SlideShare a Scribd company logo
1


                                             CAAM 335 Matrix Analysis:
                                                              Solutions to HW 7


                                                                      R
Problem 1 (5+5+5=15 points) (a)Compute the integral                   C   f (z)dz for

                                    f (z) = z                                    C = t 2 + it : t ∈ [0, 2] .


     (b)-(c)Verify Cauchy’s theorem for the functions

                                                                 f (z) = 3z2 + iz − 4,
                                                                 f (z) = 5 sin(2z),

     if C is the square with vertices 1 ± i, −1 ± i.


          (a)
                                     Z                  Z 2                             Z 2
                                          f (z)dz =           (t 2 − it)(2t + i)dt =          2t 3 + t + i(t 2 − 2t 2 )dt
                                      C                  0                               0
                                                        Z 2
                                                                                  1     1 2          1 2                8
                                                    =         2t 3 + t − it 2 dt = t 4 + t 2 |t=0 − i t 3 |t=0 = 10 − i
                                                         0                        2     2            3                  3
       (b)-(c) A parametrization of the square with vertices 1 ± i, −1 ± i is given by
                                                             C = {z(t) = x(t) + iy(t) : t ∈ [0, 4)} ,
                where
                                                                                                   
                                     −1 + 2t
                                                             t ∈ [0, 1),                            −1
                                                                                                                           t ∈ [0, 1),
                                      1                       t ∈ [1, 2),                             −1 + 2(t − 1)         t ∈ [1, 2),
                                                                                                   
                             x(t) =                                                          y(t) =
                                     1 − 2(t − 2)
                                                             t ∈ [2, 3),                            1
                                                                                                                           t ∈ [2, 3),
                                      −1                      t ∈ [3, 4),                             1 − 2(t − 3)          t ∈ [3, 4),
                                                                                                   

                Let C j = {z(t) = x(t) + iy(t) : t ∈ [ j − 1, j)} for j = 1, 2, 3, 4. Then
                                                Z                 4   Z                 4

                                                C
                                                    f (z)dz =    ∑          f (z)dz =   ∑ (g(z( j)) − g(z( j − 1)).
                                                                 j=1 C j                j=1

                where g(z) is an anti-derivative of f (z) so that f (z) = g (z).
                (b) f (z) = 3z2 + iz − 4 = (z3 + iz2 /2 − 4z) . Hence
                        Z
                             f (z)dz = (1 − i)3 + i(1 − i)2 /2 − 4(1 − i) − [(−1 − i)3 + i(−1 − i)2 /2 − 4(−1 − i)] = −2 − 4i
                        C1
                        Z
                             f (z)dz = (1 + i)3 + i(1 + i)2 /2 − 4(1 + i) − [(1 − i)3 + i(1 − i)2 /2 − 4(1 − i)] = 14
                        C2
                        Z
                             f (z)dz = (−1 + i)3 + i(−1 + i)2 /2 − 4(−1 + i) − [(1 + i)3 + i(1 + i)2 /2 − 4(1 + i)] = −2 + 4i
                        C3
                        Z
                             f (z)dz = (−1 − i)3 + i(−1 − i)2 /2 − 4(−1 − i) − [(−1 + i)3 + i(−1 + i)2 /2 − 4(−1 + i)] = 10
                        C4
2


                    Clearly, their sum is indeed 0.

                (c) f (z) = 5 sin(2z) = (− 5 cos(2z)) . Hence,
                                           2

                                                    5               5
                                  Z
                                         f (z)dz = − cos(2(1 − i)) + cos(2(−1 − i)) = 5 sin(2) sinh(2)i
                                    C1              2               2
                                                    5               5
                                  Z
                                         f (z)dz = − cos(2(1 + i)) + cos(2(1 − i)) = −5 sin(2) sinh(2)i
                                    C2              2               2
                                                    5                 5
                                  Z
                                         f (z)dz = − cos(2(−1 + i)) + cos(2(1 + i)) = 5 sin(2) sinh(2)i
                                    C3              2                 2
                                                    5                 5
                                  Z
                                         f (z)dz = − cos(2(−1 − i)) + cos(2(−1 + i)) = −5 sin(2) sinh(2)i
                                    C4              2                 2

                    Again, they sums up to 0.




Problem 2 (5+5+10 =20 points) Find the residues of the following functions at 0:

                                         (z2 + 1)/z,      ez /z2 ,       (2z + 1)/(z(z3 − 5)).



