              1
              R→1     R x                                       = lim                dx
                                 R                                R→∞ 1 u2 + 1
                  1                                                                                    R
         = lim− ln |x2 − 1|                                        = lim tan−1 u
            R→1 2                0                                      R→∞                            1
                                   2
                     1       2                                   = lim tan−1 R − tan−1 1
            + lim+ ln |x − 1|                                      R→∞
              R→1 2                R                               π π         π
                                                                 = − =
                    1        2        1                            2     4     4
         = lim−        ln |R − 1| − ln |−1|
            R→1     2                 2                      (b) Substitute u = tan−1 x
         = −∞                                                           ∞
                                                                               x
         So the original integral diverges.                      I=        √       dx
                                                                             x 2+1
                                                                      0
                                                                             π/2
                 2
                        1                                          =               tan u                   tan2 u + 1 du
      (b)                     dx                                         0
             0       (x − 2)2                                                              R
                              R
                                     1                             = lim                       tan u (sec u) du
            = lim−                         dx                           R→π/2          0
                 R→2      0       (x − 2)2                                                         R
                                    R                              =     lim sec u
                   1                                                    R→π/2
            = lim−                                                                                 0
             R→2 2 − x              0
                                                                   =      lim         −
                                                                                        sec R − sec 0 = ∞
                       1      1                                         R→π/2
            = lim           − =∞
                    2−R 2
                 R→2−                                              Therefore the original integral diverges.
            So the original integral diverges.
                                                                                  1                                 1
                           √                            19. (a) Ip =                  x−p dx = lim                      x−p dx
 17. (a) Substitute u = x                                                                       R→0+
                                                                              0                                   R
              1                                                                                  1
           √ √x dx = 2e−u du                                                   x           −p+1
                                                                                                  1 − R−p+1
             xe                                                    = lim+                  = lim+
                   ∞
                           1                                          R→0     −p + 1 R R→0          −p + 1
         Hence        √ √x dx                                      We need p < 1 for the above limit to con-
                 0       xe                                        verge. If this is the case,
                    1
                           1                                                1
         = lim+        √ √x dx                                     Ip =          .
           R→0     R      xe                                            −p + 1
                            R
                                  1                                               ∞                                     R
              + lim            √ √x dx
                 R→∞ 1           xe                          (b) Ip =                  x−p dx = lim                         x−p dx
                             1                   R                            1                             R→∞     1
                    −2                 −2                                                              R
         = lim+       √         + lim  √                                              x−p+1                       R−p+1 − 1
           R→0      e   x
                             R
                                  R→∞ e x
                                                 1
                                                                   = lim                                    = lim
                                                                        R→∞           −p + 1           1
                                                                                                              R→∞  −p + 1
                   −2         2
         = lim+          + R                                       We need p > 1 for the above limit to
           R→0       e       e
6.6. IMPROPER INTEGRALS                                                                                                              393

        converge.
                                                                        (b) Case1: If r > 0
     (c) There are three cases.                                             Substitute u = rx
                                                                                                  0
         Case 1: p > −1
              ∞                           R                                      I=                    xerx dx
                  xp dx = lim                 xp dx                                          0
                                                                                              −∞
          0                   R→∞     0                                            1
                            p+1 R                                                =    lim      ueu du
                          x               Rp+1                                    r2 R→−∞ R
        = lim                        = lim      =∞                                 1
              R→∞         p+1    0
                                      R→∞ p + 1
                                                                                 = 2 lim (ueu − eu )|R
                                                                                                      0
                ∞
                                                                                  r R→−∞
        So                xp dx diverges.                                          1    1
                  −∞                                                             = 2 − 2 lim eR (R − 1)
        Case 2: p = −1                                                            r     r R→−∞
                                                      ∞
                                                           1                       1       1
        We have already seen that                            dx                  = 2 −0= 2
                                                           x                      r        r
                                                      −∞                                      0
        diverges.
                                                                                 So                   xerx dx converges for r > 0.
        Case 3: p < −1                                                                    −∞
              1                        1
                   p                          p
                  x dx = lim               x dx                                  Case2: For r ≤ 0,
          0                  R→0+     R                                                                    0
                            p+1 1                                                the integral                    xerx dx diverges.
               x
        = lim+                                                                                            −∞
         R→0 p + 1 R                                                             Therefore, for all r < 0
               1 − Rp+1                                                                        ∞
                                                                                 the integral 0 xerx dx converges.
        = lim+          =∞
         R→0     p+1
                      ∞
                                                                                   x      x   1
        So                xp dx diverges.                         21. 0 <               < 3 = 2
                  −∞                                                             1 + x3  x   x
                                                                             ∞                 R
20. (a) Case1: If r ≥ 0                                                       1                  1
                                                                               2
                                                                                 dx = lim          dx
        Substitute u = rx.                                               1   x          R→∞ 1 x2
              ∞
                                                                                          R
        I=                 xerx dx                                      = lim −
                                                                                      1
                      0                                                    R→∞       x 1
                    R
          1                                                                           1
        =     lim
           2 R→∞
                      ueu du                                            = lim − + 1 = 1
         r        0                                                        R→∞       R
          1                  R                                                ∞
        = 2 lim (ueu − eu )|0                                                       x
         r R→∞                                                          So               dx converges.
          1                    1                                            1    1 + x3
        = 2 lim eR (R − 1) − 2 = ∞
         r R→∞                 r
                                                                        x2 − 2  3x2
                      ∞
                            rx                                    22.          ≤ 4 = 3x−2
        So                xe dx diverges for r ≥ 0.                     x4 + 3   x
                  0                                                          ∞                                       R

        Case2: For r < 0,                                                        3x−2 dx = lim                           3x−2 dx
                                                                         1                             R→∞       1
        Substitute u = −rx
              ∞                                                                          −3
                                                                                                  R
                                                                                                                  −3
        I=                 xerx dx                                      = lim                          = lim         +3=3
                                                                             R→∞         x        1
                                                                                                         R→∞      R
                      0
                   −R                                                                ∞    2
          1                                                                              x −2
        = 2 lim       ueu du                                            So                      dx converges.
          r R→∞ 0                                                                1       x4 + 3
                    0
            1
        = − 2 lim      ueu du                                                x      x     1
            r R→∞ −R                                              23.            > 3/2 = 1/2 > 0
            1                 0                                         x3/2  −1  x     x
        = − 2 lim (ueu − eu )|−R                                             ∞                                       R
            r R→∞
            1                    1                                               x−1/2 dx = lim                          x−1/2 dx
        = − 2 lim e−R (−R − 1) − 2                                       2                              R→∞      2
            r R→∞                r                                              √ R
              1     1                                                   = lim 2 x
        =0− 2 =− 2                                                        R→∞ √ 2     √
              r     r
                                                                        = lim (2 R − 2 2) = ∞
                                                                             R→∞
        Therefore, for all r < 0 the integral
              ∞                                                                ∞
                                                                                            x
                  xerx dx converges.                                    So                        dx diverges.
          0                                                                      2       x3/2 − 1
394                                                         CHAPTER 6. INTEGRATION TECHNIQUES

       2 + sec2 x   1                                               ∞                                    R
 24.              ≥                                                     ex dx = lim                          ex dx
           x        x                                           2                          R→∞       2
            ∞            R                                                                R
           1               1                                   = lim ex
             dx = lim        dx                                     R→∞                   2
        1  x      R→∞ 1 x
                    R                                          = lim (eR − e2 ) = ∞
       = lim ln |x||1 = lim ln |R| = ∞                              R→∞
            R→∞                          R→∞                          ∞
              ∞                  2                                                  x2 ex
                        2 + sec x                              So                         dx diverges.
       So                         dx diverges.                          2           ln x
                1           x
                                                                   2
                3        3                                 30. ex   +x+1
                                                                                    > ex
 25. 0 <            < x                                             ∞                                    R
            x + ex      e                                             x
                                                                        e dx = lim                           ex dx
          ∞                  R
              3                 3                               1                          R→∞       1
              x
                dx = lim          dx                                                      R
        0   e          R→∞ 0 ex                                = lim ex                       = lim (eR − e) = ∞
                           R                                        R→∞                   1       R→∞
                      3                                               ∞
       = lim − x                                               So                   e   x2 +x+1
                                                                                                  dx diverges.
          R→∞        e     0
                                                                        1
                     3
       = lim − R + 3 = 3
          R→∞       e                                      31. Let u = ln 4x, dv = xdx
              ∞
                   3                                                 dx      x2
       So               dx converges.                          du =     ,v =
            0    x + ex                                               x       2
                                                                              1         1
            3
 26. e−x < e−x                                                   x ln 4xdx = x2 ln 4x −                                         xdx
            ∞                                 R                               2         2
                e−x dx = lim                      e−x dx            1 2         x2
        1                      R→∞        1                    =      x ln 4x −    +c
                               R                                    2           4
       = lim −e−x                    = lim −e−R + e−1                           1                                       1
            R→∞                1         R→∞                   I=                   x ln 4xdx = lim                         x ln 4xdx
             −1                                                                                       R→ 0+
       =e           .                                                       0                                          R
                    ∞                                                                                                       1
       So
                           3
                        e−x dx converges.                                  1 2         x2
                                                                   =         x ln 4x −
                                                                            lim +
                1                                                  R→ 0    2            4 R
            2                                                        1           1 2          R2
       sin x       1      1                                      = − − lim         R ln 4R −
 27.        x
               ≤      x
                        < x                                          4 R→ 0+ 2                4
       1+e       1+e     e                                           1 1
          ∞               R
             1              1                                    =− −       lim R2 ln 4R
               dx = lim       dx                                     4 2 R→ 0+
        0   ex     R→∞ 0 ex                                                            ln 4R
                                     R                          lim R2 ln 4R = lim + −2
       = lim (−e−x )                                           R→ 0+            R→ 0    R
            R→∞                      0                                   R−1             R2
       = lim (−e−R + 1) = 1                                    = lim +      −3
                                                                               = lim +       =0
            R→∞                                                  R→ 0 −2R         R→ 0 −2
              ∞
                        sin2 x                                              1
       So                      dx converges.                    Hence I = −
                        1 + ex                                              4
                0

      ln x      x                                          32. Let u = x, dv = e−2x dx
 28. x       < x                                                               1
     e +1      e                                               du = dx, v = − e−2x
        ∞
           x                                 R                                 2
             dx = lim                            xe−x dx                       x       1
          ex      R→∞                                            xe−2x dx = − e−2x +       e−2x dx
      2                                  2
                                                  R
                                                                               2       2
       = lim (−xe−x − e−x )                                                    x
            R→∞                                                            = − e−2x − e−2x
                                                  2                            2
       = lim e−R (−R − 1) + 3e−2                                    ∞                                            R
            R→∞
       and lim e            −R
                                 (−R − 1)                               xe−2x dx = lim                               xe−2x dx
                    R→∞                                         0                                 R→∞        0
              −R − 1          −1                                                       R
       = lim           = lim R = 0                                      x
         R→∞     e R     R→∞ e                                 = lim  − e−2x − e−2x
            ∞
               ln x                                              R→∞    2              0
       So            dx converges.                             = lim e−2R (−R/2 − 1) + 1
          2   ex + 1                                                R→∞
                                                                                    −R/2 − 1
     x2 ex                                                     = lim                         +1
 29.       > ex                                                     R→∞               e2R
     ln x
6.6. IMPROPER INTEGRALS                                                                                                                      395

              −2                                                                      Since the graph of the function xe−x is
                                                                                                                                             2
    = lim         +1=1
         R→∞ 2e2R                                                                     anti-symmetric across the y-axis,
                                                                                                          2   0             2   R
33. The volume is finite:
             ∞                                               R
                                                                                         lim       xe−x            + xe−x               =0
               1                                                 1                       R→∞                  −R                0
    V =π          dx = π lim                                        dx                Then we have
           1   x2        R→∞                             1       x2                    ∞
                                                                                                    2
                                                                                                                    ∞
                                                                                                                                    2
                1
                  R                                                                            e−x dx = 2               x2 e−x dx
    = π lim −                                                                            −∞                        −∞
       R→∞      x 1                                                                   And the conclusion is
                                                                                                       √
                                                                                        ∞
                                                                                           2 −x2         π
                  1                                                                       x e    dx =
    = π lim            −
                     +1 =π                                                             −∞               2
             R→∞ R
    The surface area is infinite:
              ∞
                1         1                                                  40. (a) Since k > 0, we have
                                                                                        ∞                 ∞
    S = 2π           1 + 4 dx                                                              sin kx           sin kx
            1   x        x                                                                        dx =             (k) dx
                                                                                      0       x         0     kx
    1       1      1                                                                 Let u = kx, du = kdx.
       1+ 4 >                                                                              ∞
    x       x      x                                                                          sin u     π
                   ∞                                 R
                                                                                     =              du = .
                       1                                 1                               0      u       2
     and                 dx = lim                          dx
               1       x     R→∞                 1       x                        (b) Since k < 0 , assume k = −m , where
                            R                                                         m ∞ 0.
                                                                                         >               ∞
    = lim ln |x|                = lim ln R = ∞                                             sin kx          sin (−m) x
         R→∞                1       R→∞                                                           dx =                dx
                                                                                       0      x        0        x
                                ∞
                                                                                                   ∞
34. The integral                    x3 dx diverges:                                                     sin mx
                                                                                      =−                       dx
                            −∞
                                                                                               0           x
         ∞                               R                                                         ∞
                                                                                                        sin mx
             x3 dx = lim                     x3 dx                                    =−                       (m) dx
     0                   R→∞         0                                                         0          mx
                        R
          x4                      R4                                                  Let u = mx, so that du = mdx.
    = lim                   = lim    =∞                                                       ∞
     R→∞ 4
                        0
                             R→∞ 4                                                              sin u       π
                                    R                                                 =−              du = − .
                                                                                            0     u         2
    The limit lim                        x3 dx = 0:
                       R→∞      −R                                                (c) Since k > 0 , we have
               R                                         R                               ∞                  ∞
                        x4                                                                  sin2 kx            sin2 kx 2
     lim   x3 dx = lim                                                                              dx =             2 k dx
    R→∞ −R          R→∞ 4
                           −R                                                          0      x2          0     (kx)
             4     4                                                                  Let u = kx, du = kdx.
           R     R
    = lim      −      = lim 0 = 0                                                           ∞
                                                                                               sin u         π
       R→∞ 4      4     R→∞                                                           =              kdu = k .
                                                                                          0      u           2
35. True, this statement can be proved using the
    integration by parts:                                                         (d) Since k < 0, assume k = −m, where
         f (x)dx = xf (x) −                      g(x)dx,                              m > 0.
                                                                                         ∞                   ∞
                                                                                            sin2 kx            sin2 [(−m) x]
    where g(x) is some function related to f (x).                                                   dx =                     dx
                                                                                       0      x2           0         x2
                                                                                            ∞
                                              1                                                sin2 mx
36. False, consider f (x) =                                                           =                 dx
                                              x                                           0       x2
                                                                                            ∞     2
                                                                                               sin mx      2
37. False, consider f (x) = ln x                                                      =               2 m     dx
                                                                                          0     (mx)
38. True, this statement is best understood graph-                                    Let u = mx, du = mdx.
                                                                                            ∞
    ically.                                                                                         sin2 u           π     kπ
                                                                                      =       m             du = m = − .
                         √                                                                0           u2             2      2
39. (a) Substitute u = kx                    √
             ∞                  ∞
                     2     1          2        π                                          x       1
               e−kx dx = √         e−u du = √                                41. Since         ≈ 4,
            −∞               k −∞              k                                       x5 + 1     x
                                                                                    ∞                 ∞
     (b) We use integration by parts                                                    x               1
                   2                                                                         dx ≈          dx.
          (u = e−x , v = x):                                                      1   x5 + 1        1   x4
                                                                                             ∞
                       2                     2                           2                     1                   1
               e−x dx = xe−x + 2                                 x2 e−x dx       we have          dx converges to - .
                                                                                           1   x4                  3
396                                                                   CHAPTER 6. INTEGRATION TECHNIQUES

                          ∞                                                                π/2
                    x
      Hence             dx also converges.                                 =                     ln(sin x cos x)dx
               1     +1       x5                                                       0
                     x                1                                                    π/2
      Let f (x) = 5      and g(x) = 4 .
                  x +1               x                                     =                     [ln(sin(2x)) − ln 2]dx
      So that, we have, 0 < f (x) < g(x) .                                             0
                                                                                           π/2
      By Comparison test,                                                                                                           π
         ∞                ∞                                                =                     ln(sin(2x))dx −                      ln 2
              x             1          1                                               0                                            2
                  dx <         dx = − .                                      1 π               π
       1   x5 + 1       1   x4         3                                   =      ln(sin x)dx − ln 2
                                                                             2 0               2
                        1                         x                        Hence,
 42. (a) Let f (x) = √ and g(x) = √                   .                                π/2
                        x 2                     x 3−1
         So that, we have, 0 < f (x) < g(x).                               2                 ln(sin x)dx
                                                                                   0
         By Comparison test,                                                                 π
             ∞                     ∞
                                                                              1                   π
                1                          x                               =         ln(sin x)dx − ln 2
               √ dx <                √            dx, and                     2 0                 2
                 x2                      x 3−1                             On the other hand, we notice that the graph of
           2                     2
                    1                                                      sin x is symmetric over the interval [0, π] across
         f (x) = √      diverges.
                     x2                                                    the line x = π/2, hence
                               x                                                   π                                          π/2
         Hence g(x) = √              also diverges.
                            x3 − 1                                                     ln(sin x)dx = 2                                 ln(sin x)dx
                                                                               0                                          0
                          x                         1                      and then
     (b) Let f (x) = √            and g(x) = 5/4 .
                        x5 − 1                    x                        1 π                                                π/2

         So that, we have, 0 < f (x) < g(x) .                                    ln(sin x)dx =                                         ln(sin x)dx
                                                                           2 0                                            0
         By Comparison test,                                                                              π/2
                                                                                                                                                      π
             ∞                          ∞
                   x                          1                            So we get                            ln(sin x)dx = −                         ln 2
               √        dx <                  5/4
                                                  dx, and                                             0                                               2
           2     x 5−1
                                      2     x
                    1                                                              1                                               1
         g(x) = 5/4 converges.                                                                    n                                               n
                  x                                                  44.               (ln x) dx = lim                                 (ln x) dx
                               x                                               0
                                                                                                      +         t→0            t
         Hence f (x) = √               also converges.                                                                                     1
                             x 5−1                                                                       n 1                                            n−1
                                                                           = lim                  x(ln x) |t             −n                    (ln x)         dx
                              x                                                    t→0+                                                t
     (c) Let f (x) = √                  and                                Using#112 from the table.
                        x 5+x−1
                                                                                               2
                      x                                                    = lim   0 − t(ln t)
         g(x) = √           .                                                   +  t→0
                    x5 − 1                                                                                     1
                                                                                                                              n−1
         So that, we have, 0 < f (x) < g(x) .                                      − lim              n            (ln x)                  dx
         By Comparison test,                                                           t→0+                t
             ∞                            ∞                                                                         1
                      x                           x                                                                                n−1
               √              dx <           √        dx ,                 = 0 − lim n
                                                                                    +
                                                                                                                        (ln x)                 dx .
                 x 5+x−1                        x 5−1                                       t→0                 t
           2                            2
                          x                                                Continuing in the same manner,
         and g(x) = √              converges.                                      1
                         x5 − 1                                                                   n
                                     x                                                 (ln x) dx
         Hence f (x) = √                         also con-                     0
                                 x 5+x−1                                                                                      1
         verges.                                                           = (−1)
                                                                                             n−1
                                                                                                      n!       lim                 (ln x) dx
                                                                                                           t→0+           t
                                   π                                                                                                                  1
 43. Substitute u =                  −x                                                      n−1
                                   2                                       = (−1)                     n!       lim (x ln x − x)
              π/2                         0                                                                t→0+                                       t
                    ln(sin x)dx = −             ln(sin(π/2 − u))du                           n−1
          0                               π/2                              = (−1)                     n!       lim ((0 − t ln t) − (1 − t))
                   π/2                     π/2                                                             t→0+
                                                                                             n
      =                  ln(cos u)du =              ln(cos x)dx            = (−1) n!.
               0                          0
      Moreover,
                  π/2
      2                 ln(sin x)dx                                  45. Improper because tan(π/2) is not defined. The
              0                                                          two integrals
                   π/2                        π/2                           π/2                  π/2
                                                                                    1
      =                  ln(cos x)dx +              ln(sin x)dx                           dx =       f (x)dx
               0                          0                               0     1 + tan x      0
                   π/2                                                   because the two integrand only differ at one
      =                  [ln(cos x) + ln(sin x)] dx                      value of x, and that except for this value, ev-
               0
6.6. IMPROPER INTEGRALS                                                                                 397

    erything is proper.                                         1        2
            tan x                                         = − x3 e−x
                                     π                          2
                         if 0 ≤ x <                             3     1    2   1        2
    g(x) =     1 + tan x             2                       +       − xe−x +        e−x dx
            0 if x = π                                          2     2        2
                        2                                       1        2 3      2   3        2
                         π                                 = − x3 e−x − xe−x +             e−x dx
    Substitute u = x − followed by w = −u                       2          4          4
                         2                                 Putting integration limits to all the above, and
      π/2                        0                         realizing that when taking limits to ±∞, all
                1                          1
                       dx =                      du                         2
                                                           multiples of e−x as shown in above will go
     0     1 + tan x           −π/2    1 − cot u
            0
                     1                                     to 0 (we have seen this a lot of times before).
    =−                      dw                             Then we get
           π/2  1 + cot w                                    ∞
                                                                       2      3 ∞ −x2           3√
          π/2
                    1                                            x4 e−x dx =        e    dx =      π
    =                                                                         4 −∞              4
                    cos w dw                                −∞
        0     1+                                           This means when n = 2, the statement
                    sin w                                     ∞
          π/2                                                           2     (2n − 1) · · · 3 · 1 √
                   sin w                                         x2n e−x dx =                        π
    =                         dw                             −∞                      2n
        0     sin w + cos w
          π/2                                              is true. (We can also check that the case for
                 tan w
    =                      dw                              n = 1 is correct.) For general n, supposing
        0     tan w + 1                                    that the statement is true for all m < n, then
          π/2
                 tan x                                     integration by parts gives
    =                     dx
              tan x + 1                                              2
        0                                                      x2n e−x dx
    Moreover,
       π/2
              tan x              π/2
                                          1                    1        2  2n − 1                 2

                       dx +                      dx        = − x2n−1 e−x +               x2n−2 e−x dx
           tan x + 1                  1 + tan x                2             2
     0                         0
          π/2                                              and hence
                                                             ∞
                   tan x             1                                   2
    =                       +                dx                  x2n e−x dx
        0       1 + tan x 1 + tan x                         −∞
          π/2             π/2     π                             2n − 1 ∞ 2n−2 −x2
    =         1 dx = x        =                            =                     x      e      dx
        0                 0       2                               2       −∞
                 π/2
                           1          1   π       π             2n − 1 (2n − 3) · · · 3 · 1 √
    Hence                        dx =         =            =            ·                           π
                       1 + tan x      2   2       4               2                2n−1
             0                                                  (2n − 1) · · · 3 · 1 √
                                                           =                            π
46. As in exercise.45, We have                                         2n
      π/2                       π/2                                              √
                 1                     tank x          48. Substitute u = ax
                        dx =                    dx
            1 + tan xk
                                    1 + tank x                      2            1           2
      0
    hence,
                              0                                 e−ax dx = √             e−u du
                                                                                  a
          π/2
                   1                                       and then
    2                    dx                                    ∞
                                                                                    1      ∞
                                                                                                        π
        0     1 + tank x                                               2
                                                                  e−ax dx = √
                                                                                                   2
                                                                                               e−u du =
           π/2
                    1              π/2
                                         tank x              −∞                      a −∞               a
    =                     dx +                    dx       Ignoring issues of convergence, the derivatives
         0     1 + tank x        0     1 + tank x
           π/2                                             can be taken from the integrand, we get the
                       π
    =          1dx =                                       following:
         0             2                                   1st derivative
    therefore,                                               d     ∞
                                                                             2          d      π
        π/2
                 1           π                                        e−ax dx =
                        dx =                               da −∞                       da a
      0     1 + tank x       4                                    ∞
                                                                               2           1 π
                                                           −         x2 e−ax dx = −
47. Use integration by parts twice, first time                    −∞                        2 a3
               1                   2                       2nd derivative
    let u = − x3 , dv = ds − 2xe−x dx                        d2     ∞
                                                                                         d2      π
               2                                                               2
                                                                       e−ax dx = 2
    second time                                            da −∞2                       da       a
               1              2
    let u = − x, dv = −2xe−x dx                                ∞
                                                                           2          3 π
               2                                                  x4 e−ax dx =
             2                                                                        4 a5
       x4 e−x dx                                             −∞
                                                           . . . nth derivative
                                                                    ∞
       1                    3 2 −x2                          dn                2          dn     π
                                                                        e−ax dx = n
              2
    = − x3 e−x +              x e   dx                          n
       2                    2                              da −∞                         da      a
398                                                              CHAPTER 6. INTEGRATION TECHNIQUES