         Let us call the three functions f j , j = 1, 2, 3. Then by the residue formula

                                                                 1         z2 + 1
                                           res( f1 , 0) = lim            z            = 1,
                                                          z→0 (1 − 1)!        z
                                                                 1     d        ez
                                           res( f2 , 0) = lim                z2 2     = lim ez = 1,
                                                          z→0 (2 − 1)! dz       z       z→0

                                                                   1         z2 + 1
                                           res( f3 , 0) = lim            z              = −1/5.
                                                         z→0    (1 − 1)! z(z3 − 5)



Problem 3 (5+10=20 points) Let C = 3eit : t ∈ [0, 2π) . Compute the two integrals

                                             sin(πz2 ) + cos(πz2 )                  e2z
                                          Z                                   Z
                                                                   dz,                  4
                                                                                          dz.
                                           C    (z − 1)(z − 2)                 C (z + 1)

      You may use results from Chapter 8 to arrive quickly at the solution. Be sure to explain your rationale.


         Solution 1:

            • Let C1 be the circle around a = 1 with radius r = 1/2 and C2 be the circle around a = 2 with radius r = 1/2.
              Then,
                             sin(πz2 ) + cos(πz2 )          sin(πz2 ) + cos(πz2 )          sin(πz2 ) + cos(πz2 )
                          Z                             Z                              Z
                                                   dz =                           dz +                           dz
                           C    (z − 1)(z − 2)           C1    (z − 1)(z − 2)           C2    (z − 1)(z − 2)
3


                                 sin(πz2 )+cos(πz2 )
     The function f (z) =              (z−2)           is differentiable on and inside C1 . By the Cauchy Integral Formula,

                  sin(πz2 ) + cos(πz2 )                      sin(π12 ) + cos(π12 )
         Z
                                        dz = 2πi f (1) = 2πi                       = −2πi(sin(π) + cos(π)) = 2πi.
             C1      (z − 1)(z − 2)                                (1 − 2)

                                 sin(πz2 )+cos(πz2 )
     The function f (z) =              (z−1)           is differentiable on and inside C2 . By the Cauchy Integral Formula,

                  sin(πz2 ) + cos(πz2 )                      sin(π22 ) + cos(π22 )
         Z
                                        dz = 2πi f (1) = 2πi                       = 2πi(sin(4π) + cos(4π)) = 2πi.
          C2         (z − 1)(z − 2)                                (2 − 1)

     Consequently,
                                                  sin(πz2 ) + cos(πz2 )
                                             Z
                                                                        dz = 2πi + 2πi = 4πi.
                                                C    (z − 1)(z − 2)
  • We use the equation
                                                        dn f       n!            f (z)
                                                                         Z
                                                             (a) =                      dz
                                                        dan        2πi   C   (z − a)n+1
     with a = −1, n = 3, f (z) = e2z . We can apply this formula for n = 4 and a = −1, since a = −1 is inside C
     and f (z) = e2z is differentiable on C and inside C.

                                    f (z) = e2z ,       f (z) = 2e2z ,   f (z) = 4e2z ,      f (z) = 8e2z .

                                    e2z        2πi                       2πi 2(−1) 16πi −2 8πi −2
                             Z
                                        4
                                          dz =     f           (−1) =       8e    =    e =    e .
                               C (z + 1)       3!                        3!         6       3
Solution 2: Alternatively, we can also use the Residue Theorem to compute both integrals.
  • For the first function,

                                                          sin(πz2 ) + cos(πz2 ) sin(π) + cos(π)
                             res(1) = lim (z − 1)                              =                =1
                                           z→1               (z − 1)(z − 2)           −1
                                                          sin(πz2 ) + cos(πz2 ) sin(4π) + cos(4π)
                             res(2) = lim (z − 2)                              =                  = 1.
                                           z→2               (z − 1)(z − 2)             1

     Hence
                                                sin(πz2 ) + cos(πz2 )
                                            Z
                                                                      dz = 2πi(1 + 1) = 4πi.
                                              C    (z − 1)(z − 2)
  • For the second function,

                                                 1     d3                       e2z              1 3 2z 4 −2
                          res(−1) = lim                           (z + 1)4              = lim      2 e = e .
                                         z→−1 (4 − 1)! dz3                   (z + 1)4     z→−1   6      3

     Hence
                                                       e2z                      8πi −2
                                                 Z
                                                           4
                                                             dz = 2πi res(−1) =    e .
                                                  C (z + 1)                      3
4


         Lecture Notes Section 8.5 (P. 93)


Exercise [1] (20 points) Let us confirm the representation (8.7) in the matrix case. More precisely,
     if Φ(z) ≡ (zI − B)−1 is the resolvent associated with B then (8.7) states that
                                                                        h    mj
                                                                                      Φ j,k
                                                           Φ(z) =       ∑ ∑ (z − λ j )k
                                                                        j=1 k=1

      where
                                                               1
                                                                    Z
                                                    Φ j,k =                 Φ(z)(z − λ j )k−1 dz.
                                                              2πi   Cj

      Compute the Φ j,k per (8.15) for the B in (7.13). Confirm that they agree with those appearing in (7.16).

         B = [1 0 0; 1 3 0; 0 1 1];
         syms z; inv(z*eye(3)-B)
         ans =
         [         1/(z-1),              0,                                             0]
         [ 1/(z-1)/(z-3),          1/(z-3),                                             0]
         [ 1/(z-1)ˆ2/(z-3), 1/(z-1)/(z-3),                                        1/(z-1)]

         Thus                                                                                                              
                                                           (z − 1)(z − 3)     0                                    0
                                               1
                           (zI − B)−1 =                       (z − 1)    (z − 1)2                                 0        .
                                        (z − 1)2 (z − 3)
                                                                  1        (z − 1)                           (z − 1)(z − 3)
         and the eigenvalues of B are λ1 = 1 with multiplicity m1 = 2 and λ2 = 3 with multiplicity m2 = 1.
         We use the Cauchy’s Theorem (for differentiable terms) and the Residue Theorem (for terms with singularities)
         to compute the following integrals:
                                                                           1                       
                                                                          (z−1)       0         0
                              1                            1
                                Z                            Z
                                                                            1         1
                    Φ1,1 =              Φ(z)(z − 1)0 dz =                                       0  dz
                                                                     
                                                                      (z−1)(z−3)   (z−3)
                             2πi C(1,1)                   2πi C(1,1)
                                                                                                    
                                                                            1         1         1
                                                                                              (z−1)2 (z−3)   (z−1)(z−3)   (z−1)

                                       1            0      0
                                                                                                  
                                     1
                                                                            1             0        0
                          =
                                  (z−3)            0      0           =  −1            0        0 
                                                                            2
                                     1               1
                                                           1                −1
                                                                             4
                                                                                           1
                                                                                          −2       1
                                   (z−3)           (z−3)        z=1
                                                                                                                           
                                                                                                        1         0       0
                                    1                                            1
                                           Z                                          Z
                                                                                                        1        (z−1)
                          Φ1,2 =                    Φ(z)(z − 1)1 dz =                                                     0  dz
                                                                                               
                                                                                                      (z−3)      (z−3)
                                   2πi                                          2πi
                                                                                                                           
                                           C(1,1)                                     C(1,1)            1        (z−1)
                                                                                                   (z−1)(z−3)    (z−3)    1
                                                                                           
                                               0     0 0              0                   0 0
                                 =            0     0 0          = 0                   0 0 
                                           1
                                       − (z−3)       0 0
                                                               z=1
                                                                      −1
                                                                       2                  0 0
5

                                                                                                    1                                 
                                                                                                   (z−1)               0         0
                               1                                         1
                                    Z                                         Z
                                                                                                     1               1
                     Φ2,1 =                  Φ(z)(z − 3)0 dz =                                                                   0      dz
                                                                                                                                      
                                                                                                (z−1)(z−3)         (z−3)
                              2πi                                       2πi
                                                                                           
                                    C(3,1)                                        C(3,1)             1               1           1
                                                                                               (z−1)2 (z−3)     (z−1)(z−3)     (z−1)
                                                         
                                    0          0        0
                                                                                            
                                                                              0      0     0
                                     1
                           =
                            
                                   (z−1)       1        0             =     1
                                                                                     1     0 .
                                                                             2
                                     1         1                              1      1
                                  (z−1)2     (z−1)      0                     4      2     0
                                                                 z=3




Exercise [2] (10 points) Use (8.14) to compute the inverse Laplace transform of 1/(s2 + 2s + 2).


         Recall
                                                                                                    h
                                                                        1
                                                                             Z
                                                (L −1 q)(t) ≡                     q(z)ezt dz =     ∑ res(λ j )
                                                                       2πi    C                    j=1

         where C is a simple closed curve that encloses the poles of q(z), in this case at z = −1 + i and z = −1 − i.