                  ∞                                                                         R
      (−1)n
                              2
                       x2n e−ax dx                                                  k
                                                                                =      lim    ue−u dx
                  −∞                                                               r2 R→∞ 0
               (2n − 1) · · · 3 · 1   π                                                               R
      = (−1)n                                                                       k
                     2n             a2n+1                                       = 2 lim (ue−u + e−u )
                                                                                    r R→∞             0
      Setting a = 1, we get the result of Exercise 47.                              k      R+1          k
                  ∞                         R
                                                                                = 2 lim          −1 =− 2 =1
                                                                                   r R→∞     eR         r
 49. (a)              ke−2x dx = lim            ke−2x dx                        So k = −r2
              0                R→∞      0
                                 R                                              If r ≤ 0:
                 k           −2x                                                                          ∞
            = − lim e
                 2 R→∞     0                                                    The integral                  kxe−rx dx diverges for
                k      −2R       k                                                                    0
            = − lim (e     − 1) = = 1                                           any value of k, so there is no value of k to
                2 R→∞            2
            So k = 2                                                            make the function f (x) = k a pdf.
                  ∞                         R
      (b)             ke−4x dx = lim            ke−4x dx        51. From Exercise 49 (c) we know that this r has
              0                R→∞      0                           to be positive.
                                 R
                k            −4x                                    Substitute u = rx
                                                                           ∞             ∞
            =−     lim e
                4 R→∞        0                                        µ=            xf (x)dx =                 rxe−rx dx
                k        −4R       k                                            0                         0
           = − lim (e        − 1) = = 1                                                   R
                4 R→∞              4                                   = lim                  rxe−rx dx
           So k = 4                                                             R→∞   0
                                                                                  R
       (c) If r > 0:                                                     1
                  ∞                         R                          =    lim     ue−u du
                                                                         r R→∞ 0
                      ke−rx dx = lim            ke−rx dx                                     R
                               R→∞                                       1
              0
                                 R
                                        0
                                                                       =    lim e−u (−u − 1)
                 k           −rx                                         r R→∞               0
            =−      lim e                                                      −R − 1 1        1 1
                 r R→∞         0                                       = lim          + =0+ =
                 k          −rR        k                                 R→∞    eR      r      r r
            =−       lim (e      − 1) = = 1
                r2 R→∞                 r
            So k = r                                            52. From Exercise 50 (c) we know that this r has
 50. (a) Substitute u = 2x                                          to be positive.
                  ∞                             R                   Substitute u = rx
                                                                           ∞             ∞
                      kxe−2x dx = lim               kxe−2x dx         µ=            xf (x)dx =                 r2 x2 e−rx dx
              0                   R→∞       0
                      R                                                         0                         0
            k                                                                             R
            =  lim      ue−u dx                                        = lim                   2 2 −rx
                                                                                              r x e           dx
            4 R→∞ 0                                                             R→∞
                                  R                                                   0
             k                                                           1                    R
          =     lim (ue−u + e−u )                                      =    lim     u2 e−u du
             4 R→∞                0                                      r R→∞ 0
            k         R+1           k                                    1                         R
          =    lim       R
                            −1 =− =1                                   =    lim e−u (−u2 − 2u − 2)
            4 R→∞      e            4                                    r R→∞                     0
          So k = −4                                                            −R2 − 2R − 2 2        2 2
                                                                       = lim          R
                                                                                              + =0+ =
      (b) Substitute u = 4x                                              R→∞        e          r     r r
                  ∞                             R
                                                                           35
                      kxe−4x dx = lim               kxe−4x dx                    1 −x/40                           35
              0                   R→∞       0
                                                                53.                e     dx = −e−x/40                   = 1 − e−35/40
                             R                                         0        40                                 0
               k
            =     lim      ue−u dx                                    P (x > 35) = 1 − above = e−35/40
              16 R→∞ 0
                                     R                                     40
               k                                                                 1 −x/40                           40
           =       lim (ue−u + e−u )                                               e     dx = −e−x/40                   = 1 − e−40/40
               16 R→∞                0                                 0        40                                 0
               k         R+1           k
           =      lim          −1 =−      =1                          P (x > 40) = 1 − above = e−40/40
              16 R→∞      eR           16
                                                                           45
           So k = −16                                                            1 −x/40                           45
                                                                                   e     dx = −e−x/40                   = 1 − e−45/40
       (c) If r > 0:                                                   0        40                                 0
           Substitute u = rx                                          P (x > 45) = 1 − above = e−45/40
                  ∞                             R
                      kxe−rx dx = lim               kxe−rx dx         Hence,
              0                   R→∞       0
6.6. IMPROPER INTEGRALS                                                                                                                                      399

                                           P (x > 40)                                                                R
    P (x > 40|x > 35) =                                                                           = lim                  2xe−2x dx
                                           P (x > 35)                                                    R→∞     0
       e−40/40                                                                                                                                  R
    =          = e−5/40 ≈ 0.8825                                                                  = lim e−2x (−x − 1/2)
       e−35/40                                                                                           R→∞                                    0
                        P (x > 45)                                                                               −2R                                1   1
    P (x > 45|x > 40) =                                                                           = lim e                 (R + 1/2) +                 =
                        P (x > 40)                                                                       R→∞
                                                                                                          ∞
                                                                                                                                                    2   2
       e−45/40                                                                                 µ2 =            xf2 (x)dx
    = −40/40 = e−5/40 ≈ 0.8825
       e                                                                                                  −∞
                                                                                                           1                    1
                                                                                                                          x2
                                                                                                  =            xdx =
54. (a) Following Exercise 53, we get                                                                      0              2     0
                                P (x > m + n)                                                    1
        P (x > m + n|x > n) =                                                                 =
                                   P (x > n)                                                     2
                                m+n 1 −x/40
                                                                                          µ1 = µ2 and when r = 1/2
                1− 0                 40 e    dx                                                                e−2·1/2
           =         m              1 −x/40                                               Ω1 (1/2) =                         =1
                 1− 0              40 e     dx                                                         2 · 1/2 + e−2·1/2 − 1
                                                                                                       1 − 2 · 1/2 + (1/2)2
                e−(m+n)/40                                                                Ω2 (1/2) =                         =1
           =               = e−m/40                                                                            (1/2)2
                  e−n/40
                A                                                                     (d) The graph of f2 (x) is more stable than
                                                            A
     (b)            ce−cx dx = −e−cx                        0
                                                                    = 1 − e−cA            that of f1 (x).
            0                                                                             f1 (x) > f2 (x) for 0 < x < 0.34
                                 P (x > m + n)
           P (x > m + n|x > n) =                                                          and f1 (x) < f2 (x) for x > 1.
                                    P (x > n)
                  m+n
             1− 0     ce−cx dx   e−c(m+n)                                                                       2r − 1
           =      m            =                                                      (e) Ω1 (r) = 1 −
             1 − 0 ce−cx dxdx       e−cn                                                                            e−2r
                                                                                                                  + 2r − 1
              −cm                                                                                          2r − 1
           =e                                                                                  Ω2 r = 1 −
                                                                                                             r2
55. (a) For x ≥ 0,                                                                             and
                                    x                           x                              r2 − (e−2r + 2r − 1) = e−2r + (r − 1)2 > 0
           F1 (x) =                      f1 (t)dt =                 f1 (t)dt                   This means
                                    −∞                      0
                        x                               x                                      when r < 1/2, Ω1 (r) < Ω2 (r)
           =                2e−2t dt = −e−2t                = 1 − e−2x                         when r > 1/2, Ω1 (r) > Ω2 (r)
                    0                                   0
                            ∞
                              [1 − F1 (x)]dx                                                   In terms of this example, we see that the
                           r
           Ω1 (r) =           r                                                                riskier investment is only disadvantageous
                             −∞ 1
                                  F (x)dx                                                      when r small, and will be better when r
                      ∞ −2x
                     r
                         e      dx                                                             large.
           =      r
                 0
                    (1 − e−2x )dx
                       1 −2r                                                     56. Following Exercise 54(b),
                       2e                  e−2r                                      R(t) = P (x ≥ t) = P (x > t)
           =           1 −2r      1 = 2r + e−2r
                r + 2e         −2                                        −1                          t                              t
                                             x                                       =1−                 f (x)dx = 1 −                  ce−cx dx
                                                                                                 0                              0
     (b) For 0 ≤ x ≤ 1, F2 (x) =                                     f2 (t)dt        = 1 − (1 − e−ct ) = e−ct
                                                            −∞
                        x                        x            x
           =                f2 (t)dt =               1 dt = t            =x      57. Graph of p1 (x):
                    0                        0                       0
                             ∞
                            r
                               [1 − F2 (x)]dx                                             1                         1
           Ω2 (r) =            r                                                              p1 (x) dx =               1dx = 1,
                              −∞ 2
                                   F (x)dx                                            0                         0
                     1                1       r2
                    r
                       (1 − x)dx      2 −r+ 2
                                                                                     Graph of p2 (x):
           =             r         =      r2
                        0
                           xdx             2
                1 − 2r + r      2                                                     Similarly,
           =                                                                              1                         1/2                    1
                    r2                                                                        p2 (x) dx =                 4xdx +                (4 − 4x) dx
                                ∞                                                     0                         0                         1/2
     (c) µ1 =                       xf1 (x)dx                                                    1/2                        1
                                                                                     = 2x2 0 + 4x − 2x2 1/2
                            −∞
                             ∞
                                                                                        1                     1
                =                   2xe−2x dx                                        =    − 0 + (4 − 2) − 2 −                                         = 1.
                            0                                                           2                     2
400                                                                                      CHAPTER 6. INTEGRATION TECHNIQUES

      The Boltzmann integral                                                            Ch. 6 Review Exercises
                                 1
      I(p1 ) =                       p1 (x) ln p1 (x) dx                                                  √
                             0
                                                                                         1. Substitute u = x
                                                                                               √
                   1                                                                          e x                           √
      =                1 ln 1dx = 0.                                                           √ dx = 2 eu du = 2eu + c = 2e x + c
               0
                                                                                                x
                                            1
      Also, I(p2 ) =                            p2 (x) ln p2 (x) dx                                            1
                                        0
                                                                                         2. Substitute u =
                   1/2                                                                                         x
                                                                                                 sin(1/x)
      =                     4x ln (4x) dx                                                                 dx = − sin u du
               0                                                                                    x2
                        1
                                                                                              = cos u + c = cos(1/x) + c
           +                 (4 − 4x) ln (4 − 4x) dx
                       1/2
      Let u = 4x, du = 4dx                                                               3. Use the table of integrals,
                                                                                                  x2            1        1
       and t = 4 − 4x, dt = −4dx                                                              √         dx = − x 1 − x2 + sin−1 x + c
         1 2              1 0                                                                    1−x  2         2        2
      =       u ln udu −       t ln tdt
         4 0              4 2                                                            4. Use the table of integrals,
                             2
         1 1 2          1                                                                          2                  x
      =       u ln u − u2                                                                     √         dx = 2 sin−1 + c
         2 2            4    0                                                                   9 − x2               3
         1
      = (2 ln 2 − 1) = 0.193147.                                                         5. Use integration by parts, twice:
         2
                                                 1                                              x2 e−3x dx
      For the pdf p2 (x) , the probability at x = is
                                                 2                                               1          2
                                   1                                                          = − x2 e−3x +    xe−3x dx
      maximum which is equal to .The probability                                                 3          3
                                   2                                                             1
      decreases as x tends to 0 or 1.                                                         = − x2 e−3x
                                                                                                 3
                                                                                                   2    1        1
                                                             1                                  +     − xe−3x +     e−3x dx
                             2x                      0≤x<                                         3    3        3
                                                              4
                            
                                                                                                1          2        2
                                                                                              = − x2 e−3x − xe−3x − e−3x + c
                            
                                                      1       1
                            
                            
                             10x − 2                     ≤x<                                    3          9       27
                            
                            
      p3 (x) =                                        4       2
                             8 − 10x                 1       3                          6. Substitute u = x3
                                                         ≤x<                                              1                   1 −x3
                                                      2       4                                     3
                                                                                              x2 e−x dx =           e−u du =
                            
                                                                                                                                 e   +c
                            
                            
                            
                            
                             2 − 2x                  1                                                    3                   3
                                                          <x≤1
                            
                                                      4
                                                                                         7. Substitute u = x2
      Graph of p3 (x):                                                                           x         1      du
           1                                    1/4                 1/2                               dx =
                                                                                              1 + x4       2    1 + u2
               p3 (x) dx =                            2xdx +              (10x − 2)dx         1               1
       0                                    0                      1/4                      = tan−1 u + c = tan−1 x2 + c
                            3/4                                1                              2               2
               +                     (8 − 10x)dx +                  (2 − 2x) dx
                        1/2                                 3/4                                 x3       1
      = 1.                                                                               8.          dx = ln(1 + x4 ) + c
                                                                                              1 + x4     4
      Also, The Boltzmann integral                                                             x3       1
                                 1                                                       9.       4
                                                                                                    dx = ln(4 + x4 ) + c
      I(p3 ) =                       p3 (x) ln p3 (x) dx                                      4+x       4
                             0
                   1/4                                                                  10. Substitute u = x2
      =                     2x ln (2x) dx                                                        x         1     du
               0                                                                                      dx =
                        1/2                                                                   4 + x4       2   4 + u2
           +                  (10x − 1) ln(10x − 1)dx                                         1        u      1       x2
                       1/4
                                                                                            = tan−1 + c = tan−1          +c
                                                                                              4        2      4       2
                             3/4
                   +                  (8 − 10x) ln(8 − 10x)dx                                                             x3
                            1/2                                                         11.     e2 ln x dx =    x2 dx =      +c
                                  1                                                                                       3
                       +              (2 − 2x) ln (2 − 2x) dx
                              3/4                                                                              1
      = 0.42.                                                                           12.     cos 4x dx =      sin 4x + c
                                                                                                               4
CHAPTER 6 REVIEW EXERCISES                                                                                                                     401

                                                                                            π/4                           π/4
13. Integration by parts,                                                                                                       1
          1                                                                      20.              sin x cos x dx =                sin 2x dx
                                                                                        0                             0         2
              x sin 3x dx                                                                                 π/4
      0
                                                                                          1                       1
                            1                   1                                      = − cos 2x               =
       1                            1                                                     4               0       4
    = − x cos 3x                +                   cos 3x dx
       3                    0       3       0                                    21. Substitute u = sin x
       1                    1                   1
    = − cos 3 +               sin 3x                                                   cos x sin2 x dx = u2 du
       3                    9                   0
       1                    1                                                               u3     sin3 x
    = − cos 3 +               sin 3                                                    =       +c=        +c
       3                    9                                                               3         3

14. Substitute u = x2                                                            22. Substitute u = sin x
          1                             1
                                            1                                          cos x sin3 x dx = u3 du
              x sin 4x2 dx =                  sin 4u du
      0                             0       2                                               u4     sin4 x
       1                1     1                                                        =       +c=        +c
    = − cos 4u               = (1 − cos 4)                                                  4         4
       8                0     8
15. Use the table of integrals                                                   23. Substitute u = sin x
          π/2
                   4
                                                                                       cos3 x sin3 x dx =             (1 − u2 )u3 du
                sin x dx
      0                                                                                     u4   u6     3 sin4 x − 2 sin6 x
       1             π/2                                                               =       −    +c=                     +c
    = − sin3 x cos x                                                                        4    6              12
       4             0
         3 x 1                                               π/2                 24. Substitute u = cos x
       +       − sin x cos x
         4 2 2                                               0                         cos4 x sin3 x dx = −                u4 (1 − u2 ) du
      3π
    =                                                                                         u5   u7     −7u5 + 5u7
      16                                                                               =−        +    +c=            +c
                                                                                              5    7         35
16. Use the table of integrals
          π/2                                                                    25. Substitute u = tan x
                cos3 x dx
      0
                                                                                       tan2 x sec4 x dx =             u2 (1 + u2 ) du
              2        1                                     π/2             2
    =           sin x + sin x cos2 x                                     =                  u3   u5     5 tan3 x + 3 tan5 x
              3        3                                     0               3         =       +    +c=                     +c
                                                                                            3    5               15
17. Use integration by parts,                                                    26. Substitute u = tan x
          1
              x sin πx dx                                                              tan3 x sec2 x dx =             u3 du
      −1
        1        1     1 1                                                                  u4     tan4 x
    = − x cos πx     +      cos πx dx                                                  =       +c=        +c
        π        −1    π −1                                                                 4        4
      2   1         1    2
    = + 2 sin πx       =                                                         27. Substitute u = sin x
      π π           −1   π                                                             √
                                                                                         sin x cos3 x dx
18. Use integration by parts, twice
          1                                                                                                               2 3/2 2 7/2
              x2 cos πx dx                                                             =      u1/2 (1 − u2 ) du =           u − u +c
      0
                                                                                                                          3     7
                                                1
          1 2               1       2                                                       2           2
    =       x sin πx            −                   x sin πx dx                        =      sin3/2 x − sin7/2 x + c
          π                 0       π       0                                               3           7
                                                             1
              2    1                    1            1                           28. Substitute u = sec x
    =−            − x cos πx                    +                cos πx dx
              π    π                    0            π   0                             tan3 x sec3 x dx =             (u2 − 1)u2 du
              2    1   1                        1                2
    =−               + 2 sin πx                          =−                                 u5   u3     3 sec5 x − 5 sec3 x
              π    π π                                           π2                    =       −    +c=                     +c
                                                0                                           5    3               15
19. Use integration by parts                                                     29. Complete the square,
       2                                                             2                      2
                      x4       2   1
         x3 ln x dx =    ln x −                                          x3 dx                     dx
     1                 4       1   4                             1
                                                                                       8 + 4x + x2
                 x4 2            15                                                            2                                     x+2
    = 4 ln 2 −        = 4 ln 2 −                                                     =                 dx = tan−1                             +c
                 16 1            16                                                      (x + 2)2 + 22                                2
402                                                  CHAPTER 6. INTEGRATION TECHNIQUES

 30. Complete the square,                                          3         3
                                                         =              +          dx
           3                                                     x−3 x+4
       √           dx
         −2x − x2                                        = 3 ln |x − 3| + 3 ln |x + 4| + c
                3
     =                  dx = 3 sin−1 (x − 1) + c   39. Use the method of PFD
           1 − (x − 1)2                                  4x2 + 6x − 12
                                                                           dx
 31. Use the table of integrals,                              x3 − 4x
                           √                                   3     −1         2
            2                4 − x2                    =          +        +           dx
          √        dx = −           +c                         x x+2 x−2
       x2 4 − x2              2x
                                                       = 3 ln |x| − ln |x + 2| + 2 ln |x − 2| + c
 32. Substitute u = 9 − x2
           x            1   du                     40. Use the method of PFD
       √         dx = −                                  5x2 + 2           2       3x
         9 − x2         2  u1/2                                    dx =       +               dx
                                                          x3 + x           x x2 + 1
         1             1                                            3
     = − u3/2 + c = − (9 − x2 )3/2 + c                 = 2 ln |x| + ln(x2 + 1) + c
         3             3                                            2
 33. Substitute u = 9 − x2                         41. Use the table of integrals,
           x3           1   (9 − u)
       √         dx = −             du                        ex cos 2x dx
         9−x   2        2    u1/2
         9                1                                   (cos 2x + 2 sin 2x)ex
     =−       u−1/2 du +     u1/2 du                     =                          +c
         2                2                                             5
                  1
     = −9u1/2 + u3/2 + c
                  3                                42. Substitute u = x2 followed by integration by
                        1                              parts
     = −9(9 − x ) + (9 − x2 )3/2 + c
                 2 1/2
                        3                                                1
                                                         x3 sin x2 dx =      u sin u du
 34. Substitute u = x2 − 9                                               2
                                                           1           1
          x3          1                                = − u cos u +       cos u du
       √         dx =     (u + 9)u−1/2 du                  2           2
         x2 − 9       2                                    1           1
       1                                               = − u cos u + sin u + c
     = u3/2 + 9u1/2 + c                                    2           2
       3                                                   1             1
                                                       = − x2 cos x2 + sin x2 + c
       1                                                   2             2
     = (9 − x2 )3/2 + 9(9 − x2 )1/2 + c
       3                                           43. Substitute u = x2 + 1
                                                                         1
 35. Substitute u = x2 + 9                               x x2 + 1 dx =       u1/2 du
                                                                         2
          x3          1                                  1            1
       √         dx =     (u − 9)u−1/2 du              = u3/2 + c = (x2 + 1)3/2 + c
         x2 + 9       2                                  3            3
       1
     = u3/2 − 9u1/2 + c                            44. Use the table of integrals
       3
       1 2                                                        1 − x2 dx
     = (x + 9)3/2 − 9(x2 + 9)1/2 + c
       3                                                      1               1
                                                         =         1 − x2 +     sin−1 x + c
 36. Substitute u = x + 9                                     2               2
           4              du
       √        dx = 4 √                                      4          A        B
         x+9               u                       45.               =       +
                    √                                    x2 − 3x − 4    x+1 x−4
     = 8u1/2 + c = 8 x + 9 + c                           4 = A(x − 4) + B(x + 1)
                                                           = (A + B)x + (−4A + B)
 37. Use the method of PFD                                      4      4
            x+4                                          A = − ;B =
                      dx                                        5      5
       x2 + 3x + 2                                            4         −4/5     4/5
               3       −2                                            =       +
     =              +          dx                        x2 − 3x − 4    x+1 x−4
             x+1 x+2
     = 3 ln |x + 1| − 2 ln |x + 2| + c                       2x        A   B
                                                   46.              =    +
                                                         x2 + x − 6   x−2 x+3
 38. Use the method of PFD
          5x + 6                                         2x = A(x + 3) + B(x − 2)
                   dx                                       = (A + B)x + (3A − 2B)
       x2 + x − 12
CHAPTER 6 REVIEW EXERCISES                                                                                               403

           4      6
      A=     ;B =                                              53.       sec4 x dx
           5      5
          2x        4/5   6/5                                         1                    2
                 =      +                                            =  sec2 x tan x +         sec2 x dx
      x2 + x − 6    x−2 x+3                                           3                    3
                                                                      1                    2
           −6         A      B      C                                = sec2 x tan x +        tan x + c
47.                = +          +                                     3                    3
      x3 + x2 − 2x    x    x−1 x+2
      − 6 = A(x − 1)(x + 2) + Bx(x + 2) + cx(x − 1)
                                                               54.       tan5 x dx
      A = −3; B = −2; C = −1
           −6         −3     −2      −1                               1
                   =     +       +                                   =  tan4 x −         tan3 x dx
      x3 + x2 − 2x     x    x−1 x+2                                   4
                                                                      1              1
    x2 − 2x − 2  A Bx + c                                            = tan4 x −        tan2 x + tan x dx
48.             = + 2                                                 4              2
       x3 + x    x x +1                                               1              1
                                                                     = tan4 x −        tan2 x − ln | cos x| + c
      x2 − 2x − 2 = A(x2 + 1) + (Bx + c)x                             4              2
      = (A + B)x2 + cx + A                                     55. Substitute u = 3 − x
      A = −2; B = 3; C = −2                                               4                          1
                                                                                dx = −4                    du
      x2 − 2x − 2   −2 3x − 2                                        x(3 − x)2                   (3 − u)u2
           3+x
                  =     + 2
         x           x    x +1                                           4    3−u    4
                                                                     =     ln     +    +c
         x−2          A      B                                           9     u    3u
49.               =       +
      x2 + 4x + 4   x + 2 (x + 2)2                                       4     x        4
      x − 2 = A(x + 2) + B                                           =     ln     +          +c
                                                                         9    3−x   3(3 − x)
      A = 1; B = −4
         x−2           1     −4                                56. Substitute u = sin x
                  =       +                                                 cos x                            du
      x2 + 4x + 4   x + 2 (x + 2)2                                                      dx =
                                                                        2                               u2 (3 + 4u)
                                                                     sin x(3 + 4 sin x)
       x2 − 2     Ax + B   Cx + D
50.              = 2     + 2                                             4    3 + 4u    1
      (x 2 + 1)2   x +1   (x + 1)2                                   =     ln        −    +c
                                                                         9       u     3u
      x2 − 2 = (Ax + B)(x2 + 1) + cx + D                                 4    3 + 4 sin x      1
      A = 0; B = 1; C = 0; D = −3                                    =     ln             −         +c
                                                                         9       sin x      3 sin x
       x2 − 2        1     −3
                 = 2   + 2                                               √                9
      (x 2 + 1)2  x + 1 (x + 1)2                                                      2     + x2
                                                                      9 + 4x2             4
                                                               57.       2
                                                                              dx =               dx
51. Substitute u = e2x                                                x                  x2                         
      e3x 4 + e2x dx                                                       9     2
                                                                      − 4 + x                                       
                                          1                        = 2
                                                                                  + ln x + 9/4 + x2                 +c
      =    e   2x
                    4e2x   +   e4x dx   =     4u +   u2   du                x                                        
                                          2
        1                                                                 √
      =         (u + 2)2 − 4 du                                                9 + 4x2                      9
        2                                                            =−                  + 2 ln x +           + x2 + c
        1                                                                        x                          4
      = (u + 2) (u + 2)2 − 4
        4
        − ln |(u + 2) + (u + 2)2 − 4| + c                                      x2          1           x2
                                                               58.       √            dx =                      dx
                  √                                                          4 − 9x 2      3         4/9 − x2
        (e2x + 2) 4e2x + e4x
      =                                                               1              2       3x
                   4                                               = − x 4/9 − x2 +    sin−1    +c
        − ln (e2x + 2) + 4e2x + e4x + c                               6             27        2
                                                                     √
                                                                       4 − x2
52. Substitute u = x2                                          59.            dx
                       1                                                 x
                                                                                        √
      x x4 − 4 dx =          u2 − 4 du                                              2 + 4 − x2
       √               2                                           = 4 − x2 − 2 ln               +c
      u u2 − 4                                                                            x
    =            − ln |u + u2 − 4| + c
        √4
      x2 x4 − 4                                                                x2           1             1
    =             − ln |x2 + x4 − 4| + c                       60.                     dx =                      dx
           4                                                             (x6   − 4)3/2      3        (u2 − 4)3/2
404                                                                             CHAPTER 6. INTEGRATION TECHNIQUES

         1            2 sec θ tan θ                                                  So the original integral diverges.
       =                              dx
         3          (4 sec2 θ − 4)3/2
                                                                                          2               2
         1          sec θ tan θ                                                           x dx                x dx
       =                        dx                                             68.               = lim
         3            tan3 θ                                                          1  1 − x2   R→1 +
                                                                                                        R   1 − x2
                                                                                                            2
         1                             x3                                                       1       2
       =          csc θ cot θ dx = − √       +c                                      = lim+ − ln |1 − x | = ∞
         3                          3 x6 − 4                                            R→1     2           R
 61. Substitute u = x2 − 1                                                           So the original integral diverges.
        1               0
            x             du
                 dx =                                                          69. If c(t) = R, then the total amount of dye is
      0   x2 − 1       −1 2u
                 R                                                                        T                    T
                   du               0
     = lim            = lim− ln |u|                                                           c(t) dt =            R dt = RT
        R→0− −1 2u      R→0         −1                                                0                    0
                                                                                                       2T t
     This limit does not exist, so the integral di-                                  If c(t) = 3te          , then we can use integration by
     verges.                                                                         parts to get
                                                                                          T
 62. Substitute u = x − 4                                                                     3te2T t dt
        10             6
            2 dx         2 du                                                         0
           √      =      √                                                                              T
      4      x−4     0      u                                                          3t 2T t T           3 2T t
                          6                                            6
                                                                                     =   e       −           e dt
                                                                                      2T       0          2T
       = lim+                 2u−1/2 du = lim+ 4u1/2                                                  0
                                                                                                           T
            R→0       R                        R→0                     R               3   2     3 2T t
                      √
                      √      √                                                       = e2T −         e
       = lim+ (4 6 − 4 R) = 4 6                                                        2        4T 2       0
            R→0                                                                       3    2     3 2T 2       3
                                                                                     = e2T −         e     +
            ∞
            3              R
                             3                                                        2         4T 2         4T 2
 63.         2
               dx = lim         dx                                                   Since R = c(T ) = 3T e2T
                                                                                                                             2

        1  x         R→∞ 1 x2
                   R
                 3            3                                                      The cardiac output is
       = lim −        = lim − + 3 = 3                                                                                 2
          R→∞    x 1   R→∞    R                                                          RT                  3T 2 e2T
                                                                                       T
                                                                                                  = 3 2T 2       3                3
 64. Use integration by parts,                                                           c(t) dt      2e   − 4T 2 e2T 2 +        4T 2
                                                                                      0
            ∞                                  R                                                      RT 3
                xe−3x dx = lim                     xe−3x dx                          =     2 e2T 2 /2 − 3e2T 2 /4 + 3/4
        1                           R→∞    1                                            3T
                                                       R
                          −3x         x 1                                      70. With u = ln(x + 1) and v = x
       = lim         e              − −
            R→∞                       3 9   1
                                     R 1    4e−3                                          ln x + 1 dx
       = lim e−3R                  − −    +
            R→∞                      3  9     9                                                           x
              −3                                                                     = x ln(x + 1) −          dx
         4e                                                                                             x+1
       =                                                                                                       1
           9                                                                         = x ln(x + 1) −     1−           dx
            ∞                 R                                                                               x+1
             4                    4
 65.            2
                  dx = lim            dx                                             = x ln(x + 1) − x + ln(x + 1) + c
        0  4+x         R→∞ 0 4 + x2
                      x R                                                            With u = ln(x + 1) and v = x + 1
       = lim 2 tan−1      = lim 2 tan−1 R = π
          R→∞         2 0  R→∞                                                            ln x + 1 dx
                                                           R
            ∞
                                               e−x
                                                       2
                                                                   1                                          x+1
 66.
                      2
                xe−x dx = lim −                                =                     = (x + 1) ln(x + 1) −        dx
                                    R→∞         2                  2                                          x+1
        0
                                                           0
                                                           0
                                                                                     = (x + 1) ln(x + 1) − x + c
            0                                      −x2
                      2                        e                           1         The two answers are the same.
                xe−x dx = lim −                                    =−
        −∞                          R→∞            2                       2                               en
                                                           −R                                     1
                ∞
                               2      1 1                                      71. fn,ave       = n                ln x dx
       So            xe−x dx =         − =0                                                      e      0
                                      2 2                                                              en
                −∞                                                                     1
                                                                                     =   lim       ln x dx
           32
                          3            2                                              en R→0 R
 67.          dx = lim+      dx                                                        1                   en
        0  x2      R→0  R x2                                                         = n lim (x ln x − x)
                   2                                                                  e R→0                R
                 3                                                                     1
       = lim+ −      =∞                                                                          n     n
                                                                                     = n lim (ne − e − R ln R + R) = n − 1
          R→0    x R                                                                  e R→0
CHAPTER 6 REVIEW EXERCISES                                                                                        405

72. First we notice that                                  So we want to find the value of a so that
          P (t < x < t + ∆t)                                a − 90
     lim                                                     √
    ∆t→0          ∆t                                           450 e−u2 du = 0.49√π
                  t+∆t
              1                                            0
    = lim              f (x) dx = f (t)
       ∆t→0 ∆t t                                          Using a CAS we find
                                                          a − 90
    And then the failure rate function                     √     ≈ 1.645, a ≈ 125
          P (x < t + ∆t|x > t)                               450
     lim
    ∆t→0            ∆t                                    Some body being called a genius need to have
              1 P (t < x < t + ∆t)                        a IQ score of at least 125.
    = lim
       ∆t→0 ∆t       P (x > t)                                           ∞
             P (t < x < t + ∆t)    1     f (t)                                   1                    ∞       π
    = lim                       ·      =              76. I (1) =                      dx = tan−1 x       =
       ∆t→0          ∆t           R(t)   R(t)                        0       (1 + x2 )                0       2
                                                          Now, I (n + 1)
                                       t                                                ∞
                                                                    1          1
73. R(t) = P (x > t) = 1 −                 ce−cx dx       =             n            dx
                                   0                           (1 + x2 )   (1 + x2 )    0
                     t                                                          −n
                                                                                                     
    = 1 − (−e−cx )       = 1 − (1 − e−ct ) = e−ct                 ∞   d 1 + x2              1           
                     0                                      −                                    dx dx
                                                                0         dx            (1 + x2 )
    Hence
                                                                                                        
    f (t)  ce−ct                                                 tan−1 x
                                                                               ∞          ∞
                                                                                           xtan−1 x
          = −ct = c                                       =                        + 2n
    R(t)    e                                                            n                          n dx
                                                                (1 + x2 ) 0           0   (1 + x2 )
                                                                                     ∞
                               s                                                         xtan−1 x
                                                          ⇒ I (n + 1) = 2n                       n dx     ... (1)
74. (a) P (x > s) = 1 −            xe−x dx                                         0    (1 + x2 )
                                                                                 ∞
                              0
                                           s                                        1 + x2 − x2
         = 1 − (−xe−x − e      −x
                                       )                  Also, I (n + 1) =                   n+1 dx
                                           0                                   0    (1 + x2 )
                                                                        ∞
         = 1 − (1 − se−s − e−s )                                                x2
                                                          = I (n) −                  n+1 dx
         = (s + 1)e−s                                                 0   (1 + x2 )
                                                                                                       ∞
         P (x > s + t|x > s)                                                 1              x2
            P (x > s + t)                                 = I (n) −               n               dx
         =                                                              (1 + x2 )       (1 + x2 )      0
              P (x > s)                                                             −n
                                                                                                             
                                                                  ∞    d 1 + x2                  x 2
            (s + t + 1)e−s−t
                                                                                                                  
                                      t                     −                                            dx dx
         =              −s
                             = e−t +     e−t                        
                                                                              dx              (1 + x2 )
               (s + 1)e              1+s                        0                                                 
                                                                                              ∞
     (b) Take the derivative w.r.t s:                                         x − tan−1 x
          d            t                       t          = I (n) −                   n+1
              e−t +       e−t    = −e−t                                       (1 + x2 )       0
         ds          1+s                   (1 + s)2                      ∞
         When t > 0, since e−t > 0 and                                       x x − tan−1 x
                                                               +2n                 n+1 dx
         (1 + s)2 > 0, the above derivative is neg-                  0   (1 + x2 )
                                                                                ∞
         ative, so the function P (x > s + t|x > s)                                x2 − xtan−1 x
         is decreasing w.r.t. s.                          ds = I (n) − 2n                     n+1 dx
                                                                              0      (1 + x2 )
                                                                            ∞
                                                                                    x2
75. We use a CAS to see that                              = I (n) − 2n                   n+1 dx
      100
             1            2                                               0    (1 + x2 )
          √      e−(x−100) /450 dx ≈ 24.75%                           ∞
                                                                          xtan−1 x
     90     450π                                             + 2n                 n+1 dx
                                                                    0   (1 + x2 )
    We can use substitution to get
               ∞                                          Therefore,
       1                   2
    √            e−(x−100) /450 dx                        I(n + 1) = I (n)
      450π a                                                                   ∞
        1     ∞
                      −u2
                                                                                        x2
    =√      a − 90 e      du                                           −2n                 n+1 dx+I (n + 1)
         π √                                                                 0    (1 + x2 )
               450                                        (using (1))
            ∞
                   2       √                              I (n + 1)
    Since       e−x dx = π,                               = I (n) − 2n (I (n) − I (n + 1)) + I (n + 1)
           −∞        √
       ∞
          −x2          π
         e    dx =                                        Hence proved.
     0                2
406                                  CHAPTER 6. INTEGRATION TECHNIQUES

                     2n − 1                  3
      As,I (n + 1) =         I (n)    I (2) =  I(1),
                        2n                   4
              2n − 3                         3 π
      I (n) =        I (n − 1)        I (1) = · ,
              2n − 2                         4 2
                  2n − 5
      I (n − 1) =        I (n − 2)
                  2n − 4                             2n − 3 2n − 5 2n − 7
                  2n − 7              Thus, I (n) =           ·      ·    ···
      I (n − 2) =        I (n − 3)                   2n − 2 2n − 4 2n − 6
                  2n − 6                           1 3      2n − 3 π
      and so on therefore,            I (1) I (n) = · · · ·       ·
                                                   2 4      2n − 2 2