                                1                       1                   ezt
                                                             Z
                   L −1     2 + 2s + 2
                                             (t) =                                          dz = res(−1 + i) + res(−1 − i)
                          s                            2πi   C (z − (−1 + i))(z − (−1 − i))

                                                            ezt                                 ezt                        e(−1+i)t e(−1−i)t
                                                   =                                  +                                =           +
                                                       z − (−1 − i)                        z − (−1 + i)                       2i      −2i
                                                                         z=−1+i                               z=−1−i
                                                         eit − e−it
                                                   = e−t            = e−t sin(t)
                                                             2i



Exercise [3] (20 points) Use the result of the previous exercise to solve, via the Laplace transform, the differential
     equation
                                             x (t) + x(t) = e−t sint, x(0) = 0.
      Hint: Take the Laplace transform of each side.


         Taking the Laplace transform of each side, and using the result from the previous exercise,

                                                       L (x (t) + x(t)) = L (e−t sint)
                                                                                  1
                                                     sL x − x(0) + L x =
                                                                             s2 + 2s + 2
                                                                                   1
                                                                 (s + 1)L x = 2
                                                                             (s + 2s + 2)
                                                                                      1
                                                                        Lx =
                                                                             (s + 1)(s2 + 2s + 2)

         Now, we use the inverse Laplace transform to determine x(t).
6


Let C be a sufficiently large circle that encircles the 3 poles at λ3 = −1, λ2 = −1 + i and λ3 = −1 − i.
                                                                                                                 3
                           1                               1                       ezt
                                                                Z
         L −1                                     (t) =                                                dz =      ∑ res(λ j )
                  (s + 1)(s2 + 2s + 2)                    2πi    C (z + 1)(z − (−1 + i))(z − (−1 − i))           j=1

                 ezt                               ezt                                    ezt
       =                             +                                      +
           z2 + 2z + 2                   (z + 1)(z − (−1 − i))                  (z + 1)(z − (−1 + i))
                            z=−1                                    z=−1+i                              z=−1−i
           e−t         e(−1+i)t       e(−1−i)t                      −eit − e−it
       =         +               +                = e−t 1 +                        = e−t (1 − cos(t))
            1          (2i)(i)       (−2i)(−i)                          2

Therefore, the solution to the differential equation is x(t) = e−t (1 − cos(t)).

More Related Content

What's hot

5769989 taller-sobre-triangulos-y-congruencia
5769989 taller-sobre-triangulos-y-congruencia5769989 taller-sobre-triangulos-y-congruencia
5769989 taller-sobre-triangulos-y-congruencia
Cesar Augusto Canal mora
 
Actividad 4 geometria tercero medio
Actividad 4 geometria tercero medioActividad 4 geometria tercero medio
Actividad 4 geometria tercero medio
flori
 
Actividad 6 trigonometria 4to angulos en posicion normal
Actividad 6 trigonometria 4to angulos en posicion normalActividad 6 trigonometria 4to angulos en posicion normal
Actividad 6 trigonometria 4to angulos en posicion normal
Karlos Dieter Nunez Huayapa
 
[Question Paper] Design and Analysis of Algorithms (Old Course) [September / ...
[Question Paper] Design and Analysis of Algorithms (Old Course) [September / ...[Question Paper] Design and Analysis of Algorithms (Old Course) [September / ...
[Question Paper] Design and Analysis of Algorithms (Old Course) [September / ...
Mumbai B.Sc.IT Study
 
Bac blanc 11
Bac blanc 11Bac blanc 11
Bac blanc 11
AHMED ENNAJI
 
54 ecuación 2do grado y función cuadrática
54 ecuación 2do grado y función cuadrática54 ecuación 2do grado y función cuadrática
54 ecuación 2do grado y función cuadrática
Marcelo Calderón
 
Ch07 7
Ch07 7Ch07 7
Ch07 7
Rendy Robert
 
La razón entre el área sombreada y el área total de la figura es
La razón entre el área sombreada y el área total de la figura esLa razón entre el área sombreada y el área total de la figura es
La razón entre el área sombreada y el área total de la figura es
Jaime Restrepo Cardona
 
Examen matematicas Tercero Medio
Examen matematicas Tercero MedioExamen matematicas Tercero Medio
Examen matematicas Tercero Medio
Luis Navarro Flores
 
9702 w11 ms_13
9702 w11 ms_139702 w11 ms_13
9702 w11 ms_13
Hira Rizvi
 
Ejercicios matematica PSU
Ejercicios matematica PSUEjercicios matematica PSU
Ejercicios matematica PSU
Paula Ortega
 
Examen final 2015
Examen final 2015Examen final 2015
Examen final 2015
zeinabze
 
Prim Algorithm and kruskal algorithm
Prim Algorithm and kruskal algorithmPrim Algorithm and kruskal algorithm
Prim Algorithm and kruskal algorithm
Acad
 
41 ejercicios sistemas de ecuaciones
41 ejercicios sistemas de ecuaciones41 ejercicios sistemas de ecuaciones
41 ejercicios sistemas de ecuaciones
Marcelo Calderón
 
Examen matriceces internet
Examen matriceces internetExamen matriceces internet
Examen matriceces internet
noel
 
Solución Guia n° 1 teoremas tercero diferenciado soluciones
Solución Guia n° 1 teoremas tercero diferenciado solucionesSolución Guia n° 1 teoremas tercero diferenciado soluciones
Solución Guia n° 1 teoremas tercero diferenciado soluciones
maria paz
 
Examen 2008-jornada-3-examen-admision-universidad-de-antioquia-ude a-blog-de-...
Examen 2008-jornada-3-examen-admision-universidad-de-antioquia-ude a-blog-de-...Examen 2008-jornada-3-examen-admision-universidad-de-antioquia-ude a-blog-de-...
Examen 2008-jornada-3-examen-admision-universidad-de-antioquia-ude a-blog-de-...
Edna Rocio Velasco Ahumada
 
Examen de ubicacion 2009 fisica
Examen de ubicacion 2009   fisicaExamen de ubicacion 2009   fisica
Examen de ubicacion 2009 fisica
cbflores
 
Actividad 8 circunferencia trigonometrica
Actividad 8 circunferencia trigonometricaActividad 8 circunferencia trigonometrica
Actividad 8 circunferencia trigonometrica
Karlos Dieter Nunez Huayapa
 
9702 w11 ms_12
9702 w11 ms_129702 w11 ms_12
9702 w11 ms_12
Hira Rizvi
 

What's hot (20)

5769989 taller-sobre-triangulos-y-congruencia
5769989 taller-sobre-triangulos-y-congruencia5769989 taller-sobre-triangulos-y-congruencia
5769989 taller-sobre-triangulos-y-congruencia
 
Actividad 4 geometria tercero medio
Actividad 4 geometria tercero medioActividad 4 geometria tercero medio
Actividad 4 geometria tercero medio
 
Actividad 6 trigonometria 4to angulos en posicion normal
Actividad 6 trigonometria 4to angulos en posicion normalActividad 6 trigonometria 4to angulos en posicion normal
Actividad 6 trigonometria 4to angulos en posicion normal
 
[Question Paper] Design and Analysis of Algorithms (Old Course) [September / ...
[Question Paper] Design and Analysis of Algorithms (Old Course) [September / ...[Question Paper] Design and Analysis of Algorithms (Old Course) [September / ...
[Question Paper] Design and Analysis of Algorithms (Old Course) [September / ...
 
Bac blanc 11
Bac blanc 11Bac blanc 11
Bac blanc 11
 
54 ecuación 2do grado y función cuadrática
54 ecuación 2do grado y función cuadrática54 ecuación 2do grado y función cuadrática
54 ecuación 2do grado y función cuadrática
 
Ch07 7
Ch07 7Ch07 7
Ch07 7
 
La razón entre el área sombreada y el área total de la figura es
La razón entre el área sombreada y el área total de la figura esLa razón entre el área sombreada y el área total de la figura es
La razón entre el área sombreada y el área total de la figura es
 
Examen matematicas Tercero Medio
Examen matematicas Tercero MedioExamen matematicas Tercero Medio
Examen matematicas Tercero Medio
 
9702 w11 ms_13
9702 w11 ms_139702 w11 ms_13
9702 w11 ms_13
 
Ejercicios matematica PSU
Ejercicios matematica PSUEjercicios matematica PSU
Ejercicios matematica PSU
 
Examen final 2015
Examen final 2015Examen final 2015
Examen final 2015
 
Prim Algorithm and kruskal algorithm
Prim Algorithm and kruskal algorithmPrim Algorithm and kruskal algorithm
Prim Algorithm and kruskal algorithm
 
41 ejercicios sistemas de ecuaciones
41 ejercicios sistemas de ecuaciones41 ejercicios sistemas de ecuaciones
41 ejercicios sistemas de ecuaciones
 
Examen matriceces internet
Examen matriceces internetExamen matriceces internet
Examen matriceces internet
 
Solución Guia n° 1 teoremas tercero diferenciado soluciones
Solución Guia n° 1 teoremas tercero diferenciado solucionesSolución Guia n° 1 teoremas tercero diferenciado soluciones
Solución Guia n° 1 teoremas tercero diferenciado soluciones
 
Examen 2008-jornada-3-examen-admision-universidad-de-antioquia-ude a-blog-de-...
Examen 2008-jornada-3-examen-admision-universidad-de-antioquia-ude a-blog-de-...Examen 2008-jornada-3-examen-admision-universidad-de-antioquia-ude a-blog-de-...
Examen 2008-jornada-3-examen-admision-universidad-de-antioquia-ude a-blog-de-...
 