Ism et chapter_6

  • 1.
    1 6. sec 2t tan 2t dt = sec 2t + c 2 7. (x2 + 4)2 dx = (x4 + 8x2 + 16)dx x5 8 = + x3 + 16x + c 5 3 Chapter 6 8. x(x2 + 4)2 dx = (x5 + 8x3 + 16x)dx x6 = + 2x4 + 8x2 + c Integration 3 6 3 x 9. dx = tan−1 + c Techniques 16 + x2 2 4 1 4 10. 2 dx = tan−1 x + c 4 + 4x 2 1 11. √ dx 3 − 2x − x2 6.1 Review of Formulas 1 x+1 = dx = arcsin +c and Techniques 4 − (x + 1)2 2 1 ax x+1 1. eax dx = e + c, for a = 0. 12. √ dx a 3 − 2x − x2 1 −2(x + 1) =− dx 1 2 4 − (x + 1)2 2. cos(ax)dx = sin(ax) + c, for a = 0. a 1 = − · 2[4 − (x + 1)2 ]1/2 + C 2 1 1 1 3. √ dx = dx = − 4 − (x + 1)2 + c a2 − x2 x 2 a 1− a 4 x 1 13. dx Let u = , du = dx. 5 + 2x + x2 a a 1 x+1 1 =4 dx = 2 tan−1 +c = √ du = sin−1 (u) + c 4 + (x + 1)2 2 1 − u2 −1 x = sin + c, a > 0. 4x + 4 a 14. dx 5 + 2x + x2 b 2(x + 1) 4. √ dx =2 dx = 2 ln | 4 + (x + 1)2 | + c |x| x2 − a2 4 + (x + 1)2 b 1 4t = dx 15. dt x 2 a 5 + 2t + t2 |x| a −1 4t + 4 4 x 1 = dt − dt Let u = , du = dx and |au| = |x| . 5 + 2t + t2 5 + 2t + t2 a a t+1 b = 2 ln 4 + (t + 1) 2 − 2tan−1 +c = √ du 2 |au| u2 − 1 b 1 t+1 2 (t + 1) = √ du 16. dt = dt |a| |u| u2 − 1 t2 + 2t + 4 2 (t + 1) + 3 b 1 = sec−1 (u) + c 2 = ln (t + 1) + 3 + c |a| 2 b x = sec−1 + c, a > 0. 17. 1 e3−2x dx = − e3−2x + c |a| a 2 1 3 5. sin(6t)dt = − cos(6t) + c 18. 3e−6x dx = − e−6x + c 6 6 360
  • 2.
    6.1. REVIEW OFFORMULAS AND TECHNIQUES 361 2 −1/3 30. Let u = ex , du = ex dx 19. Let u = 1 + x2/3 , du = x dx 3 ex 1 4 3 √ dx = √ du dx = 4 u−1 du 1 − e2x 1 − u2 x1/3 (1 + x2/3 ) 2 = sin−1 u + C = sin−1 ex + c 2/3 = 6 ln |u| + C = 6 ln |1 + x |+c 31. Let u = x2 , du = 2xdx 3 x 1 1 20. Let u = 1 + x3/4 , du = x−1/4 dx √ dx = √ du 4 1 − x4 2 1 − u2 2 2 dx = dx 1 1 x1/4 + x x1/4 (1 + x3/4 ) = sin−1 u + C = sin−1 x2 + c 4 8 2 2 =2 u−1 du = ln |u| + C 3 3 32. Let u = 1 − x4 , du = −4x3 dx 8 2x3 1 = ln |1 + x3/4 | + c √ dx = − u−1/2 du 3 1−x 4 2 √ 1 = −u1/2 + C = −(1 − x4 )1/2 + c 21. Let u = x, du = √ dx √ 2 x sin x 1+x √ dx = 2 sin udu 33. dx x 1 + x2 √ 1 1 2x = −2 cos u + C = −2 cos x + c = dx + dx 1 + x2 2 1 + x2 1 1 1 22. Let u = , du = − 2 dx = tan−1 x + ln |1 + x2 | + c x x 2 cos(1/x) dx = − cos udu 1 x2 34. √ dx 1 x+x = − sin u + C = − sin + c x 1 = x−1/2 · dx 23. Let u = sin x, du = cos xdx 1 + x1/2 π 0 = 2 ln | 1 + x1/2 | + c cos xesin x dx = eu du = 0 0 0 ln x2 1 2 35. dx = 2 ln x dx 24. Let u = tan x, du = sec xdx x x π/2 1 1 sec2 xetan x dx = eu du Let u = ln x, du = dx. x 0 0 2 u 1 =2 u du = u2 + c = (ln x) + c =e =e−1 0 3 3 3 0 x3 26 25. sec x tan xdx 36. e2 ln x dx = x2 dx = = −π/4 1 1 3 1 3 0 √ 4 = sec x =1− 2 √ −π/4 37. x x − 3dx 3 π/2 4 √ π/2 26. csc2 xdx = − cot x =1 = (x − 3 + 3) x − 3dx π/4 π/4 3 4 4 3 2 = (x − 3)3/2 dx + 3 (x − 3)1/2 dx 27. Let u = x , du = 3x dx 3 3 x2 1 1 2 4 2 4 12 dx = du = (x − 3)5/2 + 3 · (x − 3)3/2 = 1 + x6 3 1 + u2 5 3 5 3 3 1 1 = tan−1 u + C = tan−1 x3 + c 1 3 3 38. x(x − 3)2 dx 0 x5 1 1 28. dx = ln(1 + x6 ) + c = (x3 − 6x2 + 9x)dx 1 + x6 6 0 1 1 x x4 9 11 29. √ dx = sin−1 + c = − 2x3 + x2 = 4−x 2 2 4 2 0 4
  • 3.
    362 CHAPTER 6. INTEGRATION TECHNIQUES 4 2 x2 + 1 39. √ dx 47. f (x)dx 1 x 0 4 4 1 2 x x2 = x3/2 dx + x−1/2 dx = 2+1 dx + dx 1 1 0 x 1 x2 + 1 1 2 4 1 1 2 5/2 4 72 = ln |x2 + 1| + 1− 2 dx = x + 2x1/2 = 2 0 1 x +1 5 1 1 5 1 2 = ln 2 + (x − arctan x) 0 0 2 1 2 1 −x2 e−4 − 1 ln 2 π 40. xe−x dx = − e = = + 1 + − arctan 2 −2 2 −2 2 2 4 4x + 1 5 5 x 48. dx 41. dx = √ arctan √ + c 2x2 + 4x + 10 3 + x2 3 3 5 4x + 4 3 dx: N/A = 2 + 4x + 10 dx − 2 + 4x + 10 dx 3 + x3 2x 2x 3 1 = ln |2x2 + 4x + 10| − dx 1 2 (x + 1)2 + 4 42. sin(3x)dx = sin(3x)3dx 3 3 x+1 Let u = 3x, du = 3dx. = ln |2x2 + 4x + 10| − tan−1 +c 1 1 4 2 = (sin u)du = − cos u + c 3 3 1 1 49. dx = tan−1 (x) + c. = − cos(3x) + c. (1 + x2 ) 3 x 1 2x 2) dx = dx (1 + x 2 (1 + x2 ) sin3 xdx = (sin2 x) sin xdx 1 = ln 1 + x2 + c. 2 = (1 − cos2 x)sin xdx x2 x2 + 1 − 1 dx = dx Let u = cos x, du = − sin xdx. (1 + x2 ) (1 + x2 ) 2 = 1 − u2 (−du) = u2 du − du x +1 1 = 2 + 1) dx − dx (x (1 + x2 ) u3 cos3 x 1 = −u= − cos x. = dx − dx 3 3 (1 + x2 ) = x − tan−1 (x) + c. 43. ln xdx: N/A x3 1 x2 2) dx = 2xdx Substituting u = ln x, (1 + x 2 (1 + x2 ) ln x 1 dx = ln2 x + c Let u = x2 , du = 2xdx. 2x 4 1 u 1 u+1−1 = du = du 2 1+u 2 1+u 44. Substituting u = x4 1 u+1 1 = du − du x3 1 2 1+u 1+u dx = arctan x4 + c 1 + x8 4 1 1 = du − du x4 2 1+u dx: N/A 1 1 + x8 = (u − ln (1 + u)) + c 2 1 1 45. e−x dx: N/A 2 = x2 − ln 1 + x2 + c. 2 2 Substituting u = −x2 Hence we can generalize this as follows, 2 1 2 xn xe−x dx = − e−x + c 1 + x2 dx 2 1 xn−2 = xn−1 − dx 46. sec xdx: N/A n−1 1 + x2 x 1 1 sec2 xdx = tan x + c 50. dx = 2xdx 1 + x4 2 1 + x4
  • 4.
    6.2. INTEGRATION BYPARTS 363 Let u = x2 , du = 2xdx. 1 2x 1 2x xe2x dx =xe − e dx 1 1 1 2 2 = du = tan−1 (u) + c 1 1 2 1 + u2 2 = xe2x − e2x + c. 1 2 4 = tan−1 x2 + c. 2 4. Let u = ln x, dv = x dx x3 1 1 1 x2 4 dx = 4x3 dx du = dx and v = . 1+x 4 1 + x4 x 2 Let u = 1 + x4 , du = 4x3 . 1 1 x ln x dx = x2 ln x − x dx 1 1 1 2 2 = du = ln (u) + c 1 1 4 u 4 = x2 ln x − x2 + c. 1 2 4 = ln 1 + x4 + c. 4 5. Let u = ln x, dv = x2 dx x5 1 1 dx du = dx, v = x3 . 1 + x4 x 3 1 x4 2 1 3 1 3 1 = 2xdx x ln xdx = x ln x − x · dx 2 1 + x4 3 3 x Let u = x2 , du = 2xdx. 1 3 1 = x ln x − x2 dx 1 u2 1 u2 + 1 − 1 3 3 = du = du 1 1 2 1+u 2 2 1 + u2 = x3 ln x − x3 + c. 1 u2 + 1 1 3 9 = du − du 2 1 + u2 1 + u2 1 6. Let u = ln x, du = dx. 1 1 x = du − du ln x u2 1 2 1 + u2 dx = udu = + c = (ln x)2 + c. 1 x 2 2 = u − tan−1 (u) + c 2 1 2 7. Let u = x2 , dv = e−3x dx = x − tan−1 x2 + c. 1 2 du = 2xdx, v = − e−3x Hence we can generalize this as follows, 3 x4n+1 1 x2n−2 x4(n−1)+1 I = x2 e−3x dx dx = − dx 1 + x4 2 n−1 1 + x4 1 1 and = − x2 e−3x − − e−3x · 2xdx 3 3 x4n+3 1 x2n x4(n−1)+3 1 2 dx = − dx = − x2 e−3x + xe−3x dx 1+x 4 4 n 1 + x4 3 3 Let u = x, dv = e−3x dx 1 6.2 Integration by Parts du = dx, v = − e−3x 3 1 I = − x2 e−3x 1. Let u = x, dv = cos xdx 3 du = dx, v = sin x. 2 1 1 + − xe−3x − − e−3x dx x cos xdx = x sin x − sin xdx 3 3 3 1 2 2 = x sin x + cos x + c = − x2 e−3x − xe−3x + e−3x dx 3 9 9 1 2 2 −3x 2. Let u = x, dv = sin 4xdx = − x2 e−3x − xe−3x − e +c 1 3 9 27 du = dx, v = − cos 4x 4 8. Let u = x3 , du = 3x2 dx. 3 1 1 x sin 4x dx x2 ex dx = eu dx = eu + c 3 3 1 1 1 x3 = − x cos 4x − − cos 4x dx = e + c. 4 4 3 1 1 = − x cos 4x + sin 4x + c. 4 16 9. Let I = ex sin 4xdx 3. Let u = x, dv = e2x dx u = ex , dv = sin 4xdx 1 1 du = dx, v = e2x . du = ex dx, v = − cos 4x 2 4
  • 5.
    364 CHAPTER 6. INTEGRATION TECHNIQUES 1 1 1 I = − ex cos 4x − − cos 4x ex dx du = cos xdx v = − cos 2x 4 4 2 1 x 1 1 1 1 = − e cos 4x + x e cos 4xdx I = cos x sin 2x + − cos 2x sin x 4 4 2 2 2 1 Use integration by parts again, this time let − − cos 2x cos xdx u = ex , dv = cos 4xdx 2 1 1 1 1 du = ex dx, v = sin 4x = cos x sin 2x − cos 2x sin x + Idx 4 2 4 4 1 x I = − e cos 4x So, 4 3 1 1 1 1 x 1 I = cos x sin 2x − cos 2x sin x + c1 + e sin 4x − (sin 4x)ex dx 4 2 4 4 4 4 1 1 1 2 1 I = − ex cos 4x + ex sin 4x − I I = cos x sin 2x − cos 2x sin x + c 4 16 16 3 3 So, 17 1 1 12. Here we use the trigonometric identity: I = − ex cos 4x + ex sin 4x + c1 sin 2x = 2 sin x cos x. 16 4 16 4 1 We then make the substitution I = − ex cos 4x + ex sin 4x + c 17 17 u = sin x, du = cos x dx. 10. Let, u = e2x , dv = cos x dx so that, sin x sin 2x dx = 2 sin2 x cos x dx du = 2e2x dx and v = sin x. e2x cos x dx 2 3 2 = 2u2 du = u + c = sin3 x + c 3 3 = e2x sin x − 2 e2x sin x dx This integral can also be done by parts, twice. If this is done, an equivalent answer is ob- Let, u = e2x , dv = sin x dx so that, tained: du = 2e2x dx and v = − cos x. 1 2 cos x sin 2x − cos 2x sin x + c e2x sin x dx 3 3 13. Let u = x, dv = sec2 xdx 2x 2x = −e cos x + 2 e cos x dx du = dx, v = tan x e2x cos x dx x sec2 xdx = x tan x − tan xdx sin x = e2x sin x + 2e2x cos x − 4 e2x cos x dx = x tan x − dx cos x Now we notice that the integral on both of Let u = cos x, du = − sin xdx 1 these is the same, so we bring them to one side x sec2 xdx = x tan x + du of the equation. u = x tan x + ln |u| + c 5 e2x cos x dx = x tan x + ln |cos x| + c = e2x sin x + 2e2x cos x + c1 14. Let u = (ln x)2 , dv = dx ln x e2x cos x dx du = 2 dx, v = x x 1 2x 2 = e sin x + e2x cos x + c I = (ln x)2 dx 5 5 ln x = x(ln x)2 − x·2 dx 11. Let I = cos x cos 2xdx x and u = cos x, dv = cos 2xdx = x(ln x)2 − 2 ln xdx 1 du = sin xdx, v = sin 2x Integration by parts again, 2 1 1 1 u = ln x, dv = dxdu = dx, v = x I = cos x sin 2x − sin 2x(− sin x)dx x 2 2 1 2 1 1 I = x(ln x) − 2 x ln x − x · dx = cos x sin 2x + sin x sin 2xdx x 2 2 Let,u = sin x, dv = sin 2xdx = x(ln x)2 − 2x ln x + 2 dx
  • 6.
    6.2. INTEGRATION BYPARTS 365 = x(ln x)2 − 2x ln x + 2x + c 20. Let u = 2x, dv = cos x dx duπ= 2 dxandv = sin x. π 2 15. Let u = x2 , dv = xex dx so that, du = 2x dx 2x cos xdx = 2x sin x|0 − 2 π sin xdx 1 2 0 0 and v = ex (v is obtained using substitu- = (2x sin x + π 2 cos x)|0 = −4. 2 tion). 2 1 2 2 1 x3 ex dx = x2 ex − xex dx 21. x2 cos πxdx 2 0 1 2 1 2 = x2 ex − ex + c Let u = x2 , dv = cos πxdx, 2 2 sin πx du = 2xdx, v = . π x 1 1 1 16. Let u = x2 , dv = dx sin πx sin πx 3/2 x2 cos πxdx = x2 − 2xdx (4 + x2 ) 0 π 0 0 π 1 2 1 du = 2xdx, v = − √ = (0 − 0) − x sin (πx) dx 4 + x2 π 0 3 1 x x 2 3/2 dx = x2 3/2 dx =− x sin (πx) dx (4 + x2 ) (4 + x2 ) π 0 x2 1 Let u = x, dv = sin(πx)dx, = −√ + √ 2xdx cos(πx) 4+x 2 4 + x2 du = dx, v = − . x2 π 1 =− + 2 (4 + x2 ) + c. 2 (4 + x2 ) − xsin(πx)dx π 0 1 1 17. Let u = ln(sin x), dv = cos xdx 2 x cos(πx) cos(πx) =− − − − dx 1 π π 0 0 π du = · cos xdx, v = sin x 1 sin x 2 cos π 1 sin(πx) =− (− − 0) + I = cos x ln(sin x)dx π π π π 0 = sin x ln(sin x) 2 1 1 2 1 =− + (0 − 0) = − 2 − sin x · · cos xdx π π π π sin x 1 = sin x ln(sin x) − cos xdx 22. x2 e3x dx = sin x ln(sin x) − sin x + c 0 Let u = x2 , dv = e3x dx, e3x 18. This is a substitution u = x2 . du = 2xdx, v = . 1 3 x sin x2 dx = sin udu 1 x2 e3x 1 1 3x e 2 x2 e3x dx = − 2xdx 1 1 3 0 3 = − cos u + c = − cos x2 + c. 0 0 2 2 1 3 2 1 3x = e −0 − xe dx. 19. Let u = x, dv = sin 2xdx 3 3 0 1 Let u = x, dv = e3x dx, du = dx, v = − cos 2x e3x 2 dv = dx, v = . 1 3 x sin 2xdx e3 2 1 3x 0 − xe dx 1 1 1 1 3 3 0 = − x cos 2x − − cos 2x dx e3 2 e3x 1 1 3x e 2 0 0 2 = − x − dx 1 1 1 3 3 3 0 0 3 = − (1 cos 2 − 0 cos 0) + cos 2xdx 1 2 2 0 e3 2 e3 e3x 1 = − − dx 1 1 1 3 3 3 0 3 = − cos 2 + sin 2x 3 1 2 2 2 0 e 2 e3 e3x 1 1 = − − = − cos 2 + (sin 2 − sin 0) 3 3 3 9 0 2 4 e 3 2 e3 1 3 1 1 = − − e −1 = − cos 2 + sin 2 3 3 3 9 2 4
  • 7.
    366 CHAPTER 6. INTEGRATION TECHNIQUES e3 2e3 2 3 x cos (ax) sin (ax) = − + e −1 =− + + c, a = 0. 3 9 27 a a2 e3 2e3 2e3 2 5e3 2 = − + − = − 3 9 27 27 27 27 27. (xn ) (ln x) dx = (ln x) (xn ) dx 10 Let u = ln x, dv = xn dx, 23. ln 2xdx 1 xn+1 1 du = dx, v = . Let u = ln 2x, dv = dx x (n + 1) 1 du = dx, v = x. (ln x)(xn ) dx x 10 10 10 1 xn+1 xn+1 dx ln (2x)dx = x ln (2x)|1 − x dx = (ln x) − 1 1 x (n + 1) (n + 1) x 10 = (10 ln(20) − ln 2) − dx xn+1 (ln x) xn = − dx 1 10 (n + 1) (n + 1) = (10 ln(20) − ln 2) − [x]1 x n+1 (ln x) x n+1 = (10 ln(20) − ln 2) − (10 − 1) = − 2 + c, n = −1. (n + 1) (n + 1) = (10 ln(20) − ln 2) − 9. 24. Let, u = ln x, dv = x dx 28. (sin ax) (cos bx) dx 1 x2 du = dx, v = . x 2 Let u = sin ax, dv = (cos bx) dx 2 2 2 sin bx 1 1 du = a (cos ax) dx, v = . x ln xdx = x2 ln x − xdx b 1 2 1 1 2 2 1 2 1 3 sin ax cos bx dx = x ln x − x2 = 2 ln 2 − . 2 4 1 4 sin bx sin bx = (sin ax) − a (cos ax) dx b b 25. x2 eax dx (sin ax) (sin bx) a = − (cos ax) (sin bx) dx b b Let u = x2 , dv = eax dx, Let u = cos ax, dv = sin bxdx, eax cos bx du = 2xdx, v = . du = −a (sin ax) dx, v = − . aax b e eax x2 eax dx = x2 − 2xdx sin ax sin bx a a a − cos ax sin bx dx b b x2 eax 2 sin ax sin bx a − cos bx = − xeax dx. = − cos ax a a b b b Let u = x, dv = eax dx, eax − cos bx dv = dx, v = . − (− sin ax) adx a b 2 ax x e 2 sin ax sin bx a − cos ax cos bx − xeax dx = − a a b b b x2 eax 2 eax eax a = − x − dx − cos bx sin ax dx a a a a b x2 eax 2 xeax eax sin ax sin bx a cos ax cos bx = − − 2 +c = + a a a a b b2 a 2 x2 eax 2xeax 2eax + sin ax cos bx dx = − + 3 + c, a = 0. b a a2 a sin ax cos bx dx 26. x sin (ax) dx sin ax sin bx a cos ax cos bx = + Let u = x, dv = sin axdx, b b2 cos ax a 2 du = dx, v = − . + sin ax cos bx dx a b a 2 xsin (ax) dx sin ax cos bx dx − sin ax cos bx dx b − cos (ax) cos (ax) sin ax sin bx a cos ax cos bx =x − − dx = + a a b b2
  • 8.
    6.2. INTEGRATION BYPARTS 367 a2 1− sin ax cos bx dx + (n − 1) sinn xdx b2 sin ax sin bx a cos ax cos bx n sinn xdx = + b b2 = − sinn−1 x cos x sin ax cos bx dx − (n − 1) sinn−2 xdx b2 sin ax sin bx a cos ax cos bx = + 1 b2 − a2 b b2 sinn xdx = − sinn−1 x cos x n sin ax cos bx dx n−1 − sinn−2 xdx 1 n = 2 − a2 (b sin ax sin bx + a cos ax cos bx) , b a = 0 b = 0. 31. x3 ex dx = ex (x3 − 3x2 + 6x − 6) + c 29. Letu = cosn−1 x, dv = cos xdx du = (n − 1)(cosn−2 x)(− sin x)dx, v = sin x 32. cos5 xdx cosn xdx 1 4 = cos4 sin x + cos3 xdx = sin x cos n−1 x 5 5 1 − (sin x)(n − 1)(cosn−2 x)(− sin x)dx = cos4 sin x 5 = sin x cosn−1 x 4 1 2 + cos2 x sin x + cos xdx 5 3 3 + (n − 1)(cosn−2 x)(sin2 x)dx 1 4 = cos4 sin x + cos2 x sin x = sin x cosn−1 x 5 15 8 + (n − 1)(cosn−2 x)(1 − cos2 x)dx + sin x + c 15 = sin x cosn−1 x + (n − 1)(cosn−2 x − cosn x)dx 33. cos3 xdx 1 2 Thus, cosn xdx = cos2 x sin x + cos xdx 3 3 1 2 = sin x cosn−1 x + (n − 1) cosn−2 xdx = cos2 x sin x + sin x + c 3 3 − (n − 1) cosn xdx. 34. sin4 xdx n cosn xdx = sin x cosn−1 x 1 = − sin3 x cos x + 3 sin2 xdx 4 4 + (n − 1) cosn−2 xdx 1 3 1 1 = − sin3 x cos x + x − sin 2x 4 4 2 4 cosn xdx 1 1 n−1 35. x4 ex dx = sin x cosn−1 x + cos n−2 xdx 0 n n 1 = ex (x4 − 4x3 + 12x2 − 24x + 24) 0 30. Let u = sinn−1 x, dv = sin x dx = 9e − 24 du = (n − 1) sinn−2 x cos x, v = − cos x. sinn xdx 36. Using the work done in Exercise 34, π/2 = − sinn−1 x cos x sin4 xdx 0 + (n − 1) cos2 x sinn−2 xdx 1 3 3 π/2 = − sin3 x cos x + x − sin 2x = − sinn−1 x cos x 4 8 16 0 3π + (n − 1) (1 − sin2 x) sinn−2 xdx = 16 = − sinn−1 x cos x π/2 − (n − 1) sinn−2 xdx 37. sin5 xdx 0
  • 9.
    368 CHAPTER 6. INTEGRATION TECHNIQUES π/2 π/2 1 4 π/2 3 = − sin4 x cos x + sin xdx cosm xdx 5 0 5 0 0 1 π/2 (n − 1)(n − 3)(n − 5) · · · 2 = − sin4 x cos x = . 5 n(n − 2)(n − 4) · · · 3 0 π/2 4 1 2 41. Let u = cos−1 x, dv = dx + − sin2 x cos x − cos x 1 5 3 3 0 du = − √ dx, v = x (Using Exercise 30) 1 − x2 1 π π cos−1 xdx =− sin4 cos − sin4 0 cos 0 I= 5 2 2 4 1 2 π π 2 π 1 + − sin cos − cos = x cos−1 x − x −√ dx 5 3 2 2 3 2 1 − x2 8 x = = x cos−1 x + dx √ 15 1 − x2 Substituting u = 1 − x2 , du = −2xdx 38. Here we will again use the work we did in Ex- 1 1 ercise 34. I = x cos−1 x + √ − du u 2 sin6 xdx 1 = x cos1 x − u−1/2 du 1 5 2 = − sin5 x cos x + sin4 xdx 1 6 6 = x cos−1 x − · 2u1/2 + c 1 2 = − sin5 x cos x = x cos−1 x − 1 − x2 + c 6 5 1 3 3 + − sin3 x cos x + x − sin 2x + c 42. Let u = tan−1 x, dv = dx 6 4 8 16 1 1 5 du = dx, v = x = − sin5 x cos x − sin3 x cos x 1 + x2 6 24 x 15 + x− 15 sin 2x + c I= tan−1 xdx = x tan−1 x − dx 48 96 1 + x2 Substituting u = 1 + x2 , We now just have to plug in the endpoints: 1 π/2 I = x tan−1 x − ln(1 + x2 ) + c. sin6 xdx 2 0 √ 1 1 5 43. Substituting u = x, du = √ dx = − sin5 x cos x − sin3 x cos x 2 x 6 24 √ π/2 I = sin xdx = 2 u sin udu 15 15 + x− sin 2x 48 96 0 = 2(−u cos u + sin u) + c √ √ √ 15π = 2(− x cos x + sin x) + c = 96 √ 44. Substituting w = x 39. m even : 1 1 π/2 dw = √ dx = dx sinm xdx 2 x 2w √ x 0 (m − 1)(m − 3) . . . 1 π I= e dx = 2wew dx = · Next, using integration by parts m(m − 2) . . . 2 2 m odd: u = 2w, dv = ew dw π/2 du = 2dw, v = ew sinm xdx 0 I = 2wew − 2 ew dw (m − 1)(m − 3) . . . 2 √ √ √ = m(m − 2) . . . 3 = 2wew − 2ew + c = 2 xe x − 2e x + c 40. m even: 45. Let u = sin(ln x), dv = dx π/2 dx cosm xdx du = cos(ln x) , v = x 0 x π(n − 1)(n − 3)(n − 5) · · · 1 I = sin(ln x)dx = 2n(n − 2)(n − 4) · · · 2 m odd: = x sin(ln x) − cos(ln x)dx
  • 10.