Examen de ubicacion 2009 fisica
Examen de ubicacion 2009   fisicaExamen de ubicacion 2009   fisica
Examen de ubicacion 2009 fisica
 
Actividad 8 circunferencia trigonometrica
Actividad 8 circunferencia trigonometricaActividad 8 circunferencia trigonometrica
Actividad 8 circunferencia trigonometrica
 
9702 w11 ms_12
9702 w11 ms_129702 w11 ms_12
9702 w11 ms_12
 

Similar to Sol7

2003 Ames.Models
2003 Ames.Models2003 Ames.Models
2003 Ames.Models
pinchung
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
Matthew Leingang
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
ramiz100111
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
Pamela Paz
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Henrique Covatti
 
Midsem sol 2013
Midsem sol 2013Midsem sol 2013
Midsem sol 2013
Dharmendra Dixit
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
Chalio Solano
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
ramiz100111
 
Ch10 29
Ch10 29Ch10 29
Ch10 29
schibu20
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
Yodhathai Reesrikom
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppt
tuiye
 
ฟังก์ชัน 1
ฟังก์ชัน 1ฟังก์ชัน 1
ฟังก์ชัน 1
Yodhathai Reesrikom
 
Den5200 ps1
Den5200 ps1Den5200 ps1
Den5200 ps1
jogerpow
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)
yustar1026
 
Ejercicio de fasores
Ejercicio de fasoresEjercicio de fasores
Ejercicio de fasores
dpancheins
 
Hw5sols
Hw5solsHw5sols
Hw5sols
Dulaj Rox
 
CMU_13
CMU_13CMU_13
Hw4sol
Hw4solHw4sol
Hw4sol
uxxdqq
 
Linear Differential Equations1
Linear Differential Equations1Linear Differential Equations1
Linear Differential Equations1
Sebastian Vattamattam
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
Yodhathai Reesrikom
 

Similar to Sol7 (20)

2003 Ames.Models
2003 Ames.Models2003 Ames.Models
2003 Ames.Models
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Midsem sol 2013
Midsem sol 2013Midsem sol 2013
Midsem sol 2013
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Ch10 29
Ch10 29Ch10 29
Ch10 29
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppt
 
ฟังก์ชัน 1
ฟังก์ชัน 1ฟังก์ชัน 1
ฟังก์ชัน 1
 
Den5200 ps1
Den5200 ps1Den5200 ps1
Den5200 ps1
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)
 
Ejercicio de fasores
Ejercicio de fasoresEjercicio de fasores
Ejercicio de fasores
 
Hw5sols
Hw5solsHw5sols
Hw5sols
 
CMU_13
CMU_13CMU_13
CMU_13
 
Hw4sol
Hw4solHw4sol
Hw4sol
 
Linear Differential Equations1
Linear Differential Equations1Linear Differential Equations1
Linear Differential Equations1
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
 