    6.2. INTEGRATION BYPARTS 369 Integration by parts again, = 3 u2 eu − 2 ueu du u = cos(ln x), dv = dx dx du = − sin(ln x) , v = x = 3u2 eu − 6 ueu − eu du x cos(ln x)dx = 3u2 eu − 6ueu + 6eu + c 8 √ 2 3 x Hence e dx = 3u2 eu du = x cos(ln x) + sin(ln x)dx 0 0 2 I = x sin(ln x) − x cos(ln x) − I = 3u e − 6ueu + 6e 2 u u 0 = 6e2 − 6 2I = x sin(ln x) − x cos(ln x) + c1 1 1 50. Let u = tan−1 x, dv = xdx I = x sin(ln x) − x cos(ln x) + c dx x2 2 2 du = , v= 1 + x2 2 46. Let u = 4 + x2 , du = 2xdx I= x tan−1 xdx I= x ln(4 + x2 )dx x2 1 x2 = tan−1 x − dx 1 1 2 2 1 + x2 = ln udu = (u ln u − u) + C x2 2 2 = tan−1 x 1 2 = [(4 + x ) ln(4 + x2 ) − 4 − x2 ] + c 2 1 1 2 − 1dx − dx 2 1 + x2 47. Let u = e2x , du = 2e2x dx x2 1 1 = tan−1 x − x − tan−1 x + C I = e6x sin(e2x )dx = u2 sin udu 2 2 2 −1 x 2 x 1 Let v = u2 , dw = sin udu = tan x − + tan−1 x + c 2 2 2 dv = 2udu, w = − cos u 1 1 Hence x tan−1 xdx I= −u2 cos u + 2 u cos udu 0 2 x2 x 1 1 π 1 1 = tan−1 x − + tan−1 x = − = − u2 cos u + u cos udu 2 2 2 0 4 2 2 1 2 51. n times. Each integration reduces the power of = − u cos u + (u sin u + cos u) + c 2 x by 1. 1 = − e4x cos(e2x ) + e2x sin(e2x ) 2 52. 1 time. The first integration by parts gets rid + cos(e2x ) + c of the ln x and turns the integrand into a sim- ple integral. See, for example, Problem 4. √ 1 −2/3 48. Let u = 3 x = x1/3 , du = x dx, 53. (a) As the given problem, x sin x2 dx can 3 be simplified by substituting x2 = u, we 3u2 du = dx can solve the example using substitution I = cos x1/3 dx = 3 u2 cos udu method. Let v = u2 , dw = cos udu (b) As the given integral, x2 sin x dx can not dv = 2udu, w = sin u be simplified by substitution method and I = 3 u2 sin u − 2 u sin udu can be solved using method of integration by parts. = 3u2 sin u − 6 u sin udu (c) As the integral, x ln x dx can not be sim- plified by substitution and can be solved = 3u2 sin u − 6 −u cos u + cos udu using the method of integration by parts. 3 ln x = 3u sin u + 6u√ u −√ sin u + c √ √ cos 6 (d) As the given problem, dx can be = 3x sin 3 x + 6 3 x cos 3 x − 6 sin 3 x + c x simplified by substituting , ln x = u we √ 1 −2/3 can solve the example by substitution 49. Let u = 3 x = x1/3 , du = x dx, method. 3 3u2 du = dx √ 3 54. (a) As this integral, x3 e4x dx can not be I = e x dx = 3 u2 eu du simplified by substitution method and can
  • 11.
    370 CHAPTER 6. INTEGRATION TECHNIQUES be solved by using the method of integra- 59. tion by parts. e2x 4 4 2x (b) As the given problem, x3 ex dx can be x e /2 + simplified by substituting x4 = u, we can 4x3 e2x /4 − solve the example using the substitution 12x2 e2x /8 + 2x method. 24x e /16 − 4 24 e2x /32 + (c) As the given problem, x−2 e x dx can be 1 simplified by substituting = u, we can x4 e2x dx x solve the example using the substitution x4 3x2 3x 3 = − x3 + − + e2x + c method. 2 2 2 4 (d) As this integral, x2 e−4x dx can not be 60. simplified by substitution and can be cos 2x solved by using the method of integration x 5 sin 2x/2 + by parts. 5x4 − cos 2x/4 − 55. First column: each row is the derivative of the 20x3 − sin 2x/8 + previous row; Second column: each row is the 60x2 cos 2x/16 − antiderivative of the previous row. 120x sin 2x/32 + 120 − cos 2x/64 − 56. sin x 4 x5 cos 2xdx x − cos x + 4x3 − sin x − 1 5 5 = x sin 2x + x4 cos 2x 12x2 cos x + 2 4 24x sin x − 20 60 − x3 sin 2x − x2 cos 2x 24 − cos x + 8 16 120 120 x4 sin xdx + x sin 2x + cos 2x + c 32 64 = −x4 cos x + 4x3 sin x + 12x2 cos x 61. − 24x sin x − 24 cos x + c e−3x 3 −3x 57. x −e /3 + cos x 3x2 e−3x /9 − x4 sin x + 6x −e−3x /27 + 4x3 − cos x − 6 e−3x /81 − 12x2 − sin x + x3 e−3x dx 24x cos x − 24 sin x + x3 x2 2x 2 = − − − − e−3x + c 3 3 9 27 x4 cos xdx 62. = x4 sin x + 4x3 cos x − 12x2 sin x x2 − 24x cos x + 24 sin x + c ln x x3 /3 + −1 58. x x4 /12 + ex −x −2 x5 /60 + 4 x ex + The table will never terminate. 4x3 ex − 12x2 ex + 63. (a) Use the identity 24x ex − cos A cos B 1 24 ex + = [cos(A − B) + cos(A + B)] 2 x4 ex dx This identity gives π 4 3 2 = (x − 4x + 12x − 24x + 24)e + c x cos(mx) cos(nx)dx −π
  • 12.
    6.2. INTEGRATION BYPARTS 371 π nπ 1 1 = [cos((m − n)x) = cos2 udu −π 2 n −nπ + cos((m + n)x)]dx nπ 1 1 1 1 sin((m − n)x) = u + cos(2u) =π = n 2 4 −nπ 2 m−n π π And then sin2 (nx)dx sin((m + n)x) −π + π m+n −π = (1 − cos2 (nx))dx =0 −π π π It is important that m = n because oth- = dx − cos2 (nx)dx erwise cos((m − n)x) = cos 0 = 1 −π −π (b) Use the identity = 2π − π = π sin A sin B 1 65. The only mistake is the misunderstanding of = [cos(A − B) − cos(A + B)] 2 antiderivatives. In this problem, ex e−x dx This identity gives π is understood as a group of antiderivatives of sin(mx) sin(nx)dx ex e−x , not a fixed function. So the subtraction −π π 1 by ex e−x dx on both sides of = [cos((m − n)x) −π 2 ex e−x dx = −1 + ex e−x dx − cos((m + n)x)]dx 1 sin((m − n)x) does not make sense. = π √ π 2 m−n π 66. V = π (x sin x)2 dx = π x2 sin xdx sin((m + n)x) 0 0 − m+n −π Using integration by parts twice we get =0 x2 sin xdx It is important that m = n because oth- erwise cos((m − n)x) = cos 0 = 1 = −x2 cos x + 2 x cos xdx 64. (a) Use the identity = −x2 cos x + 2(x sin x − sin xdx) cos A sin B = −x2 cos x + 2x sin x + 2 cos x + c 1 = [sin(B + A) − sin(B − A)] Hence, 2 π This identity gives V = (−x2 cos x + 2x sin x + 2 cos x) 0 π = π 2 − 4 ≈ 5.87 cos(mx) sin(nx) dx −π π 1 67. Let u = ln x, dv = ex dx = [sin((n + m)x) dx −π 2 du = , v = ex x − sin((n − m)x)] dx ex ex ln xdx = ex ln x − dx 1 cos((n + m)x) x = − ex 2 n+m ex ln xdx + dx = ex ln x + C π x cos((n − m)x) Hence, + n−m 1 −π ex ln x + dx = ex ln x + c =0 x (b) We have seen that 68. We can guess the formula: 1 1 cos2 xdx = x + cos(2x) + c ex (f (x) + f (x))dx = ex f (x) + c 2 4 Hence by letting u = nx: and prove it by taking the derivative: π cos2 (nx)dx d x (e f (x)) = ex f (x) + ex f (x) −π dx
  • 13.
    372 CHAPTER 6. INTEGRATION TECHNIQUES b = ex (f (x) + f (x)) + f (x) (b − x) dx a 1 b 69. Consider, f (x)g (x) dx Consider x sin (b − x) dx 0 0 Choose u = g (x) and dv = f (x)dx, b b so that du = g (x) dx and , v = f (x) . = (b − x) sin xdx = (sin x) (b − x) dx 0 0 Hence, we have Now, consider 1 g (x)f (x)dx f (x) = x − sin x ⇒ f (x) = 1 − cos x 0 and f (x) = sin x. 1 1 = g (x) f (x)|0 − f (x)g (x) dx Therefore, using 0 f (b) = f (a) + f (a) (b − a) = (g (1) f (1) − g (0) f (0)) b 1 + f (x) (b − x) dx, − g (x)f (x) dx a 0 we get From the given data. b − sin b = 0 − sin 0 + f (0) (b − 0) 1 b = (0 − 0) − g (x)f (x) dx. + (sin x) (b − x) dx 0 0 Choose, u = g (x) and dv = f (x)dx, b so that,du = g (x) dx and v = f (x) . ⇒ |sin b − b| = x sin (b − x) dx . 0 Hence, we have 1 Further, − g (x)f (x) dx b b 0 |sin b − b| = x sin (b − x) dx ≤ xdx , 1 0 0 1 =− g (x) f (x)|0 − f (x) g (x) dx as sin (b − x) ≤ 1. 0 = − {(g (1) f (1) − g (0) f (0) ) b2 Thus, |sin b − b| ≤ . 1 2 − f (x) g (x) dx Therefore the error in the approximation 0 1 From the given data. sin x ≈ x is at most x2 . 1 2 = − (0 − 0 ) − f (x) g (x) dx 1 0 6.3 Trigonometric = f (x) g (x) dx. 0 Techniques of 70. Consider, Integration b b f (x) (b − x) dx = (b − x) f (x) dx 1. Let u = sin x, du = cos xdx a a Choose u = (b − x) and dv = f (x) dx, cos x sin4 xdx = u4 du so that du = −dx and v = f (x) . 1 5 1 = u + c = sin5 x + c Hence, we have: 5 5 b (b − x)f (x) dx 2. Let u = sin x, du = cos xdx a b cos3 x sin4 xdx = (1 − u2 )u4 du b = (b − x) f (x)|a + f (x) dx a u5 u7 b = − +c 5 7 = (0 − [(b − a) f (a)]) + f (x) dx sin x sin7 x 5 a b = − +c = − [(b − a) f (a)] + f (x)|a 5 7 = − [(b − a) f (a)] + f (b) − f (a) 3. Let u = sin 2x, du = 2 cos 2xdx. b π/4 f (x) (b − x) dx cos 2xsin3 2xdx a 0 = − [(b − a) f (a)] + f (b) − f (a) 1 1 1 1 u4 1 = u3 du = = f (b) = f (a) + (b − a) f (a) 2 0 2 4 0 8
  • 14.
    6.3. TRIGONOMETRIC TECHNIQUESOF INTEGRATION 373 4. Let u = cos 3x, du = −3 sin xdx. =− cot x(1 + cot2 x) · csc2 xdx π/3 cos3 3x sin3 3x dx u2 u4 π/4 =− (u + u3 )du = − − +C −1 2 4 1 =− √ u 3 1− u2 du cot2 x cot4 3 −1/ 2 =− − +c 2 4 4 6 −1 1 u u =− − 11. Let u = x2 + 1, so that du = 2xdx. 3 4 6 −1 √ 2 1 3 7 1 xtan3 x2 + 1 sec x2 + 1 dx =− − =− 3 16 48 72 1 = tan3 u (sec u) du 5. Let u = cos x, du = − sin xdx 2 π/2 0 1 = sec2 u − 1 tan u (sec u) du cos2 x sin xdx = u2 (−du) 2 0 1 Let sec u = t, dt = tan u sec udu 0 1 1 1 1 t3 = − u3 = = t2 − 1 dt = −t +c 3 1 3 2 2 3 1 sec3 u 6. Let u = cos x, du = − sin xdx = − sec u + c 0 1 2 3 cos3 x sin xdx = − u3 du = −1 1 1 −π/2 0 = sec3 x2 + 1 − sec x2 + 1 + c. 6 2 7. cos2 (x + 1) dx 12. Let u = 2x + 1, so that du = 2dx. 1 tan (2x + 1) .sec3 (2x + 1) dx = (1 + cos 2 (x + 1))dx 2 1 1 1 = tan u. sec u.sec2 udu = x + (sin 2 (x + 1)) + c. 2 2 4 1 = sec2 utan u sec udu 8. Let u = x − 3, du = dx 2 Let t = sec u, so that dt = tan u sec udu. sin4 (x − 3)dx = sin4 udu 1 1 t3 = t2 dt = +c 2 2 2 3 = sin2 u du 1 sec3 u 1 (1 − cos 2u) (1 − cos 2u) = + c = sec3 (2x + 1) + c. = × du 2 3 6 2 2 1 13. Let u = cot x, du = −csc2 x dx = 1 − 2 cos 2u + cos2 2u 4 1 1 cot2 x csc4 xdx = cot2 x 1 + cot2 x csc2 xdx = 1 − 2 cos 2u + (1 + cos 4u) du 4 2 =− u2 1 + u2 du 3 1 1 = u − sin 2u + cos 4u + c u3 u5 8 4 32 =− − +c 3 1 3 5 3 5 = (x − 3) − sin 2 (x − 3) (cot x) (cot x) 8 4 =− − + c. 1 3 5 + cos 4 (x − 3) + c. 32 14. Let u = cot x, du = −csc2 x dx. 9. Let u = sec x, du = sec x tan xdx 3 cot2 x csc2 xdx = − u2 du tan x sec xdx u3 cot3 x 2 =− +c= + c. = tan x sec x sec xdx 3 3 1 3 1 15. Let u = tan x, du = sec2 xdx = u2 du = u + c = sec3 x + c π/4 3 3 tan4 x sec4 xdx 2 10. Let u = cot x, du = − csc xdx 0 π/4 cot x csc4 xdx = tan4 x sec2 x sec2 xdx 0
  • 15.
    374 CHAPTER 6. INTEGRATION TECHNIQUES π/4 π π 21. Let x = 3 sin θ, − < θ < = tan4 x(1 + tan2 x) sec2 xdx 2 2 0 dx = 3 cos θ dθ 1 1 3 cos θ = u4 (1 + u2 ) du √ dx = dθ 0 x 2 9 − x2 9 sin2 θ · 3 cos θ 1 u5 u7 1 12 1 1 = (u4 + u6 )du = + = = csc2 θdθ = − cot θ + C 5 7 35 9 9 0 0 By drawing a diagram, √ see that if we 16. Let u = tan x, du = sec2 xdx. 9 − x2 π/4 x = sin θ, then cot θ = . x tan4 x sec2 xdx √ π/4 9 − x2 1 1 Thus the integral = − +c u5 2 9x = u4 du = = π π −1 5 −1 5 22. Let x = 4 sin θ, − < θ < , 2 2 dx = 4 cos θdθ 17. cos2 x sin2 xdx 1 cos θ √ dx = dθ 1 1 x 2 16 − x2 16 sin2 θ cos θ = (1 + cos 2x) · (1 − cos 2x)dx 1 1 2 2 = csc2 θdθ = − cot θ + c 1 16 √ 16 = (1 − cos2 2x)dx 16 − x2 4 =− +c 1 1 16x = 1 − (1 + cos 4x) dx 4 2 23. Let x = 4sinθ, so that dx = 4 cos θdθ. 1 1 1 x2 16sin2 θ 4 cos θ = x − sin 4x + c √ dx = dθ 4 2 8 16 − x2 2 1 1 16 − (4 sin θ) = x− sin 4x + c sin2 θ cos θ 8 32 = 64 dθ 16 − 16sin2 θ 18. (cos2 x + sin2 x)dx = 1dx = x + c sin2 θ cos θ = 64 dθ 19. Let u = cosx, du = − sin xdx 4 1 − sin2 θ 0 √ sin2 θ cos θ cos x sin3 xdx = 16 dθ = 16 sin2 θdθ −π/3 cos θ 0 √ 1 − cos 2θ = cos x(1 − cos2 x) sin xdx = 16 dθ 2 −π/3 1 √ =8 dθ − (cos 2θ) dθ = u(1 − u2 )(−du) 1/2 sin 2θ 1 =8 θ− +c = (u 5/2 −u 1/2 )du 2 x x 1/2 1 = 8sin−1 − 4 sin 2sin−1 + c. 2 7/2 2 3/2 25 √ 8 4 √ 4 = u − u = 2− −1 x x 16 − x2 7 3 1/2 168 21 = 8sin − +c 4 2 20. Let u = cot x, du = − csc2 xdx 24. Let x = 3 sin θ, so that dx = 3 cos θdθ. π/2 x3 cot2 x csc4 xdx √ dx π/4 9 − x2 π/2 27 sin3 θ = cot2 x csc2 x csc2 xdx = (3 cos θ) dθ 2 π/4 9 − (3 sin θ) π/2 = cot2 x(1 + cot2 x) csc2 xdx sin3 θ = 81 (cos θ) dθ π/4 0 9 − 9sin2 θ =− u2 (1 + u2 )du sin3 θ = 81 cos θdθ = 27 sin3 θdθ 1 3 cos θ 0 u3 u5 1 1 8 3 sin θ − sin 3θ =− + = + = = 27 dθ 3 5 1 3 5 15 4
  • 16.
    6.3. TRIGONOMETRIC TECHNIQUESOF INTEGRATION 375 27 Putting all these together and using = 3 sin θdθ − sin 3θdθ √ 4 x x2 − 9 27 cos 3θ sec θ = , tan θ = : = −3 cos θ + +c 3 3 2 4 3 x 27 x √ dx = 9 sec3 θ dθ = −3 cos sin−1 x2 − 9 4 3 9 9 = sec θ tan θ + sec θ dθ cos sin−1 x 3 2 2 + + c. 9 9 3 = sec θ tan θ + ln | sec θ + tan θ| + c 2 √ 2 25. This is the area of a quarter of a circle of radius 9 x x2 − 9 2, = 2 2 3 3 √ 4 − x2 dx = π 9 x x2 − 9 0 + ln + +c 2 3 3 26. Let u = 4 − x2 , du = −2xdx √ √ 1 x 3 du x x2 − 9 9 x + x2 − 9 √ dx = − √ = + ln +c 4−x 2 2 u 2 2 3 0 4 3 √ = −u1/2 = 2 − 3 28. Let u = x2 − 1, du = 2xdx 4 27. Let x = 3 sec θ, dx = 3 sec θ tan θdθ. x3 x2 − 1dx x2 1 I= √ dx x2 − 9 = x2 x2 − 1(2x)dx 2 27 sec2 θ sec θ tan θ 1 √ = √ dθ = (u + 1) udu 9 sec2 θ − 9 2 = 9 sec3 θdθ 1 = u3/2 + u1/2 du 2 Use integration by parts. 1 2u5/2 2u3/2 Let u = sec θ and dv = sec2 θdθ. This gives = + +c 2 5 3 sec3 θdθ 1 2 1 = (x − 1)5/2 + (x2 − 1)3/2 + c 5 3 = sec θ tan θ − sec θ tan2 θdθ 29. Let x = 2 sec θ, dx = 2 sec θ tan θdθ = sec θ tan θ − sec θ(sec2 θ − 1)dθ 2 4 sec θ tan θ √ dx = dθ x 2−4 2 tan θ = sec θ tan θ + sec θdθ − sec3 θdθ =2 sec θdθ = 2 ln |2 sec θ + 2 tan θ| + c 2 sec3 θdθ = 2 ln x + x2 − 4 + c = sec θ tan θ + sec θdθ 30. Let x = 2 sec θ, dx = 2 sec θ tan θdθ sec3 θdθ x 4 sec2 θ tan θ √ dx = dθ 1 1 x2 − 4 2 tan θ = sec θ tan θ + sec θ dθ 2 2 =2 sec2 θdθ = 2 tan θ + C = x2 − 4 + c This leaves us to compute sec θdθ. √ √ 4x2 − 9 4x2 − 9 For this notice if u = sec θ + tan θ then 31. dx = 4xdx x 4x2 du = sec θ tan θ + sec2 θ. Let u = 4x2 − 9, sec θdθ 1 1 du = √ 8xdx = 8xdx sec θ(sec θ + tan θ) 2 4x2 − 9 2u = dθ or udu = 4xdx. sec θ + tan θ 1 Hence, we have = du = ln |u| + c √ u 4x2 − 9 = ln | sec θ + tan θ| + c dx x
  • 17.
    376 CHAPTER 6. INTEGRATION TECHNIQUES u u2 √ √ = udu = du = (16 2 tan3 θ)(2 2 sec θ)dθ u2 +9 u2+9 2 u +9−9 9 = 64 tan3 θ sec θ dθ = du = du − du u2 + 9 u2 + 9 u = u − 9tan−1 +c = 64 (sec2 θ − 1)(sec θ tan θ dθ) 3 √ 4x2 − 9 64 3 = 4x 2 − 9 − 9tan−1 + c. = 64 (u2 − 1)du = u − 64u + c 3 3 64 = sec3 θ − 64 sec θ + c 32. Let√ = 2 sec θ, dx = 2 tan θ sec θdθ. x 3 √ 3 √ x2 − 4 64 8 + x2 8 + x2 dx = √ − 64 √ +c √x2 3 2 2 2 2 4sec2 θ − 4 √ = (2 tan θ sec θ) dθ 2 2 √ 4sec2 θ = (8 + x2 )3/2 − 16 2(8 + x2 )1/2 + c 2 tan θ 3 = (2 tan θ sec θ) dθ 4sec2 θ 35. Let x = 4 tan θ, dx = 4 sec2 θdθ 2 tan θ sec2 θ − 1 = dθ = dθ 16 + x2 dx sec θ sec θ 1 = sec θdθ − dθ = 16 + 16 tan2 θ · 4 sec2 θdθ sec θ = sec θdθ − cos θdθ = 16 sec3 θdθ = ln |sec θ + tan θ| − sin θ + c 1 1 x x = 16 sec θ tan θ + sec θdθ = ln sec sec−1 + tan sec−1 2 2 2 2 x = 8 sec θ tan θ + 8 sec θdθ − sin sec−1 +c 2 x x = 8 sec θ tan θ + 8 ln |sec θ + tan θ| + c = ln + tan sec−1 1 2 2 = x 16 + x2 x − sin sec−1 + c. 2 2 1 x + 8 ln 16 + x2 + +c 4 4 33. Let x = 3 tan θ, dx = 3 sec2 θdθ x2 36. Let x = 2 tan θ, dx = 2 sec2 θdθ √ dx 9 + x2 1 2 sec2 θ 27 tan2 θ sec2 θ √ dx = dθ = √ dθ 4 + x2 2 sec θ 9 + 9 tan2 θ = sec θdθ = ln | sec θ + tan θ| + c = 9 tan2 θ sec θdθ √ x + 4 + x2 = ln +c =9 (sec2 θ − 1) sec θdθ 2 =9 sec3 θdθ − 9 sec θdθ 37. Let u = x2 + 8, du = 2xdx 1 9 9 1 9 1/2 = sec θ tan θ − ln | sec θ + tan θ| + c x x2 + 8dx = u du 2 √ 2 0 2√ 8 9 9 9 + x2 x 1 27 − 16 2 = = u3/2 = 2 3 3 3 8 3 √ 9 9 + x2 x 38. Let x = 3 tan θ, dx = 3 sec2 θ dθ − ln + +c 2 3 3 I= x2 x2 + 9dx √ √ x 9 + x2 9 x + 9 + x2 = − ln +c = 27 tan2 θ sec2 θ 9 tan2 θ + 9dx 2 2 3 √ √ = 81 tan2 θ sec3 θdx 34. Let x = 2 2 tan θ, dx = 2 2 sec2 θdθ x3 8 + x2 dx = 81 (sec2 θ − 1) sec3 θdx
  • 18.
    6.3. TRIGONOMETRIC TECHNIQUESOF INTEGRATION 377 √ √ = 81 (sec5 θ − sec3 θ)dx 17 13 81 2 + 13 = − ln 4 8 3 To compute sec5 θ dθ, we use integration by 39. Let x = tan θ, dx = sec2 θdθ. parts with u = sec3 θ and dv = sec2 θdθ. x3 tan3 θ √ dx = sec2 θdθ sec5 θ dθ 1 + x2 sec θ = sec3 θ tan θ − 3 sec3 θ tan2 θdθ = tan2 θ (tan θ sec θ) dθ Let t = sec θ, dt = tan θ sec θdθ. = sec3 θ tan θ −3 sec3 θ(sec2 θ − 1)dθ = sec2 θ − 1 tan θ sec θdθ = sec3 θ tan θ − 3 (sec5 θ − sec3 θ)dθ t3 = t2 − 1 dt = −t +c 3 4 sec5 θdθ sec3 θ = − sec θ + c 3 = sec3 θ tan θ + 3 sec3 θdθ sec5 θdθ sec3 tan−1 x 1 3 = − sec tan−1 x + c. = sec3 θ tan θ + sec3 θdθ 3 4 4 40. Let x = 2 tan θ, dθ = 2sec2 θ dθ. 3 To compute sec θdθ and sec θ dθ, see Ex- x+1 ercise 27. √ dx 4 + x2 Putting all this together gives: 2 tan θ + 1 = √ 2sec2 θdθ I = 81 (sec5 θ − sec3 θ)dx 4 + 4tan2 θ 81 243 2 tan θ + 1 = sec3 θ tan θ + sec3 θdθ = 2sec2 θ dθ 4 4 2 sec θ − 81 sec3 θdθ = (2 tan θ + 1) (sec θ) dθ 81 81 =2 sec θ tan θdθ + sec θdθ = sec3 θ tan θ − sec3 θdθ 4 4 81 81 = 2 sec θ + ln |sec θ + tan θ| + c = sec3 θ tan θ − sec θ tan θ x x 4 8 = 2 sec tan−1 + ln sec tan−1 81 2 2 − ln | sec θ + tan θ| + c x 8 + tan tan−1 +c 2 x We don’t worry about the result being in terms = 2 sec tan−1 2 of x since this is a definite integral. Our lim- −1 x x + ln sec tan + + c. its of integration are x = 0 and x = 2. In 2 2 terms of θ this means the limits of integration x 2 41. √ dx correspond to θ = 0 and tan θ = . x 2 + 4x 3 1 2x + 4 − 4 2 = √ dx 2 x2 + 4x x2 x2 + 9dx 1 2x + 4 1 4 0 = √ dx − √ dx 81 81 2 x2 + 4x 2 x2 + 4x = sec3 θ tan θ − sec θ tan θ Let u = x2 + 4x, du = (2x + 4) dx. 4 8 x=2 1 du 1 4 81 = √ − √ dx − ln | sec θ + tan θ| 2 u 2 x2 + 4x − 4 + 4  8 x=0 1 4 √ 3 √ = u1/2 − dx 81 13 2 81 13 2 2 2 = − (x + 2) − 4 4 3 3 8 3 3 = (x2 + 4x) √ 81 13 2 − 2 log x2 + 4x + 2 (x + 2) − 4 + c. − ln + 8 3 3 81 81 81 2 2 − (1)(0) − (1)(0) − ln |1 + 0| 42. √ dx = √ dx 4 8 8 x2 − 6x x2 − 6x + 9 − 9
  • 19.
    378 CHAPTER 6. INTEGRATION TECHNIQUES 2 2 = dx = dx 2 2 (x − 3) − 9 4 − (x − 2) Let u = x − 3, du = dx. Let u = x − 2, du = dx. 2 2 = √ du = √ du u2 − 9 4 − u2 Let u = 3 sec θ, du = 3 sec θ tan θdθ. Let u = 2 sin θ, du = 2 cos dθ. 2 2 = 3 sec θ tan θdθ = 2 cos θdθ 2 2 (3 sec θ) − 9 4 − (2 sin θ) 1 1 =2 √ sec θ tan θdθ =2 cos θdθ 2θ − 1 sec 1 − sin2 θ 1 1 =2 sec θ tan θdθ =2 cos θdθ = 2 dθ = 2θ + c tan θ cos θ =2 sec θdθ = 2 ln |sec θ + tan θ| + c u x−2 = 2sin−1 + c = 2sin−1 + c. u 2 2 = 2 ln sec sec−1 3 45. Using u = tan x, gives −1 u + tan sec +c tan x sec4 xdx 3 u −1 u = 2 ln + tan sec +c 3 3 = tan x(1 + tan2 x) sec2 xdx x−3 = 2 ln 3 = u(1 + u2 )du = (u + u3 )du x−3 + tan sec−1 + c. 1 2 1 4 3 = u + u +c 2 4 x 1 1 43. √ dx = tan2 x + tan4 x + c 10 + 2x + x2 2 4 x Using u = sec x, gives = √ dx 9 + 1 + 2x + x2 x tan x sec4 xdx = dx 2 (x + 1) + 9 = tan x sec x sec3 xdx x+1−1 1 4 1 = dx = u3 du = u + c = sec4 x + c 2 4 4 (x + 1) + 9 x+1 1 46. Using u = tan x gives = dx − dx 2 (x + 1) + 9 2 (x + 1) + 9 tan3 x sec4 xdx = u3 (u2 + 1)du Let u = x + 1, du = dx. u6 u4 u 1 = + + c1 = √ du− √ du 6 4 u 2+9 u2+9 tan6 x tan4 x = + + c2 1 2u 1 6 4 = √ du− √ du 2 u 2+9 u 2 + 32 Using u = sec x gives Let t = u2 + 9, dt = 2udu. tan3 x sec4 xdx = (u2 − 1)u3 du 1 dt u6 u4 sec6 x sec4 x = √ dt− log u + u2 + 32 + c = − = − 2 t 6 4 6 4 √ 2 3 2 = t − log u + u2 + 32 + c (tan x + 1) (tan x + 1)2 = − 6 4 = u2 + 9 − log u + u2 + 9 + c tan6 x tan4 x 1 = + − + c1 = 2 (x + 1) + 9 6 4 12 6 4 tan x tan x 2 = + + c2 − log (x + 1) + (x + 1) + 9 + c. 6 4 2 2 47. (a) This is using integration by parts followed 44. √ dx = √ dx by substitution 4x − x2 4 − 4 + 4x − x2