Sol7

  • 1. 1 CAAM 335 Matrix Analysis: Solutions to HW 7 R Problem 1 (5+5+5=15 points) (a)Compute the integral C f (z)dz for f (z) = z C = t 2 + it : t ∈ [0, 2] . (b)-(c)Verify Cauchy’s theorem for the functions f (z) = 3z2 + iz − 4, f (z) = 5 sin(2z), if C is the square with vertices 1 ± i, −1 ± i. (a) Z Z 2 Z 2 f (z)dz = (t 2 − it)(2t + i)dt = 2t 3 + t + i(t 2 − 2t 2 )dt C 0 0 Z 2 1 1 2 1 2 8 = 2t 3 + t − it 2 dt = t 4 + t 2 |t=0 − i t 3 |t=0 = 10 − i 0 2 2 3 3 (b)-(c) A parametrization of the square with vertices 1 ± i, −1 ± i is given by C = {z(t) = x(t) + iy(t) : t ∈ [0, 4)} , where    −1 + 2t  t ∈ [0, 1),  −1  t ∈ [0, 1), 1 t ∈ [1, 2), −1 + 2(t − 1) t ∈ [1, 2),   x(t) = y(t) =  1 − 2(t − 2)  t ∈ [2, 3),  1  t ∈ [2, 3), −1 t ∈ [3, 4), 1 − 2(t − 3) t ∈ [3, 4),   Let C j = {z(t) = x(t) + iy(t) : t ∈ [ j − 1, j)} for j = 1, 2, 3, 4. Then Z 4 Z 4 C f (z)dz = ∑ f (z)dz = ∑ (g(z( j)) − g(z( j − 1)). j=1 C j j=1 where g(z) is an anti-derivative of f (z) so that f (z) = g (z). (b) f (z) = 3z2 + iz − 4 = (z3 + iz2 /2 − 4z) . Hence Z f (z)dz = (1 − i)3 + i(1 − i)2 /2 − 4(1 − i) − [(−1 − i)3 + i(−1 − i)2 /2 − 4(−1 − i)] = −2 − 4i C1 Z f (z)dz = (1 + i)3 + i(1 + i)2 /2 − 4(1 + i) − [(1 − i)3 + i(1 − i)2 /2 − 4(1 − i)] = 14 C2 Z f (z)dz = (−1 + i)3 + i(−1 + i)2 /2 − 4(−1 + i) − [(1 + i)3 + i(1 + i)2 /2 − 4(1 + i)] = −2 + 4i C3 Z f (z)dz = (−1 − i)3 + i(−1 − i)2 /2 − 4(−1 − i) − [(−1 + i)3 + i(−1 + i)2 /2 − 4(−1 + i)] = 10 C4
  • 2. 2 Clearly, their sum is indeed 0. (c) f (z) = 5 sin(2z) = (− 5 cos(2z)) . Hence, 2 5 5 Z f (z)dz = − cos(2(1 − i)) + cos(2(−1 − i)) = 5 sin(2) sinh(2)i C1 2 2 5 5 Z f (z)dz = − cos(2(1 + i)) + cos(2(1 − i)) = −5 sin(2) sinh(2)i C2 2 2 5 5 Z f (z)dz = − cos(2(−1 + i)) + cos(2(1 + i)) = 5 sin(2) sinh(2)i C3 2 2 5 5 Z f (z)dz = − cos(2(−1 − i)) + cos(2(−1 + i)) = −5 sin(2) sinh(2)i C4 2 2 Again, they sums up to 0. Problem 2 (5+5+10 =20 points) Find the residues of the following functions at 0: (z2 + 1)/z, ez /z2 , (2z + 1)/(z(z3 − 5)). Let us call the three functions f j , j = 1, 2, 3. Then by the residue formula 1 z2 + 1 res( f1 , 0) = lim z = 1, z→0 (1 − 1)! z 1 d ez res( f2 , 0) = lim z2 2 = lim ez = 1, z→0 (2 − 1)! dz z z→0 1 z2 + 1 res( f3 , 0) = lim z = −1/5. z→0 (1 − 1)! z(z3 − 5) Problem 3 (5+10=20 points) Let C = 3eit : t ∈ [0, 2π) . Compute the two integrals sin(πz2 ) + cos(πz2 ) e2z Z Z dz, 4 dz. C (z − 1)(z − 2) C (z + 1) You may use results from Chapter 8 to arrive quickly at the solution. Be sure to explain your rationale. Solution 1: • Let C1 be the circle around a = 1 with radius r = 1/2 and C2 be the circle around a = 2 with radius r = 1/2. Then, sin(πz2 ) + cos(πz2 ) sin(πz2 ) + cos(πz2 ) sin(πz2 ) + cos(πz2 ) Z Z Z dz = dz + dz C (z − 1)(z − 2) C1 (z − 1)(z − 2) C2 (z − 1)(z − 2)