  • 20.
    6.3. TRIGONOMETRIC TECHNIQUESOF INTEGRATION 379 u = secn−2 x, dv = sec2 xdx = − ln |csc x + cot x| + c. du = (n − 2) secn−2 x tan xdx, v = tan x = ln |csc x − cot x| + c. I= secn xdx = secn−2 x tan x csc3 xdx = csc x.csc2 xdx − (n − 2) secn−2 (sec2 x − 1)dx u = csc x, dv = csc2 xdx du = − csc x. cot x, v = − cot x = secn−2 x tan x csc3 xdx − (n − 2) (secn x − secn−2 x)dx = − csc x. cot x = secn−2 x tan x − (n − 2)I − (− cot x) (− csc x. cot x)dx + (n − 2) secn−2 xdx (n − 1)I = − csc x cot x − csc x.cot2 x dx n−2 n−2 = sec x tan x + (n − 2) sec xdx sec n−2 x tan x n − 2 = − csc x cot x − csc x. csc2 x − 1 dx n−2 I= + sec xdx n−1 n−1 = − csc x cot x − csc3 x dx+ csc xdx 3 (b) sec xdx 2 csc3 xdx = − csc x cot x + csc xdx 1 1 = sec x tan x + sec xdx = − csc x cot x + ln |csc x − cot x| + c 2 2 1 1 csc3 xdx = sec x tan x + ln | sec x + tan x| + c 2 2 1 4 = (− csc x cot x + ln |csc x − cot x|) + c (c) sec xdx 2 1 2 1 = sec3 x tan x + sec2 xdx 50. dx 3 3 cos x − 1 1 2 cos x + 1 = sec3 x tan x + tan x + c = dx 3 3 (cos x − 1) (cos x + 1) cos x + 1 (d) sec5 xdx =− dx sin2 x 1 3 1 cos x 1 = sec3 x tan x + sec3 xdx =− + dx 4 4 sin x sin x sin x 1 3 =− csc x (cot x + csc x) dx = sec3 x tan x + sec x tan x 4 8 3 + ln | sec x + tan x| + c = − csc x cot x − csc2 xdx 8 48. Make the substitution x = a sin θ. = (− csc x cot x) dx + −csc2 x dx 4b a 4b a = csc x + cot x + c and, a2 − x2 dx = a2 − x2 dx 1 a 0 a 0 dx 4b π/2 cos x + 1 = a cos θ a2 − a2 sin2 θdθ cos x − 1 a 0 = dx π/2 (cos x − 1) (cos x + 1) = 4b a cos2 θdθ cos x − 1 0 =− dx π/2 sin2 x 1 1 1 cos x 1 = 4ab x + sin 2x = abπ =− − dx 2 4 0 sin x sin x sin x csc x + cot x =− csc x (cot x − csc x) dx 49. csc xdx = csc x dx csc x + cot x (csc x) cot x + csc2 x = − csc x cot x + csc2 xdx = dx csc x + cot x Let u = csc x + cot x, = (− csc x cot x) dx − −csc2 x dx du = − (csc x) cot x − csc2 x. = csc x − cot x + c 1 =− du = − ln |u| + c 51. Using a CAS we get u
  • 21.
    380 CHAPTER 6. INTEGRATION TECHNIQUES (Ex 3.2) cos4 x sin3 xdx 6.4 Integration of 1 2 Rational Functions = − sin x2 cos x5 − cos x5 + c 7 35 Using Partial √ (Ex 3.3) sin x cos5 xdx Fractions 2 4 x−5 x−5 = sin x11/2 − sin x7/2 1. = 11 7 x2 − 1 (x + 1)(x − 1) 2 3/2 A B + sin x + c = + 3 x+1 x−1 (Ex 3.5) cos4 xdx x − 5 = A(x − 1) + B(x + 1) x = −1 : −6 = −2A; A = 3 1 3 3 = cos x3 sin x + cos x sin x + x + c x = 1 : −4 = 2B; B = −2 4 8 8 x−5 3 2 (Ex 3.6) tan3 x sec3 xdx 2−1 = − x x+1 x−1 sin x4 sin x4 x−5 3 2 = 1/5 + 1/15 dx = − dx cos x5 cos x3 x 2−1 x+1 x−1 sin x4 − 1/15 − 1/15 sin x2 cos x = 3 ln | x + 1| − 2 ln | x − 1| + c cos x − 2/15 cos x + c 5x − 2 5x − 2 2. = Obviously my CAS used different tech- x 2−4 (x + 2)(x − 2) niques. The answers given by the book A B = + are simpler. x+2 x−2 1 2 5x − 2 = A(x − 2) + B(x + 2) 52. (a) − sin2 x cos5 x − cos5 x x = −2 : −12 = −4A; A = 3 7 35 1 2 x = 2 : 8 = 4B; B = 2 = − (1 − cos2 x) cos5 x − cos5 x 7 35 5x − 2 3 2 1 1 = + = cos7 x − cos5 x x2 − 4 x+2 x−2 7 5 The conclusion is c = 0 5x − 2 3 2 dx = + dx 2 1 x2 − 4 x+2 x−2 (b) − tan x − sec2 x tan x 15 15 = 3 ln | x + 2| + 2 ln | x − 2| + c 1 + sec4 x tan x 5 6x 6x 2 1 3. = = − tan x − (1 + tan2 x) tan x x2 − x − 2 (x − 2)(x + 1) 15 15 A B 1 = + + (1 + tan2 x)2 tan x x−2 x+1 5 1 1 6x = A(x + 1) + B(x − 2) = tan3 x + tan5 x x = 2 : 12 = 3A; A = 4 3 5 The conclusion is c = 0 x = −1 : −6 = −3B; B = 2 6x 4 2 = + x2 − x − 2 x−2 x+1 53. The average power 6x 2π/ω dx 1 = 2π RI 2 cos2 (ωt) dt x 2−x−2 ω 0 4 2 ωRI 2 2π/ω 1 = + dx = [1 + cos(2ωt)] dt x−2 x+1 2π 0 2 = 4 ln | x − 2| + 2 ln | x + 1| + c 2π/ω ωRI 2 1 = t+ sin(2ωt) 3x 3x 4π 2ω 0 4. = 2 ωRI 2π 1 4ωπ 1 x2− 3x − 4 (x + 1)(x − 4) = + sin − 0 = RI 2 A B 4π ω 2ω ω 2 = + x+1 x−4
  • 22.
    6.4. INTEGRATION OFRATIONAL FUNCTIONS USING PARTIAL FRACTIONS 381 4 1 = ln | x| − ln |x + 2| − ln |x + 3| + c 3x = A(x − 4) + B(x + 1) 3 3 3 5x − 23 5x − 23 x = −1 : −3 = −5A; A = 7. = 5 6x2 − 11x − 7 (2x + 1)(3x − 7) 12 x = 3 : 12 = 5B; B = A B 5 = + 2x + 1 3x − 7 3x 3/5 12/5 = + 5x − 23 = A(3x − 7) + B(2x + 1) x2 − 3x − 4 x+1 x−4 1 51 17 3x x=− :− = − A; A = 3 2 − 3x − 4 dx 2 2 2 x 7 34 17 3/5 12/5 x= :− = B; B = −2 = + dx 3 3 3 x+1 x−4 5x − 23 3 2 2 − 11x − 7 = − 3 12 6x 2x + 1 3x − 7 = ln | x + 1| + ln | x − 4| + c 5 5 5x − 23 dx −x + 5 −x + 5 6x2 − 11x − 7 5. = 3 2 x3 − x2 − 2x x(x − 2)(x + 1) = − dx A B C 2x + 1 3x − 7 = + + x x−2 x+1 3 2 = ln | 2x + 1| − ln | 3x − 7| + c − x + 5 = A(x − 2)(x + 1) + Bx(x + 1) 2 3 + cx(x − 2) 3x + 5 3x + 5 5 8. = x = 0 : 5 = −2A : A = − 5x2 − 4x − 1 (5x + 1)(x − 1) 2 A B 1 = + x = 2 : 3 = 6B : B = 5x + 1 x − 1 2 x = −1 : 6 = 3C : C = 2 3x + 5 = A(x − 1) + B(5x + 1) 1 22 6 11 −x + 5 5/2 1/2 2 x=− : = − A; A = − =− + + 5 5 5 3 x3−x 2 − 2x x x−2 x+1 4 −x + 5 x = 1 : 8 = 6B; B = dx 3 x3 − x2 − 2x 3x + 5 11/3 4/3 5/2 1/2 2 2 − 4x − 1 =− + = − + + dx 5x 5x + 1 x − 1 x x−2 x+1 3x + 5 5 1 dx = − ln | x| + ln | x − 2| 5x2 − 4x − 1 2 2 11/3 4/3 + 2 ln | x + 1| + c = − + dx 5x + 1 x − 1 3x + 8 3x + 8 11 4 6. = =− ln |5x + 1| + ln |x − 1| + c x3 + 5x2 + 6x x(x + 2)(x + 3)) 15 3 A B C = + + x−1 x−1 x x+2 x+3 9. 3 = x + 4x2 + 4x x(x + 2)2 3x + 8 = A(x + 2)(x + 3) + Bx(x + 3) A B C + cx(x + 2) = + + x x + 2 (x + 2)2 4 x = 0 : 8 = 6A; A = x − 1 = A(x + 2)2 + Bx(x + 2) + Cx 3 1 x = −2 : 2 = −2B; B = −1 x = 0 : −1 = 4A; A = − 1 4 x = −3 : −1 = 3C; C = − 3 3 x = −2 : −3 = −2C; C = 2 3x + 8 4/3 1 1/3 1 = − − x = 1 : 0 = 9A + 3B + C; B = x3 + 5x2 + 6x x x+2 x+3 4 3x + 8 x−1 dx x 3 + 5x2 + 6x x3 + 4x2 + 4x 4/3 1 1/3 1/4 1/4 3/2 = − − dx =− + + x x+2 x+3 x x + 2 (x + 2)2
  • 23.
    382 CHAPTER 6. INTEGRATION TECHNIQUES x−1 dx 1 x3 + 4x2 + 4x dx 1/4 1/4 3/2 x3 + 4x = − + + dx 1 −x x x + 2 (x + 2)2 = + dx 1 1 3 x x2 + 4 = − ln | x| + ln | x + 2| − +c 1 4 4 2(x + 2) = ln |x| − ln(x2 + 4) + c 2 4x − 5 4x − 5 10. 3 − 3x2 = 2 4x2 − 7x − 17 x x (x − 3) 13. A B C 6x2 − 11x − 10 = + 2+ 2 1 x − 31 x x x−3 = + 3 3 (2x − 5)(3x + 2) 4x − 5 = Ax(x − 3) + B(x − 3) + Cx2 = (A + C)x2 + (−3A + B)x + (−3B) = 2 1 + A + B 5 7 7 3 3 2x − 5 3x + 2 B = ;A = − ;C = 3 9 9 x − 31 = A(3x + 2) + B(2x − 5) 4x − 5 7/9 5/3 7/9 5 57 19 =− + 2 + x= :− = A, A = −3; x3 − 3x2 x x x−3 2 2 2 4x − 5 2 95 19 dx x=− :− = − B, B = 5; x3 − 3x2 3 3 3 4x2 − 7x − 17 7/9 5/3 7/9 = − + 2 + dx 6x2 − 11x − 10 x x x−3 2 1 −3 5 7/9 51 7 = + + =− |x| − + ln |x − 3| + c 3 3 2x − 5 3x + 2 ln 3x 9 4x2 − 7x − 17 x+2 x+2 dx 11. = 6x2 − 11x − 10 x3 + x x(x2 + 1) 2 1 5/3 = − + dx A Bx + C 3 2x − 5 3x + 2 = + 2 2 1 5 x x +1 = x − ln | 2x − 5| + ln | 3x + 2| + c 3 2 9 x + 2 = A(x2 + 1) + (Bx + C)x x3 + x 2x = Ax2 + A + Bx2 + Cx 14. 2−1 =x+ x (x + 1)(x − 1) = (A + B)x2 + Cx + A A B =x+ + A = 2; C = 1; B = −2 x+1 x−1 2x = A(x − 1) + B(x + 1) x+2 2 −2x + 1 3+x = + 2 A=B=1 x x x +1 x+2 2 −2x + 1 x3 + x 1 1 dx = + 2 dx 2−1 =x+ + x 3+x x x +1 x x+1 x−1 2 2x 1 x3 + x = − + dx dx x x2 + 1 x2 + 1 x2 − 1 = 2 ln | x| − ln(x2 + 1) + tan−1 x + c 1 1 = x+ + dx x+1 x−1 1 1 x2 12. = = + ln |x + 1| + ln |x − 1| + c x3 + 4x x(x2 + 4) 2 A Bx + C = + 2 2x + 3 2x + 3 x x +4 15. = 2 x2 + 2x + 1 (x + 1)2 1 = A(x + 1) + (Bx + C)x A B 1 = (A + B)x2 + Cx + A = + x + 1 (x + 1)2 2x + 3 = A(x + 1) + B A = 1; B = −1; C = 0 1 1 −x x = −1 : B = 1; A = 2 = + 2 x3 + 4x x x +4
  • 24.
    6.4. INTEGRATION OFRATIONAL FUNCTIONS USING PARTIAL FRACTIONS 383 2x + 3 2 1 1 −x + 2 = + = + dx x2 + 2x + 1 x + 1 (x + 1)2 x x2 − 2x + 4 2x + 3 1 1 2x − 2 1 dx = − + dx x2 + 2x + 1 x 2 x2 − 2x + 4 (x − 1)2 + 3 2 1 = + dx 1 x + 1 (x + 1)2 = ln |x| − ln(x2 − 2x + 4) 1 2 = 2 ln | x + 1| − +c x+1 1 x−1 + √ tan−1 √ +c 2x 2x 3 3 16. 2 = x − 6x + 9 (x − 3)2 3x3 + 1 A B 19. = + x3 − x2 + x − 1 x − 3 (x − 3)2 3x2 − 3x + 4 =3+ 3 2x = A(x − 3) + B x − x2 + x − 1 A = 2; B = 6 3x2 − 3x + 4 =3+ 2 (x + 1)(x − 1) 2x 2 6 Ax + B C = + =3+ 2 + x2 − 6x + 9 x − 3 (x − 3)2 x +1 x−1 2x dx 3x2 − 3x + 4 = (Ax + B)(x − 1) + C(x2 + 1) x2 − 6x + 9 = Ax2 − Ax + Bx − B + Cx2 + C 2 6 = + dx x = 1 : 4 = 2C; C = 2 x − 3 (x − 3)2 A+c=3:A=1 6 = 2 ln |x − 3| − +c − A + B = −3 : B = −2 x−3 x3 − 4 −2x2 − 2x − 4 3x3 + 1 x−2 2 17. =1+ =3+ 2 + x3 + 2x2 + 2x x(x2 + 2x + 2) x3− x2 + x − 1 x +1 x−1 A Bx + c 3x3 + 1 =1+ + 2 dx x x + 2x + 2 x 3 − x2 + x − 1 − 2x2 − 2x − 4 = A(x2 + 2x + 2) + (Bx + c)x x−2 2 = 3+ 2 + dx = (A + B)x2 + (2A + c)x + 2A x +1 x−1 A = −2; B = 0; C = 2 x 2 2 = 3+ 2 − + dx x + 1 x2 + 1 x − 1 x3 − 4 1 x3 + 2x2 + 2x = 3x + ln(x2 + 1) − 2 tan−1 x −2 2 2 =1+ + 2 + 2 ln | x − 1| + c x x + 2x + 2 x3 − 4 2x4 + 9x2 + x − 4 x2 + x − 4 dx 20. = 2x + x3 + 2x2 + 2x x3 + 4x x(x2 + 4) −2 2 A Bx + C = 1+ + dx = 2x + + 2 x (x + 1)2 + 1 x x +4 = x − 2 ln |x| + 2 tan−1 (x + 1) + c x2 + x − 4 = A(x2 + 4) + (Bx + C)x 4 4 = (A + B)x2 + Cx + 4A 18. = A = −1; B = 2; C = 1 x3 − 2x2 + 4x x(x2 − 2x + 4) A Bx + C 2x4 + 9x2 + x − 4 1 2x + 1 = + 2 = 2x − + 2 x x − 2x + 4 x 3 + 4x x x +4 4 = A(x2 − 2x + 4) + (Bx + C)x 1 2x 1 = 2x − + 2 + 2 = (A + B)x2 + (−2A + C)x + 4A x x +4 x +4 A = 1; B = −1; C = 2 2x + 9x2 + x − 4 4 dx x3 + 4x 4 1 −x + 2 1 2x 1 = + 2 = 2x − + 2 + dx x3 − 2x 2 + 4x x x − 2x + 4 x x + 4 x2 + 4 4 1 x dx = x2 − ln |x| + ln(x2 + 4) + tan−1 + c x3 − 2x2 + 4x 2 2
  • 25.
    384 CHAPTER 6. INTEGRATION TECHNIQUES x3 + x + 2 11 2 26. Let u = x2 , du = (2x) dx. 21. =x−2+ + x2 + 2x − 8 x+4 x−2 x 1 2x dx = dx x3 + x + 2 x4 + 1 2 x4 + 1 dx 1 du 1 x2 + 2x − 8 = 2+1 = tan (u) + c 11 2 2 u 2 = x−2+ + dx 1 2 x+4 x−2 = tan x + c. 2 x2 = − 2x + 11 ln | x + 4| 2 4x − 2 −4x + 1 1 + 2 ln | x − 2| + c 27. = + 16x4 − 1 4x2 + 1 2x + 1 x2 + 1 2/7 37/7 4x − 2 22. =− + dx x 2 − 5x − 6 x+1 x−6 16x4 − 1 −4x + 1 1 x2 + 1 = 2+1 + dx dx 4x 2x + 1 x2 − 5x − 6 2/7 37/7 1 8x 1 1 = − + dx = − + + dx x+1 x−6 2 4x2 + 1 4x2 + 1 2x + 1 1 1 2 37 = − ln |4x2 + 1| + tan−1 (2x) = − ln | x + 1| + ln |x − 6| + c 2 2 7 7 1 + ln |2x + 1| + c x+4 2 1 3 2 23. = + − x3+ 3x 2 + 2x x x+2 x+1 3x + 7 13/32 1/32 3x/8 + 7/8 x+4 28. = − − dx x4 − 16 x−2 x+2 x2 + 4 x3 + 3x2 + 2x 2 1 3 3x + 7 = + − dx dx x x+2 x+1 x4 − 16 13/32 1/32 3x/8 + 7/8 = 2 ln | x| + ln | x + 2| − 3 ln | x + 1| + c = − − dx x−2 x+2 x2 + 4 1 1/3 (x + 2)/3 13/32 1/32 3 2x 24. = − = − − x3 − 1 (x − 1) (x2 + x + 1) x−2 x+2 16 x2 + 4 1 dx 7 1 x3 − 1 − dx 1 1 x+2 8 x2 + 4 = − dx 13 1 3 (x − 1) (x2 + x + 1) = ln |x − 2| − ln |x + 2| 32 32 1 1 1 2x + 4 3 7 x = − dx − ln(x2 + 4) − tan−1 + c 3 (x − 1) 2 (x2 + x + 1) 16 16 2 1 1 1 2x + 1 = − x3 + x 3 (x − 1) 2 (x2 + x + 1) 29. 1 3 3x2 + 2x + 1 − dx 2 (x2 + x + 1) x 2 1 10x + 2 1 1 1 2x + 1 = − + = − 3 9 9 3x2 + 2x + 1 3 (x − 1) 2 (x2 + x + 1) x3 + x dx 1 3 3x2 + 2x + 1 − dx 2 (x + 1/2)2 + 3/4 x 2 1 10x + 2 1 1 = − + dx = ln |x − 1| − ln x2 + x + 1 3 9 9 3x2 + 2x + 1 3 2 x 2 15 6x + 2 √ 2x + 1 = − + 2 + 2x + 1 − 3tan −1 √ +c 3 9 9 3 3x 3 14 1 − dx 9 3 3(x + 1/3)2 + 2/3 25. Let u = x4 − x, du = 4x3 − 1 dx. x2 2 5 4x3 − 1 du = − x+ ln(3x2 + 2x + 1) dx = 6 √9 27 x 4−x u 2 2 3x + 1 = ln |u| + c = ln x4 − x + c. − tan−1 √ +c 27 2
  • 26.
    6.4. INTEGRATION OFRATIONAL FUNCTIONS USING PARTIAL FRACTIONS 385 x3 − 2x = −x2 cos x + 2 {x sin x + cos x} + c. 30. 2x2 − 3x + 2 x 4 1 21x − 6 34. Let u = x, dv = e2x dx . = + + 2 3 4 2x2 − 3x + 2 e2x so that du = dx and v = . x3 − 2x 2 dx e2x e2x 2x2 − 3x + 2 xe2x dx = x − dx x 4 1 21x − 6 2 2 = + + dx e2x e2x 2 3 4 2x2 − 3x + 2 =x − +c x 4 21 4x − 3 2 4 = + + 2 − 3x + 2 2 3 16 2x 39 1 35. Let u = sin2 x − 4 , + dx 32 (x − 3/4)2 + 7/16 so that du = 2 sin x cos x dx. x2 4 21 sin x cos x 1 du = + x+ ln(2x2 − 3x + 2) dx = 4 √ 3 16 sin2 x − 4 2 u 39 7 4x − 3 1 1 − tan−1 √ +c = ln |u| + c = ln sin2 x − 4 + c 56 7 2 2 4x2 + 3 3 x−3 36. Let t = ex , dt = ex dx and e3x = t3 31. = + 2 2ex 2 x3 + x2 + x x x +x+1 dx = dt. e 3x + ex t3 + t 4x2 + 3 dx 2 2t x 3 + x2 + x = − 2 dt = 2 ln |t| − ln t2 + 1 + c 3 x−3 t t +1 = + dx = 2 ln |ex | − ln e2x + 1 + c x x2 + x + 1 3 x + 1/2 7/2 = + − dx 4x2 + 2 Ax + B Cx + D x x2 + x + 1 x2 + x + 1 37. = 2 + 2 1 (x2 + 1)2 x +1 (x + 1)2 = 3 ln | x| + ln | x2 + x + 1| 2 4x2 + 2 = (Ax + B)(x2 + 1) + (Cx + D) 7 −1 2x + 1 = Ax3 + Bx2 + (A + C)x + (B + D) − √ tan √ +c 3 3 A = 0; B = 4; C = 0; D = −2 4x + 4 1 2 −x − 3 32. = + 2+ 2 4x2 + 2 4 −2 x4 +x 3 + 2x2 x x x +x+2 = 2 + (x2 + 1)2 x + 1 (x2 + 1)2 4x + 4 dx x4 + x3 + 2x2 x3 + 2 Ax + B Cx + D 1 2 −x − 3 38. = 2 + 2 = + + 2 dx (x2 + 1)2 x +1 (x + 1)2 x x2 x +x+2 2 1 x3 + 2 = (Ax + B)(x2 + 1) + cx + D = ln |x| − − ln(x2 + x + 2) = Ax3 + Bx2 + (A + c)x + (B + D) x 2 5 2x + 1 A = 1; B = 0; C = −1; D = 2 − √ tan−1 √ +c 7 7 x3 + 2 x −x + 2 2 33. Let u = x , dv = (sin x) dx = 2 + (x2 + 1)2 x + 1 (x2 + 1)2 So that du = (2x) dx and v = − cos x. 4x2 + 3 x2 sin xdx 39. (x2 + x + 1)2 Ax + B Cx + D = x2 (− cos x) − (− cos x) (2x) dx = 2 + x + x + 1 (x2 + x + 1)2 = −x2 cos x + 2 x (cos x) dx 4x2 + 3 = (Ax + B)(x2 + x + 1) + cx + D = Ax3 + Ax2 + Ax + Bx2 + Bx + B + cx + D Let u = x, dv = cos xdx, A=0 so that du = dx and v = sin x. A+B =4:B =4 x2 sin xdx A + B + c = 0 : C = −4 B + D = 3 : D = −1 = −x2 cos x + 2 x cos xdx
  • 27.
    386 CHAPTER 6. INTEGRATION TECHNIQUES 4x2 + 3 To see that the two answers are equivalent, (x2+ x + 1)2 note that 4 4x + 1 x2 x2 + 1 1 = 2 − 2 ln 2 = − ln 2 = − ln 1 + 2 x + x + 1 (x + x + 1)2 x +1 x x x4 + x3 x3 − 8x2 − 8 43. (a) Partial fractions 40. 2 + 4)2 =1+ (x (x2 + 4)2 Ax + B Cx + D (b) Substitution method =1+ 2 + 2 x +4 (x + 4)2 (c) Substitution and Partial fractions. x3 − 8x2 − 8 = (Ax + B)(x2 + 4) + cx + D (d) Substitution = Ax3 + Bx2 + (4A + c)x + (4B + D) A = 1; B = −8; C = −4; D = 24 44. (a) Partial fractions 4 3 x +x x−8 −4x + 24 (b) Substitution and Partial fractions. 2 + 4)2 =1+ 2 + 2 (x x +4 (x + 4)2 (c) Partial fractions 3 2 41. Let u = x + 1, du = 3x dx (d) Partial fractions 3 3x2 dx = dx x4 + x x3 (x3 + 1) cos x 1 45. sec3 xdx = 2 dx = du 1 − sin2 x (u − 1)u Let u = sin x, so that du = cos xdx. 1 1 cos x dx du = − du 2 = 2 u−1 u 2 1 − sin x (1 − u2 ) = ln |u − 1| − ln |u| + c 1 = 2 2 du u−1 (1 − u) (1 + u) = ln +c u By partial fractions, x3 1 1 1 1 = ln +c 2 2 = 4 + (1 − u) (1 − u)2 x3 +1 (1 − u) (1 + u) On the other hand, we can let 1 1 1 1 + + u = , du = − 2 dx (1 + u) (1 + u)2 x x 3 3u2 Hence, sec3 xdx dx = − du x 4+x 1 + u3 1 1 = − ln |1 − u| + + ln |1 + u| = − ln |1 + u3 | + c = − ln |1 + 1/x3 | + c 4 (1 − u) To see that the two answers are equivalent, 1 − +c note that (1 + u) x3 x3 + 1 1 1 ln 3 = − ln = − ln |1 + 1/x3 | = − ln |1 − sin x| + x +1 x3 4 (1 − sin x) 1 42. Let u = x2 + 1, du = 2xdx + ln |1 + sin x| − +c (1 + sin x) 2 2x dx = dx x3 + x x2 (x2 + 1) du u−1 6.5 Integration Table = = ln +c u(u − 1) u and Computer x2 = ln 2 x +1 +c Algebra Systems 1 1 x Let u = , du = − 2 dx 1. dx x x (2 + 4x)2 2 2u 2 1 dx = − du = + ln | 2 + 4x| + c x3 + x 1 + u2 16(2 + 4x) 16 1 1 1 = − ln |1 + u2 | + c = − ln 1 + 2 + c = + ln | 2 + 4x| + c x 8(2 + 4x) 16
  • 28.
    6.5. INTEGRATION TABLEAND COMPUTER ALGEBRA SYSTEMS 387 x2 1 3 2 t3 2. dx = t 2t6 − 4 4 − t6 + sin−1 + c (2 + 4x)2 24 3 2 1 4 1 √ = 2 + 4x − − 4 ln |2 + 4x| + c π 3 64 2 + 4x t8 4 − t6 dt = − 0 9 12 3. Substitute u = 1 + ex √ √ 8. Substitute u = et √ e2x 1 + ex dx = (u − 1) u du 16 − u2 16 − e2t dt = du u = (u3/2 − u1/2 ) du √ 4 + 16 − u2 2 5/2 2 3/2 = 16 − u2 − 4 ln +c = u − u +c u 5 3 √ 2 2 2t − 4 ln 4 + 16 − e2t = (1 + ex )5/2 − (1 + ex )3/2 + c = 16 − e +c 5 3 et ln 4 √ √ 4. Substitute u = ex 16 − e2t dt = − 15 + 4 ln 15 + 4 0 e3x 1 + e2x dx = u2 1 + u2 du 1 9. Substitute u = ex = u(1 + 2u2 ) 1 + u2 ex 1 8 √ dx = √ du 1 e 2x + 4 u 2+4 − ln |u + 1 + u2 | + c 8 = ln(u + 4 + u2 ) + c 1 = ex (1 + 2e2x ) 1 + e2x = ln(ex + 4 + e2x ) + c 8 ln 2 √ 1 ex 2 2+2 − ln |ex + 1 + e2x | + c √ dx = ln √ 8 0 e2x + 4 1+ 5 5. Substitute u = 2x 10. Substitute u = x2 √ √ 2 x 2 x x4 − 9 1 4 u2 − 9 √ dx √ dx = du 1 + 4x2 3 x2 2 3 u 4 1 u2 1 |u| = √ du = u2 − 9 − 3 sec−1 8 1 + u2 2 3 1 u √ 3 = − 1 + u2 7 3 −1 4 8 2 = − sec 1 2 2 3 − ln(u + 1 + u2 ) + c 2 11. Substitute u = x − 3 1 √ = x 1 + 4x2 6x − x2 8 dx 1 (x − 3)2 − ln(2x + 1 + 4x2 ) + c (u + 3)(6 − (u + 3)) 16 = du √ u2 6. Substitute u = sin x cos x 9 − u2 dx = du 2 sin x(3 + 2 sin x) u2 1 1 u = du =− 9 − u2 − sin−1 + c u 2 (3 + 2u) u 3 1 2 3 + 2u 1 =− 9 − (x − 3)2 = ln − +c x−3 9 u 2u x−3 2 3 + 2 sin x 1 − sin−1 +c = − +c 3 9 sin x 3 sin x 12. Substitute u = tan x 7. Substitute u = t3 sec2 x √ dx t8 4 − t6 dt tan x 8 tan x − tan2 x 1 1 = u2 4 − u2 du = √ du 3 u 8u − u2 √ 1 u 16 u 8u − u2 = 2u2 − 4 4 − u2 + sin−1 +c =− +c 3 8 8 2 4u
  • 29.
    388 CHAPTER 6. INTEGRATION TECHNIQUES √ 8 tan x − tan2 x u =− +c = −2 √ du 4 tan x 1+u 2 √ 13. tan6 udu = −2 (u − 2) 1 + u + c 3 1 4 √ = tan5 u − tan4 udu = − (cos x − 2) 1 + cos x + c 5 3 1 1 20. Substitute u = x2 √ = tan5 u − tan3 u − tan2 udu √ 5 3 x 1 + 4x2 1 1 + 4u dx = du 1 1 x4 2 u2 = tan5 u − tan3 u + tan u − u + c. √ √ 5 3 1 + 4u 1 + 4u − 1 =− + ln √ +c 2u 1 + 4u + 1 14. csc4 udu √ √ 1 + 4x2 1 + 4x2 − 1 1 2 =− + ln √ +c = − csc2 u cot u + csc2 udu 2x 2 1 + 4x2 + 1 3 3 1 2 21. Substitute u = sin t = − csc2 u cot u − cot u + c. sin2 t cos t 3 3 dt 15. Substitute u = sin x sin2 t + 4 cos x 1 u2 √ dx = √ du = √ du sin x 4 + sin x u 4+u u2 + 4 √ u 4 1 4+u−2 = 4 + u2 − ln(u + 4 + u2 ) + c = √ ln √ +c 2 2 4 4+u+2 1 √ = sin t 4 + sin2 t 1 4 + sin x − 2 2 = ln √ +c 2 4 + sin x + 2 − 2 ln sin t + 4 + sin2 t + c √ 16. Substitute u = x2 22. Substitute u = t x5 1 u2 √ √ dx = √ du ln t 4+x 2 2 4 + u2 √ dt = 2 ln u du t √ √ √ 1 2 √ = 2u ln u − 2u + c = 2 t ln t − 2 t + c = (3u2 − 16u + 128) 4 + u + c 2 15 2 23. Substitute u = − 1 x2 = (3x4 − 16x2 + 128) 4 + x2 + c 2 15 e−2/x 1 dx = eu du 17. Substitute u = x2 x3 4 1 1 1 2 x3 cos x2 dx = u cos u du = eu + c = e−2/x + c 2 4 4 1 24. Substitute u = 2x2 = (cos u + u sin u) + c 1 2 2 x3 e2x dx = ueu du 1 1 8 = cos x2 + x2 sin x2 + c 1 1 2 2 2 = (u − 1)eu + c = (2x2 − 1)e2x + c 8 8 18. Substitute u = x2 x x sin(3x2 ) cos(4x2 ) dx 25. √ dx 4x − x2 1 2−x = sin(3u) cos(4u) du = − 4x − x2 + 2 cos−1 +c 2 2 1 cos u cos 7u = − +c 26. e5x cos 3x dx 2 2 14 cos x2 cos 7x2 1 = − +c = (5 cos 3x + 3 sin 3x)e5x + c 4 28 34 19. Substitute u = cos x 27. Substitute u = ex sin 2x 2 sin x cos x √ dx = √ dx ex tan−1 (ex )dx = tan−1 u du 1 + cos x 1 + cos x
  • 30.
    6.6. IMPROPER INTEGRALS 389 1 1 1 = u tan−1 u − ln(1 + u2 ) + c (b) x−4/3 dx = lim+ x−4/3 dx 2 0 R→0 R 1 = ex tan−1 ex − ln(1 + e2x ) + c 1 2 = lim (−3x−1/3 ) R→0+ R 28. Substitute u = 4x −1/3 1 = lim+ (−3)(1 − R )=∞ (ln 4x)3 dx = (ln u)3 dx R→0 4 So the original integral diverges. 1 = u(ln u)3 − 3 (ln u)2 dx ∞ R 4 4. (a) x−4/5 dx = lim x−4/5 dx 1 R→∞ = u(ln u)3 1 R 1 4 = lim 5x1/5 3 − u(ln u)2 − 2u ln u + 2u + c R→∞ 1 4 = lim 5R1/5 − 5 = ∞ = x(ln 4x)3 − 3x(ln u)2 + 6x ln 4x − 6x + c R→∞ So the original integral diverges. 29. Answer depends on CAS used. ∞ R (b) x−6/5 dx = lim dx 30. Answer depends on CAS used. 1 R→∞ 1 R −1/5 = lim −5x 31. Any answer is wrong because the integrand is R→∞ 1 undefined for all x = 1. = lim −5R−1/5 + 5 = 5 R→∞ 32. Answer depends on CAS used. 1 R 1 1 5. (a) √ dx = lim− √ dx 33. Answer depends on CAS used. 0 1−x R→1 0 1−x √ R 34. Answer depends on CAS used. = lim − 2 1 − x 0 R→1− √ 35. Answer depends on CAS used. = lim −2( 1 − R − 1) = 2 R→1− bπ 5 2 R 2 36. Maple gives the result: (b) √dx = lim− √ dx 1 1 5−x R→5 1 5−x a2 √ R = lim− − 4 5 − x 1 R→5 37. If the CAS is unable to compute an antideriva- √ tive, f (x) dx is generally printed showing this = lim− −4( 5 − R − 2) = −8 R→5 inability. 1 R 2 2 6. (a) √ dx = lim− √ dx 1 − x2 R→1 1 − x2 6.6 Improper Integrals 0 R 0 = lim− 2 sin−1 x 1. (a) improper, function not defined at x = 0 R→1 0 (b) not improper, function continuous on = lim− 2(sin−1 R − sin−1 0) R→1 entire interval π =2 −0 =π 2 (c) not improper, function continuous on 1/2 on entire interval 2 (b) √ dx 0 x 1 − x2 2. (a) improper, interval is infinite 1/2 2 = lim+ dx √ (b) improper, function not defined at x = 0 R→0 R x 1 − x2 √ 1/2 (c) improper, interval is infinite 1 + 1 − x2 = lim −2 ln =∞ 1 1 R→0+ x R 3. (a) x−1/3 dx = lim+ x−1/3 dx Therefore the original integral diverges. 0 R→0 R 1 3 2/3 ∞ R = lim+ x R→0 2 R 7. (a) xex dx = lim xex dx 0 R→∞ 0 3 3 R = lim+ 1 − R2/3 = = lim (xex − ex ) R→0 2 2 R→∞ 0
  • 31.
    390 CHAPTER 6. INTEGRATION TECHNIQUES = lim eR (R − 1) + 1 = ∞ 1 R→∞ Hence, I = − 16 So the original integral diverges. −1 −1 (b) Substitute u = −2x 1 1 ∞ −∞ 9. (a) 2 dx = lim dx 1 −∞ x R→−∞ R x2 I= x2 e−2x dx = − u2 eu du −1 1 8 −2 1 = lim − 1 −2 2 u R→−∞ x R = u e du 1 8 −∞ = 1 + lim =1 −2 R→−∞ R 1 = lim u2 eu du 0 1 R 1 8 R→−∞ R dx = lim+ dx −2 x 2 R→0 x2 1 −1 −1 = lim (u2 eu − 2ueu + 2eu ) 1 R 8 R→−∞ R = lim+ − 10 −2 1 R 2 R→0 x −1 = e + lim e (−R + 2R − 2) 8 8 R→−∞ 1 = −1 − lim =∞ But, lim e (−R2 + 2R − 2) R R→0+ R R→−∞ So the original integral diverges. = lim e−R (−R2 − 2R − 2) −1 −1 R→∞ 1 1 −R2 − 2R − 2 (b) √ dx = lim √ dx = lim −∞ 3 x R→−∞ R 3 x R→∞ eR −1 −2R − 2 −2 3 2/3 = lim = lim R = 0 = lim x R→∞ e R R→∞ e R→−∞ 2 R 5 3 3 Hence, I = e−2 = + lim R2/3 = ∞ 4 2 2 R→−∞ So the original integral diverges. 8. (a) Substitute u = 3x 1 ∞ R I = lim x2 e3x dx 10. (a) cos xdx = lim cos xdx −∞→1 −∞ R→∞ 0 0 3 R 1 = u2 eu du = lim sin x 27 −∞ R→∞ 0 1 3 = lim (sin R − sin 0) R→∞ = lim (u2 eu − 2ueu + 2eu ) 27 R→−∞ R So the original integral diverges. 5 3 1 ∞ = e − lim eR (R2 − 2R + 2) (b) cos xe− sin x dx 27 27 R→−∞ 0 But, lim eR (R2 − 2R + 2) R R→∞ −R 2 = lim cos xe− sin x dx = lim e (R + 2R + 2) R→∞ 0 R→∞ R R2 + 2R + 2 = lim −e− sin x = lim =0 R→∞ 0 R→∞ eR 5 3 = lim −e− sin R + 1 Hence, I = e R→∞ 27 So the original integral diverges. (b) Substitute u = −4x 0 1 I= xe−4x dx 11. (a) ln xdx −∞ 0 0 1 1 = ueu du = lim+ ln xdx 16 −∞ R→0 R 0 1 1 = lim ueu du = lim (x ln x − x) 16 R→−∞ R R→0+ R 1 0 = lim (−1 − R ln R + R) = lim (ueu − eu ) R→0+ 16 R→−∞ R ln R 1 1 = −1 − lim+ R R→0 1/R =− + lim e (R − 1) 16 16 R→−∞ 1/R R But, lim e (R − 1) = −1 − lim+ R→0 −1/R2 R→−∞ = lim e−R (−R − 1) = 0 = −1 + lim+ R = −1 R→∞ R→0
  • 32.
    6.6. IMPROPER INTEGRALS 391 π/2 R 2x (b) sec2 xdx = lim− dx 0 R→1 −4 x2 − 1 R R = lim 2 sec xdx = lim− ln(x2 − 1) −4 R→1 R→π/2− 0 R = lim− ln(R2 − 1) − ln 15 = ∞ R→1 = lim tan x So the original integral diverges. R→π/2− 0 = lim tan R − tan 0 = ∞ π R→π/2− Therefore the original integral diverges. 14. (a) xsec2 xdx 0 π/2 π/2 π 12. (a) cot xdx = xsec2 xdx + xsec2 xdx 0 0 π/2 π/2 R cos x = lim (x tan x + ln |cos x|)|0 = lim+ dx R→π/2− R→0 R sin x + lim (x tan x + ln |cos x|)|R π π/2 R→π/2+ = lim+ ln | sin x| =∞ R→0 R = ln | sin(π/2)| − lim+ ln | sin R| = ∞ So the original integral diverges. R→0 2 So the original integral diverges. 2 π/2 (b) dx 0 x3 − 1 (b) tan xdx 1 2 2 2 0 = dx + dx R 3−1 3−1 sin x 0 x 1 x = lim dx R 2 R→π/2 0 cos x = lim dx R R→1− 0 x3 − 1 = lim − ln | cos x| 2 2 R→π/2 0 + lim dx 3−1 = lim (− ln | cos R| + ln 1) = ∞ R x R→1 + R→π/2 ln x2 + x + 1 So the original integral diverges. = lim− 2 − R→1 6 3 2 R 13. (a) dx tan−1 2x+1√ 0 x2 − 1 3 ln (x − 1)  3 − √ + 1 1 3 3 = − + dx 0 0 x+1 x−1 R 1 1 ln x2 + x + 1 = lim− − + dx + lim+ 2 − R→1 x+1 x−1 R→1 6 0 3 R 1 1 tan−1 2x+1 √ + lim+ − + dx 3 ln (x − 1)  R→1 R x+1 x−1 − √ + Both of these integrals behave like 3 3 1 0 1 =∞ lim+ dx R→0 R x ∞ = lim+ (ln 1 − ln R) 1 R→0 15. (a) 2 dx 1 −∞ 1 + x = lim ln =∞ 0 ∞ R 1 1 R→0+ = dx + ds dx So the original integral diverges. −∞ 1 + x2 0 1 + x2 0 4 2x 1 (b) dx = lim dx 2−1 R→−∞ R 1 + x2 1 x R 4 2x 1 = lim+ dx + lim dx R→1 x2 − 1 R→∞ 0 1 + x2 R = lim ln(x2 − 1) R 4 = lim tan x|R + lim tan−1 x|R −1 0 0 R→∞ R→∞ R→1+ = lim (tan−1 0 − tan−1 R) = lim+ ln 15 − ln(R2 − 1) = ∞ R→−∞ R→1 + lim (tan−1 R − tan−1 0) 1 R→∞ 2x π π dx =0− − + −0=π −4 x2 − 1 2 2
  • 33.
    392 CHAPTER 6. INTEGRATION TECHNIQUES 2 −2 2 1 (b) dx + lim + R 1 x2 − 1 R→∞ e e 1 1 =1+1=2 = lim+ 2−1 dx π/2 R→1 R x 2 (b) tan xdx 1 x−1 0 = lim ln R R→1+ 2 x+1 R = lim tan xdx 1 1 1 R−1 R→π/2− 0 = lim ln − ln R R→1 + 2 3 2 R+1 =∞ = lim − ln cos x R→π/2− Therefore the original integral diverges. 0 = lim − (− ln cos R) = ∞ R→π/2 2 x Therefore the original integral diverges. 16. (a) dx 0 x2 − 1 1 x 2 x 18. (a) Substitute u = ex = dx + dx ∞ 2−1 2−1 ex 0 x 1 x I= dx R x 0 e2x + 1 ∞ = lim− dx 1 R→1 0 x2 − 1 = 2+1 dx 2 1 u x R + lim+ 2−1 dx 1 R→1 R x = lim dx R R→∞ 1 u2 + 1 1 R = lim− ln |x2 − 1| = lim tan−1 u R→1 2 0 R→∞ 1 2 1 2 = lim tan−1 R − tan−1 1 + lim+ ln |x − 1| R→∞ R→1 2 R π π π = − = 1 2 1 2 4 4 = lim− ln |R − 1| − ln |−1| R→1 2 2 (b) Substitute u = tan−1 x = −∞ ∞ x So the original integral diverges. I= √ dx x 2+1 0 π/2 2 1 = tan u tan2 u + 1 du (b) dx 0 0 (x − 2)2 R R 1 = lim tan u (sec u) du = lim− dx R→π/2 0 R→2 0 (x − 2)2 R R = lim sec u 1 R→π/2 = lim− 0 R→2 2 − x 0 = lim − sec R − sec 0 = ∞ 1 1 R→π/2 = lim − =∞ 2−R 2 R→2− Therefore the original integral diverges. So the original integral diverges. 1 1 √ 19. (a) Ip = x−p dx = lim x−p dx 17. (a) Substitute u = x R→0+ 0 R 1 1 √ √x dx = 2e−u du x −p+1 1 − R−p+1 xe = lim+ = lim+ ∞ 1 R→0 −p + 1 R R→0 −p + 1 Hence √ √x dx We need p < 1 for the above limit to con- 0 xe verge. If this is the case, 1 1 1 = lim+ √ √x dx Ip = . R→0 R xe −p + 1 R 1 ∞ R + lim √ √x dx R→∞ 1 xe (b) Ip = x−p dx = lim x−p dx 1 R 1 R→∞ 1 −2 −2 R = lim+ √ + lim √ x−p+1 R−p+1 − 1 R→0 e x R R→∞ e x 1 = lim = lim R→∞ −p + 1 1 R→∞ −p + 1 −2 2 = lim+ + R We need p > 1 for the above limit to R→0 e e
  • 34.
    6.6. IMPROPER INTEGRALS 393 converge. (b) Case1: If r > 0 (c) There are three cases. Substitute u = rx 0 Case 1: p > −1 ∞ R I= xerx dx xp dx = lim xp dx 0 −∞ 0 R→∞ 0 1 p+1 R = lim ueu du x Rp+1 r2 R→−∞ R = lim = lim =∞ 1 R→∞ p+1 0 R→∞ p + 1 = 2 lim (ueu − eu )|R 0 ∞ r R→−∞ So xp dx diverges. 1 1 −∞ = 2 − 2 lim eR (R − 1) Case 2: p = −1 r r R→−∞ ∞ 1 1 1 We have already seen that dx = 2 −0= 2 x r r −∞ 0 diverges. So xerx dx converges for r > 0. Case 3: p < −1 −∞ 1 1 p p x dx = lim x dx Case2: For r ≤ 0, 0 R→0+ R 0 p+1 1 the integral xerx dx diverges. x = lim+ −∞ R→0 p + 1 R Therefore, for all r < 0 1 − Rp+1 ∞ the integral 0 xerx dx converges. = lim+ =∞ R→0 p+1 ∞ x x 1 So xp dx diverges. 21. 0 < < 3 = 2 −∞ 1 + x3 x x ∞ R 20. (a) Case1: If r ≥ 0 1 1 2 dx = lim dx Substitute u = rx. 1 x R→∞ 1 x2 ∞ R I= xerx dx = lim − 1 0 R→∞ x 1 R 1 1 = lim 2 R→∞ ueu du = lim − + 1 = 1 r 0 R→∞ R 1 R ∞ = 2 lim (ueu − eu )|0 x r R→∞ So dx converges. 1 1 1 1 + x3 = 2 lim eR (R − 1) − 2 = ∞ r R→∞ r x2 − 2 3x2 ∞ rx 22. ≤ 4 = 3x−2 So xe dx diverges for r ≥ 0. x4 + 3 x 0 ∞ R Case2: For r < 0, 3x−2 dx = lim 3x−2 dx 1 R→∞ 1 Substitute u = −rx ∞ −3 R −3 I= xerx dx = lim = lim +3=3 R→∞ x 1 R→∞ R 0 −R ∞ 2 1 x −2 = 2 lim ueu du So dx converges. r R→∞ 0 1 x4 + 3 0 1 = − 2 lim ueu du x x 1 r R→∞ −R 23. > 3/2 = 1/2 > 0 1 0 x3/2 −1 x x = − 2 lim (ueu − eu )|−R ∞ R r R→∞ 1 1 x−1/2 dx = lim x−1/2 dx = − 2 lim e−R (−R − 1) − 2 2 R→∞ 2 r R→∞ r √ R 1 1 = lim 2 x =0− 2 =− 2 R→∞ √ 2 √ r r = lim (2 R − 2 2) = ∞ R→∞ Therefore, for all r < 0 the integral ∞ ∞ x xerx dx converges. So dx diverges. 0 2 x3/2 − 1
  • 35.
    394 CHAPTER 6. INTEGRATION TECHNIQUES 2 + sec2 x 1 ∞ R 24. ≥ ex dx = lim ex dx x x 2 R→∞ 2 ∞ R R 1 1 = lim ex dx = lim dx R→∞ 2 1 x R→∞ 1 x R = lim (eR − e2 ) = ∞ = lim ln |x||1 = lim ln |R| = ∞ R→∞ R→∞ R→∞ ∞ ∞ 2 x2 ex 2 + sec x So dx diverges. So dx diverges. 2 ln x 1 x 2 3 3 30. ex +x+1 > ex 25. 0 < < x ∞ R x + ex e x e dx = lim ex dx ∞ R 3 3 1 R→∞ 1 x dx = lim dx R 0 e R→∞ 0 ex = lim ex = lim (eR − e) = ∞ R R→∞ 1 R→∞ 3 ∞ = lim − x So e x2 +x+1 dx diverges. R→∞ e 0 1 3 = lim − R + 3 = 3 R→∞ e 31. Let u = ln 4x, dv = xdx ∞ 3 dx x2 So dx converges. du = ,v = 0 x + ex x 2 1 1 3 26. e−x < e−x x ln 4xdx = x2 ln 4x − xdx ∞ R 2 2 e−x dx = lim e−x dx 1 2 x2 1 R→∞ 1 = x ln 4x − +c R 2 4 = lim −e−x = lim −e−R + e−1 1 1 R→∞ 1 R→∞ I= x ln 4xdx = lim x ln 4xdx −1 R→ 0+ =e . 0 R ∞ 1 So 3 e−x dx converges. 1 2 x2 = x ln 4x − lim + 1 R→ 0 2 4 R 2 1 1 2 R2 sin x 1 1 = − − lim R ln 4R − 27. x ≤ x < x 4 R→ 0+ 2 4 1+e 1+e e 1 1 ∞ R 1 1 =− − lim R2 ln 4R dx = lim dx 4 2 R→ 0+ 0 ex R→∞ 0 ex ln 4R R lim R2 ln 4R = lim + −2 = lim (−e−x ) R→ 0+ R→ 0 R R→∞ 0 R−1 R2 = lim (−e−R + 1) = 1 = lim + −3 = lim + =0 R→∞ R→ 0 −2R R→ 0 −2 ∞ sin2 x 1 So dx converges. Hence I = − 1 + ex 4 0 ln x x 32. Let u = x, dv = e−2x dx 28. x < x 1 e +1 e du = dx, v = − e−2x ∞ x R 2 dx = lim xe−x dx x 1 ex R→∞ xe−2x dx = − e−2x + e−2x dx 2 2 R 2 2 = lim (−xe−x − e−x ) x R→∞ = − e−2x − e−2x 2 2 = lim e−R (−R − 1) + 3e−2 ∞ R R→∞ and lim e −R (−R − 1) xe−2x dx = lim xe−2x dx R→∞ 0 R→∞ 0 −R − 1 −1 R = lim = lim R = 0 x R→∞ e R R→∞ e = lim − e−2x − e−2x ∞ ln x R→∞ 2 0 So dx converges. = lim e−2R (−R/2 − 1) + 1 2 ex + 1 R→∞ −R/2 − 1 x2 ex = lim +1 29. > ex R→∞ e2R ln x
  • 36.
    6.6. IMPROPER INTEGRALS 395 −2 Since the graph of the function xe−x is 2 = lim +1=1 R→∞ 2e2R anti-symmetric across the y-axis, 2 0 2 R 33. The volume is finite: ∞ R lim xe−x + xe−x =0 1 1 R→∞ −R 0 V =π dx = π lim dx Then we have 1 x2 R→∞ 1 x2 ∞ 2 ∞ 2 1 R e−x dx = 2 x2 e−x dx = π lim − −∞ −∞ R→∞ x 1 And the conclusion is √ ∞ 2 −x2 π 1 x e dx = = π lim − +1 =π −∞ 2 R→∞ R The surface area is infinite: ∞ 1 1 40. (a) Since k > 0, we have ∞ ∞ S = 2π 1 + 4 dx sin kx sin kx 1 x x dx = (k) dx 0 x 0 kx 1 1 1 Let u = kx, du = kdx. 1+ 4 > ∞ x x x sin u π ∞ R = du = . 1 1 0 u 2 and dx = lim dx 1 x R→∞ 1 x (b) Since k < 0 , assume k = −m , where R m ∞ 0. > ∞ = lim ln |x| = lim ln R = ∞ sin kx sin (−m) x R→∞ 1 R→∞ dx = dx 0 x 0 x ∞ ∞ 34. The integral x3 dx diverges: sin mx =− dx −∞ 0 x ∞ R ∞ sin mx x3 dx = lim x3 dx =− (m) dx 0 R→∞ 0 0 mx R x4 R4 Let u = mx, so that du = mdx. = lim = lim =∞ ∞ R→∞ 4 0 R→∞ 4 sin u π R =− du = − . 0 u 2 The limit lim x3 dx = 0: R→∞ −R (c) Since k > 0 , we have R R ∞ ∞ x4 sin2 kx sin2 kx 2 lim x3 dx = lim dx = 2 k dx R→∞ −R R→∞ 4 −R 0 x2 0 (kx) 4 4 Let u = kx, du = kdx. R R = lim − = lim 0 = 0 ∞ sin u π R→∞ 4 4 R→∞ = kdu = k . 0 u 2 35. True, this statement can be proved using the integration by parts: (d) Since k < 0, assume k = −m, where f (x)dx = xf (x) − g(x)dx, m > 0. ∞ ∞ sin2 kx sin2 [(−m) x] where g(x) is some function related to f (x). dx = dx 0 x2 0 x2 ∞ 1 sin2 mx 36. False, consider f (x) = = dx x 0 x2 ∞ 2 sin mx 2 37. False, consider f (x) = ln x = 2 m dx 0 (mx) 38. True, this statement is best understood graph- Let u = mx, du = mdx. ∞ ically. sin2 u π kπ = m du = m = − . √ 0 u2 2 2 39. (a) Substitute u = kx √ ∞ ∞ 2 1 2 π x 1 e−kx dx = √ e−u du = √ 41. Since ≈ 4, −∞ k −∞ k x5 + 1 x ∞ ∞ (b) We use integration by parts x 1 2 dx ≈ dx. (u = e−x , v = x): 1 x5 + 1 1 x4 ∞ 2 2 2 1 1 e−x dx = xe−x + 2 x2 e−x dx we have dx converges to - . 1 x4 3
  • 37.
    396 CHAPTER 6. INTEGRATION TECHNIQUES ∞ π/2 x Hence dx also converges. = ln(sin x cos x)dx 1 +1 x5 0 x 1 π/2 Let f (x) = 5 and g(x) = 4 . x +1 x = [ln(sin(2x)) − ln 2]dx So that, we have, 0 < f (x) < g(x) . 0 π/2 By Comparison test, π ∞ ∞ = ln(sin(2x))dx − ln 2 x 1 1 0 2 dx < dx = − . 1 π π 1 x5 + 1 1 x4 3 = ln(sin x)dx − ln 2 2 0 2 1 x Hence, 42. (a) Let f (x) = √ and g(x) = √ . π/2 x 2 x 3−1 So that, we have, 0 < f (x) < g(x). 2 ln(sin x)dx 0 By Comparison test, π ∞ ∞ 1 π 1 x = ln(sin x)dx − ln 2 √ dx < √ dx, and 2 0 2 x2 x 3−1 On the other hand, we notice that the graph of 2 2 1 sin x is symmetric over the interval [0, π] across f (x) = √ diverges. x2 the line x = π/2, hence x π π/2 Hence g(x) = √ also diverges. x3 − 1 ln(sin x)dx = 2 ln(sin x)dx 0 0 x 1 and then (b) Let f (x) = √ and g(x) = 5/4 . x5 − 1 x 1 π π/2 So that, we have, 0 < f (x) < g(x) . ln(sin x)dx = ln(sin x)dx 2 0 0 By Comparison test, π/2 π ∞ ∞ x 1 So we get ln(sin x)dx = − ln 2 √ dx < 5/4 dx, and 0 2 2 x 5−1 2 x 1 1 1 g(x) = 5/4 converges. n n x 44. (ln x) dx = lim (ln x) dx x 0 + t→0 t Hence f (x) = √ also converges. 1 x 5−1 n 1 n−1 = lim x(ln x) |t −n (ln x) dx x t→0+ t (c) Let f (x) = √ and Using#112 from the table. x 5+x−1 2 x = lim 0 − t(ln t) g(x) = √ . + t→0 x5 − 1 1 n−1 So that, we have, 0 < f (x) < g(x) . − lim n (ln x) dx By Comparison test, t→0+ t ∞ ∞ 1 x x n−1 √ dx < √ dx , = 0 − lim n + (ln x) dx . x 5+x−1 x 5−1 t→0 t 2 2 x Continuing in the same manner, and g(x) = √ converges. 1 x5 − 1 n x (ln x) dx Hence f (x) = √ also con- 0 x 5+x−1 1 verges. = (−1) n−1 n! lim (ln x) dx t→0+ t π 1 43. Substitute u = −x n−1 2 = (−1) n! lim (x ln x − x) π/2 0 t→0+ t ln(sin x)dx = − ln(sin(π/2 − u))du n−1 0 π/2 = (−1) n! lim ((0 − t ln t) − (1 − t)) π/2 π/2 t→0+ n = ln(cos u)du = ln(cos x)dx = (−1) n!. 0 0 Moreover, π/2 2 ln(sin x)dx 45. Improper because tan(π/2) is not defined. The 0 two integrals π/2 π/2 π/2 π/2 1 = ln(cos x)dx + ln(sin x)dx dx = f (x)dx 0 0 0 1 + tan x 0 π/2 because the two integrand only differ at one = [ln(cos x) + ln(sin x)] dx value of x, and that except for this value, ev- 0
  • 38.
    6.6. IMPROPER INTEGRALS 397 erything is proper. 1 2  tan x = − x3 e−x π 2  if 0 ≤ x < 3 1 2 1 2 g(x) = 1 + tan x 2 + − xe−x + e−x dx  0 if x = π 2 2 2 2 1 2 3 2 3 2 π = − x3 e−x − xe−x + e−x dx Substitute u = x − followed by w = −u 2 4 4 2 Putting integration limits to all the above, and π/2 0 realizing that when taking limits to ±∞, all 1 1 dx = du 2 multiples of e−x as shown in above will go 0 1 + tan x −π/2 1 − cot u 0 1 to 0 (we have seen this a lot of times before). =− dw Then we get π/2 1 + cot w ∞ 2 3 ∞ −x2 3√ π/2 1 x4 e−x dx = e dx = π = 4 −∞ 4 cos w dw −∞ 0 1+ This means when n = 2, the statement sin w ∞ π/2 2 (2n − 1) · · · 3 · 1 √ sin w x2n e−x dx = π = dw −∞ 2n 0 sin w + cos w π/2 is true. (We can also check that the case for tan w = dw n = 1 is correct.) For general n, supposing 0 tan w + 1 that the statement is true for all m < n, then π/2 tan x integration by parts gives = dx tan x + 1 2 0 x2n e−x dx Moreover, π/2 tan x π/2 1 1 2 2n − 1 2 dx + dx = − x2n−1 e−x + x2n−2 e−x dx tan x + 1 1 + tan x 2 2 0 0 π/2 and hence ∞ tan x 1 2 = + dx x2n e−x dx 0 1 + tan x 1 + tan x −∞ π/2 π/2 π 2n − 1 ∞ 2n−2 −x2 = 1 dx = x = = x e dx 0 0 2 2 −∞ π/2 1 1 π π 2n − 1 (2n − 3) · · · 3 · 1 √ Hence dx = = = · π 1 + tan x 2 2 4 2 2n−1 0 (2n − 1) · · · 3 · 1 √ = π 46. As in exercise.45, We have 2n π/2 π/2 √ 1 tank x 48. Substitute u = ax dx = dx 1 + tan xk 1 + tank x 2 1 2 0 hence, 0 e−ax dx = √ e−u du a π/2 1 and then 2 dx ∞ 1 ∞ π 0 1 + tank x 2 e−ax dx = √ 2 e−u du = π/2 1 π/2 tank x −∞ a −∞ a = dx + dx Ignoring issues of convergence, the derivatives 0 1 + tank x 0 1 + tank x π/2 can be taken from the integrand, we get the π = 1dx = following: 0 2 1st derivative therefore, d ∞ 2 d π π/2 1 π e−ax dx = dx = da −∞ da a 0 1 + tank x 4 ∞ 2 1 π − x2 e−ax dx = − 47. Use integration by parts twice, first time −∞ 2 a3 1 2 2nd derivative let u = − x3 , dv = ds − 2xe−x dx d2 ∞ d2 π 2 2 e−ax dx = 2 second time da −∞2 da a 1 2 let u = − x, dv = −2xe−x dx ∞ 2 3 π 2 x4 e−ax dx = 2 4 a5 x4 e−x dx −∞ . . . nth derivative ∞ 1 3 2 −x2 dn 2 dn π e−ax dx = n 2 = − x3 e−x + x e dx n 2 2 da −∞ da a
  • 39.
    398 CHAPTER 6. INTEGRATION TECHNIQUES ∞ R (−1)n 2 x2n e−ax dx k = lim ue−u dx −∞ r2 R→∞ 0 (2n − 1) · · · 3 · 1 π R = (−1)n k 2n a2n+1 = 2 lim (ue−u + e−u ) r R→∞ 0 Setting a = 1, we get the result of Exercise 47. k R+1 k ∞ R = 2 lim −1 =− 2 =1 r R→∞ eR r 49. (a) ke−2x dx = lim ke−2x dx So k = −r2 0 R→∞ 0 R If r ≤ 0: k −2x ∞ = − lim e 2 R→∞ 0 The integral kxe−rx dx diverges for k −2R k 0 = − lim (e − 1) = = 1 any value of k, so there is no value of k to 2 R→∞ 2 So k = 2 make the function f (x) = k a pdf. ∞ R (b) ke−4x dx = lim ke−4x dx 51. From Exercise 49 (c) we know that this r has 0 R→∞ 0 to be positive. R k −4x Substitute u = rx ∞ ∞ =− lim e 4 R→∞ 0 µ= xf (x)dx = rxe−rx dx k −4R k 0 0 = − lim (e − 1) = = 1 R 4 R→∞ 4 = lim rxe−rx dx So k = 4 R→∞ 0 R (c) If r > 0: 1 ∞ R = lim ue−u du r R→∞ 0 ke−rx dx = lim ke−rx dx R R→∞ 1 0 R 0 = lim e−u (−u − 1) k −rx r R→∞ 0 =− lim e −R − 1 1 1 1 r R→∞ 0 = lim + =0+ = k −rR k R→∞ eR r r r =− lim (e − 1) = = 1 r2 R→∞ r So k = r 52. From Exercise 50 (c) we know that this r has 50. (a) Substitute u = 2x to be positive. ∞ R Substitute u = rx ∞ ∞ kxe−2x dx = lim kxe−2x dx µ= xf (x)dx = r2 x2 e−rx dx 0 R→∞ 0 R 0 0 k R = lim ue−u dx = lim 2 2 −rx r x e dx 4 R→∞ 0 R→∞ R 0 k 1 R = lim (ue−u + e−u ) = lim u2 e−u du 4 R→∞ 0 r R→∞ 0 k R+1 k 1 R = lim R −1 =− =1 = lim e−u (−u2 − 2u − 2) 4 R→∞ e 4 r R→∞ 0 So k = −4 −R2 − 2R − 2 2 2 2 = lim R + =0+ = (b) Substitute u = 4x R→∞ e r r r ∞ R 35 kxe−4x dx = lim kxe−4x dx 1 −x/40 35 0 R→∞ 0 53. e dx = −e−x/40 = 1 − e−35/40 R 0 40 0 k = lim ue−u dx P (x > 35) = 1 − above = e−35/40 16 R→∞ 0 R 40 k 1 −x/40 40 = lim (ue−u + e−u ) e dx = −e−x/40 = 1 − e−40/40 16 R→∞ 0 0 40 0 k R+1 k = lim −1 =− =1 P (x > 40) = 1 − above = e−40/40 16 R→∞ eR 16 45 So k = −16 1 −x/40 45 e dx = −e−x/40 = 1 − e−45/40 (c) If r > 0: 0 40 0 Substitute u = rx P (x > 45) = 1 − above = e−45/40 ∞ R kxe−rx dx = lim kxe−rx dx Hence, 0 R→∞ 0
  • 40.
    6.6. IMPROPER INTEGRALS 399 P (x > 40) R P (x > 40|x > 35) = = lim 2xe−2x dx P (x > 35) R→∞ 0 e−40/40 R = = e−5/40 ≈ 0.8825 = lim e−2x (−x − 1/2) e−35/40 R→∞ 0 P (x > 45) −2R 1 1 P (x > 45|x > 40) = = lim e (R + 1/2) + = P (x > 40) R→∞ ∞ 2 2 e−45/40 µ2 = xf2 (x)dx = −40/40 = e−5/40 ≈ 0.8825 e −∞ 1 1 x2 = xdx = 54. (a) Following Exercise 53, we get 0 2 0 P (x > m + n) 1 P (x > m + n|x > n) = = P (x > n) 2 m+n 1 −x/40 µ1 = µ2 and when r = 1/2 1− 0 40 e dx e−2·1/2 = m 1 −x/40 Ω1 (1/2) = =1 1− 0 40 e dx 2 · 1/2 + e−2·1/2 − 1 1 − 2 · 1/2 + (1/2)2 e−(m+n)/40 Ω2 (1/2) = =1 = = e−m/40 (1/2)2 e−n/40 A (d) The graph of f2 (x) is more stable than A (b) ce−cx dx = −e−cx 0 = 1 − e−cA that of f1 (x). 0 f1 (x) > f2 (x) for 0 < x < 0.34 P (x > m + n) P (x > m + n|x > n) = and f1 (x) < f2 (x) for x > 1. P (x > n) m+n 1− 0 ce−cx dx e−c(m+n) 2r − 1 = m = (e) Ω1 (r) = 1 − 1 − 0 ce−cx dxdx e−cn e−2r + 2r − 1 −cm 2r − 1 =e Ω2 r = 1 − r2 55. (a) For x ≥ 0, and x x r2 − (e−2r + 2r − 1) = e−2r + (r − 1)2 > 0 F1 (x) = f1 (t)dt = f1 (t)dt This means −∞ 0 x x when r < 1/2, Ω1 (r) < Ω2 (r) = 2e−2t dt = −e−2t = 1 − e−2x when r > 1/2, Ω1 (r) > Ω2 (r) 0 0 ∞ [1 − F1 (x)]dx In terms of this example, we see that the r Ω1 (r) = r riskier investment is only disadvantageous −∞ 1 F (x)dx when r small, and will be better when r ∞ −2x r e dx large. = r 0 (1 − e−2x )dx 1 −2r 56. Following Exercise 54(b), 2e e−2r R(t) = P (x ≥ t) = P (x > t) = 1 −2r 1 = 2r + e−2r r + 2e −2 −1 t t x =1− f (x)dx = 1 − ce−cx dx 0 0 (b) For 0 ≤ x ≤ 1, F2 (x) = f2 (t)dt = 1 − (1 − e−ct ) = e−ct −∞ x x x = f2 (t)dt = 1 dt = t =x 57. Graph of p1 (x): 0 0 0 ∞ r [1 − F2 (x)]dx 1 1 Ω2 (r) = r p1 (x) dx = 1dx = 1, −∞ 2 F (x)dx 0 0 1 1 r2 r (1 − x)dx 2 −r+ 2 Graph of p2 (x): = r = r2 0 xdx 2 1 − 2r + r 2 Similarly, = 1 1/2 1 r2 p2 (x) dx = 4xdx + (4 − 4x) dx ∞ 0 0 1/2 (c) µ1 = xf1 (x)dx 1/2 1 = 2x2 0 + 4x − 2x2 1/2 −∞ ∞ 1 1 = 2xe−2x dx = − 0 + (4 − 2) − 2 − = 1. 0 2 2
  • 41.
    400 CHAPTER 6. INTEGRATION TECHNIQUES The Boltzmann integral Ch. 6 Review Exercises 1 I(p1 ) = p1 (x) ln p1 (x) dx √ 0 1. Substitute u = x √ 1 e x √ = 1 ln 1dx = 0. √ dx = 2 eu du = 2eu + c = 2e x + c 0 x 1 Also, I(p2 ) = p2 (x) ln p2 (x) dx 1 0 2. Substitute u = 1/2 x sin(1/x) = 4x ln (4x) dx dx = − sin u du 0 x2 1 = cos u + c = cos(1/x) + c + (4 − 4x) ln (4 − 4x) dx 1/2 Let u = 4x, du = 4dx 3. Use the table of integrals, x2 1 1 and t = 4 − 4x, dt = −4dx √ dx = − x 1 − x2 + sin−1 x + c 1 2 1 0 1−x 2 2 2 = u ln udu − t ln tdt 4 0 4 2 4. Use the table of integrals, 2 1 1 2 1 2 x = u ln u − u2 √ dx = 2 sin−1 + c 2 2 4 0 9 − x2 3 1 = (2 ln 2 − 1) = 0.193147. 5. Use integration by parts, twice: 2 1 x2 e−3x dx For the pdf p2 (x) , the probability at x = is 2 1 2 1 = − x2 e−3x + xe−3x dx maximum which is equal to .The probability 3 3 2 1 decreases as x tends to 0 or 1. = − x2 e−3x 3 2 1 1  1 + − xe−3x + e−3x dx  2x 0≤x< 3 3 3 4   1 2 2 = − x2 e−3x − xe−3x − e−3x + c  1 1    10x − 2 ≤x< 3 9 27   p3 (x) = 4 2  8 − 10x 1 3 6. Substitute u = x3  ≤x< 1 1 −x3 2 4 3 x2 e−x dx = e−u du =  e +c      2 − 2x 1 3 3 <x≤1  4 7. Substitute u = x2 Graph of p3 (x): x 1 du 1 1/4 1/2 dx = 1 + x4 2 1 + u2 p3 (x) dx = 2xdx + (10x − 2)dx 1 1 0 0 1/4 = tan−1 u + c = tan−1 x2 + c 3/4 1 2 2 + (8 − 10x)dx + (2 − 2x) dx 1/2 3/4 x3 1 = 1. 8. dx = ln(1 + x4 ) + c 1 + x4 4 Also, The Boltzmann integral x3 1 1 9. 4 dx = ln(4 + x4 ) + c I(p3 ) = p3 (x) ln p3 (x) dx 4+x 4 0 1/4 10. Substitute u = x2 = 2x ln (2x) dx x 1 du 0 dx = 1/2 4 + x4 2 4 + u2 + (10x − 1) ln(10x − 1)dx 1 u 1 x2 1/4 = tan−1 + c = tan−1 +c 4 2 4 2 3/4 + (8 − 10x) ln(8 − 10x)dx x3 1/2 11. e2 ln x dx = x2 dx = +c 1 3 + (2 − 2x) ln (2 − 2x) dx 3/4 1 = 0.42. 12. cos 4x dx = sin 4x + c 4
  • 42.
    CHAPTER 6 REVIEWEXERCISES 401 π/4 π/4 13. Integration by parts, 1 1 20. sin x cos x dx = sin 2x dx 0 0 2 x sin 3x dx π/4 0 1 1 1 1 = − cos 2x = 1 1 4 0 4 = − x cos 3x + cos 3x dx 3 0 3 0 21. Substitute u = sin x 1 1 1 = − cos 3 + sin 3x cos x sin2 x dx = u2 du 3 9 0 1 1 u3 sin3 x = − cos 3 + sin 3 = +c= +c 3 9 3 3 14. Substitute u = x2 22. Substitute u = sin x 1 1 1 cos x sin3 x dx = u3 du x sin 4x2 dx = sin 4u du 0 0 2 u4 sin4 x 1 1 1 = +c= +c = − cos 4u = (1 − cos 4) 4 4 8 0 8 15. Use the table of integrals 23. Substitute u = sin x π/2 4 cos3 x sin3 x dx = (1 − u2 )u3 du sin x dx 0 u4 u6 3 sin4 x − 2 sin6 x 1 π/2 = − +c= +c = − sin3 x cos x 4 6 12 4 0 3 x 1 π/2 24. Substitute u = cos x + − sin x cos x 4 2 2 0 cos4 x sin3 x dx = − u4 (1 − u2 ) du 3π = u5 u7 −7u5 + 5u7 16 =− + +c= +c 5 7 35 16. Use the table of integrals π/2 25. Substitute u = tan x cos3 x dx 0 tan2 x sec4 x dx = u2 (1 + u2 ) du 2 1 π/2 2 = sin x + sin x cos2 x = u3 u5 5 tan3 x + 3 tan5 x 3 3 0 3 = + +c= +c 3 5 15 17. Use integration by parts, 26. Substitute u = tan x 1 x sin πx dx tan3 x sec2 x dx = u3 du −1 1 1 1 1 u4 tan4 x = − x cos πx + cos πx dx = +c= +c π −1 π −1 4 4 2 1 1 2 = + 2 sin πx = 27. Substitute u = sin x π π −1 π √ sin x cos3 x dx 18. Use integration by parts, twice 1 2 3/2 2 7/2 x2 cos πx dx = u1/2 (1 − u2 ) du = u − u +c 0 3 7 1 1 2 1 2 2 2 = x sin πx − x sin πx dx = sin3/2 x − sin7/2 x + c π 0 π 0 3 7 1 2 1 1 1 28. Substitute u = sec x =− − x cos πx + cos πx dx π π 0 π 0 tan3 x sec3 x dx = (u2 − 1)u2 du 2 1 1 1 2 =− + 2 sin πx =− u5 u3 3 sec5 x − 5 sec3 x π π π π2 = − +c= +c 0 5 3 15 19. Use integration by parts 29. Complete the square, 2 2 2 x4 2 1 x3 ln x dx = ln x − x3 dx dx 1 4 1 4 1 8 + 4x + x2 x4 2 15 2 x+2 = 4 ln 2 − = 4 ln 2 − = dx = tan−1 +c 16 1 16 (x + 2)2 + 22 2
  • 43.
    402 CHAPTER 6. INTEGRATION TECHNIQUES 30. Complete the square, 3 3 = + dx 3 x−3 x+4 √ dx −2x − x2 = 3 ln |x − 3| + 3 ln |x + 4| + c 3 = dx = 3 sin−1 (x − 1) + c 39. Use the method of PFD 1 − (x − 1)2 4x2 + 6x − 12 dx 31. Use the table of integrals, x3 − 4x √ 3 −1 2 2 4 − x2 = + + dx √ dx = − +c x x+2 x−2 x2 4 − x2 2x = 3 ln |x| − ln |x + 2| + 2 ln |x − 2| + c 32. Substitute u = 9 − x2 x 1 du 40. Use the method of PFD √ dx = − 5x2 + 2 2 3x 9 − x2 2 u1/2 dx = + dx x3 + x x x2 + 1 1 1 3 = − u3/2 + c = − (9 − x2 )3/2 + c = 2 ln |x| + ln(x2 + 1) + c 3 3 2 33. Substitute u = 9 − x2 41. Use the table of integrals, x3 1 (9 − u) √ dx = − du ex cos 2x dx 9−x 2 2 u1/2 9 1 (cos 2x + 2 sin 2x)ex =− u−1/2 du + u1/2 du = +c 2 2 5 1 = −9u1/2 + u3/2 + c 3 42. Substitute u = x2 followed by integration by 1 parts = −9(9 − x ) + (9 − x2 )3/2 + c 2 1/2 3 1 x3 sin x2 dx = u sin u du 34. Substitute u = x2 − 9 2 1 1 x3 1 = − u cos u + cos u du √ dx = (u + 9)u−1/2 du 2 2 x2 − 9 2 1 1 1 = − u cos u + sin u + c = u3/2 + 9u1/2 + c 2 2 3 1 1 = − x2 cos x2 + sin x2 + c 1 2 2 = (9 − x2 )3/2 + 9(9 − x2 )1/2 + c 3 43. Substitute u = x2 + 1 1 35. Substitute u = x2 + 9 x x2 + 1 dx = u1/2 du 2 x3 1 1 1 √ dx = (u − 9)u−1/2 du = u3/2 + c = (x2 + 1)3/2 + c x2 + 9 2 3 3 1 = u3/2 − 9u1/2 + c 44. Use the table of integrals 3 1 2 1 − x2 dx = (x + 9)3/2 − 9(x2 + 9)1/2 + c 3 1 1 = 1 − x2 + sin−1 x + c 36. Substitute u = x + 9 2 2 4 du √ dx = 4 √ 4 A B x+9 u 45. = + √ x2 − 3x − 4 x+1 x−4 = 8u1/2 + c = 8 x + 9 + c 4 = A(x − 4) + B(x + 1) = (A + B)x + (−4A + B) 37. Use the method of PFD 4 4 x+4 A = − ;B = dx 5 5 x2 + 3x + 2 4 −4/5 4/5 3 −2 = + = + dx x2 − 3x − 4 x+1 x−4 x+1 x+2 = 3 ln |x + 1| − 2 ln |x + 2| + c 2x A B 46. = + x2 + x − 6 x−2 x+3 38. Use the method of PFD 5x + 6 2x = A(x + 3) + B(x − 2) dx = (A + B)x + (3A − 2B) x2 + x − 12
  • 44.
    CHAPTER 6 REVIEWEXERCISES 403 4 6 A= ;B = 53. sec4 x dx 5 5 2x 4/5 6/5 1 2 = + = sec2 x tan x + sec2 x dx x2 + x − 6 x−2 x+3 3 3 1 2 −6 A B C = sec2 x tan x + tan x + c 47. = + + 3 3 x3 + x2 − 2x x x−1 x+2 − 6 = A(x − 1)(x + 2) + Bx(x + 2) + cx(x − 1) 54. tan5 x dx A = −3; B = −2; C = −1 −6 −3 −2 −1 1 = + + = tan4 x − tan3 x dx x3 + x2 − 2x x x−1 x+2 4 1 1 x2 − 2x − 2 A Bx + c = tan4 x − tan2 x + tan x dx 48. = + 2 4 2 x3 + x x x +1 1 1 = tan4 x − tan2 x − ln | cos x| + c x2 − 2x − 2 = A(x2 + 1) + (Bx + c)x 4 2 = (A + B)x2 + cx + A 55. Substitute u = 3 − x A = −2; B = 3; C = −2 4 1 dx = −4 du x2 − 2x − 2 −2 3x − 2 x(3 − x)2 (3 − u)u2 3+x = + 2 x x x +1 4 3−u 4 = ln + +c x−2 A B 9 u 3u 49. = + x2 + 4x + 4 x + 2 (x + 2)2 4 x 4 x − 2 = A(x + 2) + B = ln + +c 9 3−x 3(3 − x) A = 1; B = −4 x−2 1 −4 56. Substitute u = sin x = + cos x du x2 + 4x + 4 x + 2 (x + 2)2 dx = 2 u2 (3 + 4u) sin x(3 + 4 sin x) x2 − 2 Ax + B Cx + D 50. = 2 + 2 4 3 + 4u 1 (x 2 + 1)2 x +1 (x + 1)2 = ln − +c 9 u 3u x2 − 2 = (Ax + B)(x2 + 1) + cx + D 4 3 + 4 sin x 1 A = 0; B = 1; C = 0; D = −3 = ln − +c 9 sin x 3 sin x x2 − 2 1 −3 = 2 + 2 √ 9 (x 2 + 1)2 x + 1 (x + 1)2 2 + x2 9 + 4x2 4 57. 2 dx = dx 51. Substitute u = e2x x x2  e3x 4 + e2x dx 9 2 − 4 + x  1 = 2  + ln x + 9/4 + x2 +c = e 2x 4e2x + e4x dx = 4u + u2 du x  2 1 √ = (u + 2)2 − 4 du 9 + 4x2 9 2 =− + 2 ln x + + x2 + c 1 x 4 = (u + 2) (u + 2)2 − 4 4 − ln |(u + 2) + (u + 2)2 − 4| + c x2 1 x2 58. √ dx = dx √ 4 − 9x 2 3 4/9 − x2 (e2x + 2) 4e2x + e4x = 1 2 3x 4 = − x 4/9 − x2 + sin−1 +c − ln (e2x + 2) + 4e2x + e4x + c 6 27 2 √ 4 − x2 52. Substitute u = x2 59. dx 1 x √ x x4 − 4 dx = u2 − 4 du 2 + 4 − x2 √ 2 = 4 − x2 − 2 ln +c u u2 − 4 x = − ln |u + u2 − 4| + c √4 x2 x4 − 4 x2 1 1 = − ln |x2 + x4 − 4| + c 60. dx = dx 4 (x6 − 4)3/2 3 (u2 − 4)3/2
  • 45.
    404 CHAPTER 6. INTEGRATION TECHNIQUES 1 2 sec θ tan θ So the original integral diverges. = dx 3 (4 sec2 θ − 4)3/2 2 2 1 sec θ tan θ x dx x dx = dx 68. = lim 3 tan3 θ 1 1 − x2 R→1 + R 1 − x2 2 1 x3 1 2 = csc θ cot θ dx = − √ +c = lim+ − ln |1 − x | = ∞ 3 3 x6 − 4 R→1 2 R 61. Substitute u = x2 − 1 So the original integral diverges. 1 0 x du dx = 69. If c(t) = R, then the total amount of dye is 0 x2 − 1 −1 2u R T T du 0 = lim = lim− ln |u| c(t) dt = R dt = RT R→0− −1 2u R→0 −1 0 0 2T t This limit does not exist, so the integral di- If c(t) = 3te , then we can use integration by verges. parts to get T 62. Substitute u = x − 4 3te2T t dt 10 6 2 dx 2 du 0 √ = √ T 4 x−4 0 u 3t 2T t T 3 2T t 6 6 = e − e dt 2T 0 2T = lim+ 2u−1/2 du = lim+ 4u1/2 0 T R→0 R R→0 R 3 2 3 2T t √ √ √ = e2T − e = lim+ (4 6 − 4 R) = 4 6 2 4T 2 0 R→0 3 2 3 2T 2 3 = e2T − e + ∞ 3 R 3 2 4T 2 4T 2 63. 2 dx = lim dx Since R = c(T ) = 3T e2T 2 1 x R→∞ 1 x2 R 3 3 The cardiac output is = lim − = lim − + 3 = 3 2 R→∞ x 1 R→∞ R RT 3T 2 e2T T = 3 2T 2 3 3 64. Use integration by parts, c(t) dt 2e − 4T 2 e2T 2 + 4T 2 0 ∞ R RT 3 xe−3x dx = lim xe−3x dx = 2 e2T 2 /2 − 3e2T 2 /4 + 3/4 1 R→∞ 1 3T R −3x x 1 70. With u = ln(x + 1) and v = x = lim e − − R→∞ 3 9 1 R 1 4e−3 ln x + 1 dx = lim e−3R − − + R→∞ 3 9 9 x −3 = x ln(x + 1) − dx 4e x+1 = 1 9 = x ln(x + 1) − 1− dx ∞ R x+1 4 4 65. 2 dx = lim dx = x ln(x + 1) − x + ln(x + 1) + c 0 4+x R→∞ 0 4 + x2 x R With u = ln(x + 1) and v = x + 1 = lim 2 tan−1 = lim 2 tan−1 R = π R→∞ 2 0 R→∞ ln x + 1 dx R ∞ e−x 2 1 x+1 66. 2 xe−x dx = lim − = = (x + 1) ln(x + 1) − dx R→∞ 2 2 x+1 0 0 0 = (x + 1) ln(x + 1) − x + c 0 −x2 2 e 1 The two answers are the same. xe−x dx = lim − =− −∞ R→∞ 2 2 en −R 1 ∞ 2 1 1 71. fn,ave = n ln x dx So xe−x dx = − =0 e 0 2 2 en −∞ 1 = lim ln x dx 32 3 2 en R→0 R 67. dx = lim+ dx 1 en 0 x2 R→0 R x2 = n lim (x ln x − x) 2 e R→0 R 3 1 = lim+ − =∞ n n = n lim (ne − e − R ln R + R) = n − 1 R→0 x R e R→0
  • 46.
    CHAPTER 6 REVIEWEXERCISES 405 72. First we notice that So we want to find the value of a so that P (t < x < t + ∆t) a − 90 lim √ ∆t→0 ∆t 450 e−u2 du = 0.49√π t+∆t 1 0 = lim f (x) dx = f (t) ∆t→0 ∆t t Using a CAS we find a − 90 And then the failure rate function √ ≈ 1.645, a ≈ 125 P (x < t + ∆t|x > t) 450 lim ∆t→0 ∆t Some body being called a genius need to have 1 P (t < x < t + ∆t) a IQ score of at least 125. = lim ∆t→0 ∆t P (x > t) ∞ P (t < x < t + ∆t) 1 f (t) 1 ∞ π = lim · = 76. I (1) = dx = tan−1 x = ∆t→0 ∆t R(t) R(t) 0 (1 + x2 ) 0 2 Now, I (n + 1) t ∞ 1 1 73. R(t) = P (x > t) = 1 − ce−cx dx = n dx 0 (1 + x2 ) (1 + x2 ) 0 t  −n   = 1 − (−e−cx ) = 1 − (1 − e−ct ) = e−ct ∞ d 1 + x2 1  0 −  dx dx 0 dx (1 + x2 ) Hence  f (t) ce−ct tan−1 x ∞ ∞ xtan−1 x = −ct = c = + 2n R(t) e n n dx (1 + x2 ) 0 0 (1 + x2 ) ∞ s xtan−1 x ⇒ I (n + 1) = 2n n dx ... (1) 74. (a) P (x > s) = 1 − xe−x dx 0 (1 + x2 ) ∞ 0 s 1 + x2 − x2 = 1 − (−xe−x − e −x ) Also, I (n + 1) = n+1 dx 0 0 (1 + x2 ) ∞ = 1 − (1 − se−s − e−s ) x2 = I (n) − n+1 dx = (s + 1)e−s 0 (1 + x2 ) ∞ P (x > s + t|x > s) 1 x2 P (x > s + t) = I (n) − n dx = (1 + x2 ) (1 + x2 ) 0 P (x > s)  −n   ∞ d 1 + x2 x 2 (s + t + 1)e−s−t  t − dx dx = −s = e−t + e−t  dx (1 + x2 ) (s + 1)e 1+s 0  ∞ (b) Take the derivative w.r.t s: x − tan−1 x d t t = I (n) − n+1 e−t + e−t = −e−t (1 + x2 ) 0 ds 1+s (1 + s)2 ∞ When t > 0, since e−t > 0 and x x − tan−1 x +2n n+1 dx (1 + s)2 > 0, the above derivative is neg- 0 (1 + x2 ) ∞ ative, so the function P (x > s + t|x > s) x2 − xtan−1 x is decreasing w.r.t. s. ds = I (n) − 2n n+1 dx 0 (1 + x2 ) ∞ x2 75. We use a CAS to see that = I (n) − 2n n+1 dx 100 1 2 0 (1 + x2 ) √ e−(x−100) /450 dx ≈ 24.75% ∞ xtan−1 x 90 450π + 2n n+1 dx 0 (1 + x2 ) We can use substitution to get ∞ Therefore, 1 2 √ e−(x−100) /450 dx I(n + 1) = I (n) 450π a ∞ 1 ∞ −u2 x2 =√ a − 90 e du −2n n+1 dx+I (n + 1) π √ 0 (1 + x2 ) 450 (using (1)) ∞ 2 √ I (n + 1) Since e−x dx = π, = I (n) − 2n (I (n) − I (n + 1)) + I (n + 1) −∞ √ ∞ −x2 π e dx = Hence proved. 0 2
  • 47.
    406 CHAPTER 6. INTEGRATION TECHNIQUES 2n − 1 3 As,I (n + 1) = I (n) I (2) = I(1), 2n 4 2n − 3 3 π I (n) = I (n − 1) I (1) = · , 2n − 2 4 2 2n − 5 I (n − 1) = I (n − 2) 2n − 4 2n − 3 2n − 5 2n − 7 2n − 7 Thus, I (n) = · · ··· I (n − 2) = I (n − 3) 2n − 2 2n − 4 2n − 6 2n − 6 1 3 2n − 3 π and so on therefore, I (1) I (n) = · · · · · 2 4 2n − 2 2