  • 3. 3 sin(πz2 )+cos(πz2 ) The function f (z) = (z−2) is differentiable on and inside C1 . By the Cauchy Integral Formula, sin(πz2 ) + cos(πz2 ) sin(π12 ) + cos(π12 ) Z dz = 2πi f (1) = 2πi = −2πi(sin(π) + cos(π)) = 2πi. C1 (z − 1)(z − 2) (1 − 2) sin(πz2 )+cos(πz2 ) The function f (z) = (z−1) is differentiable on and inside C2 . By the Cauchy Integral Formula, sin(πz2 ) + cos(πz2 ) sin(π22 ) + cos(π22 ) Z dz = 2πi f (1) = 2πi = 2πi(sin(4π) + cos(4π)) = 2πi. C2 (z − 1)(z − 2) (2 − 1) Consequently, sin(πz2 ) + cos(πz2 ) Z dz = 2πi + 2πi = 4πi. C (z − 1)(z − 2) • We use the equation dn f n! f (z) Z (a) = dz dan 2πi C (z − a)n+1 with a = −1, n = 3, f (z) = e2z . We can apply this formula for n = 4 and a = −1, since a = −1 is inside C and f (z) = e2z is differentiable on C and inside C. f (z) = e2z , f (z) = 2e2z , f (z) = 4e2z , f (z) = 8e2z . e2z 2πi 2πi 2(−1) 16πi −2 8πi −2 Z 4 dz = f (−1) = 8e = e = e . C (z + 1) 3! 3! 6 3 Solution 2: Alternatively, we can also use the Residue Theorem to compute both integrals. • For the first function, sin(πz2 ) + cos(πz2 ) sin(π) + cos(π) res(1) = lim (z − 1) = =1 z→1 (z − 1)(z − 2) −1 sin(πz2 ) + cos(πz2 ) sin(4π) + cos(4π) res(2) = lim (z − 2) = = 1. z→2 (z − 1)(z − 2) 1 Hence sin(πz2 ) + cos(πz2 ) Z dz = 2πi(1 + 1) = 4πi. C (z − 1)(z − 2) • For the second function, 1 d3 e2z 1 3 2z 4 −2 res(−1) = lim (z + 1)4 = lim 2 e = e . z→−1 (4 − 1)! dz3 (z + 1)4 z→−1 6 3 Hence e2z 8πi −2 Z 4 dz = 2πi res(−1) = e . C (z + 1) 3
  • 4. 4 Lecture Notes Section 8.5 (P. 93) Exercise [1] (20 points) Let us confirm the representation (8.7) in the matrix case. More precisely, if Φ(z) ≡ (zI − B)−1 is the resolvent associated with B then (8.7) states that h mj Φ j,k Φ(z) = ∑ ∑ (z − λ j )k j=1 k=1 where 1 Z Φ j,k = Φ(z)(z − λ j )k−1 dz. 2πi Cj Compute the Φ j,k per (8.15) for the B in (7.13). Confirm that they agree with those appearing in (7.16). B = [1 0 0; 1 3 0; 0 1 1]; syms z; inv(z*eye(3)-B) ans = [ 1/(z-1), 0, 0] [ 1/(z-1)/(z-3), 1/(z-3), 0] [ 1/(z-1)ˆ2/(z-3), 1/(z-1)/(z-3), 1/(z-1)] Thus   (z − 1)(z − 3) 0 0 1 (zI − B)−1 =  (z − 1) (z − 1)2 0 . (z − 1)2 (z − 3) 1 (z − 1) (z − 1)(z − 3) and the eigenvalues of B are λ1 = 1 with multiplicity m1 = 2 and λ2 = 3 with multiplicity m2 = 1. We use the Cauchy’s Theorem (for differentiable terms) and the Residue Theorem (for terms with singularities) to compute the following integrals:  1  (z−1) 0 0 1 1 Z Z 1 1 Φ1,1 = Φ(z)(z − 1)0 dz = 0  dz   (z−1)(z−3) (z−3) 2πi C(1,1) 2πi C(1,1)  1 1 1 (z−1)2 (z−3) (z−1)(z−3) (z−1) 1 0 0     1 1 0 0 =  (z−3) 0 0  =  −1 0 0   2 1 1 1 −1 4 1 −2 1 (z−3) (z−3) z=1   1 0 0 1 1 Z Z 1 (z−1) Φ1,2 = Φ(z)(z − 1)1 dz = 0  dz  (z−3) (z−3) 2πi 2πi   C(1,1) C(1,1) 1 (z−1) (z−1)(z−3) (z−3) 1     0 0 0 0 0 0 = 0 0 0  = 0 0 0  1 − (z−3) 0 0 z=1 −1 2 0 0
  • 5. 5  1  (z−1) 0 0 1 1 Z Z 1 1 Φ2,1 = Φ(z)(z − 3)0 dz = 0  dz   (z−1)(z−3) (z−3) 2πi 2πi  C(3,1) C(3,1) 1 1 1 (z−1)2 (z−3) (z−1)(z−3) (z−1)   0 0 0   0 0 0 1 =  (z−1) 1 0  = 1 1 0 .  2 1 1 1 1 (z−1)2 (z−1) 0 4 2 0 z=3 Exercise [2] (10 points) Use (8.14) to compute the inverse Laplace transform of 1/(s2 + 2s + 2). Recall h 1 Z (L −1 q)(t) ≡ q(z)ezt dz = ∑ res(λ j ) 2πi C j=1 where C is a simple closed curve that encloses the poles of q(z), in this case at z = −1 + i and z = −1 − i. 1 1 ezt Z L −1 2 + 2s + 2 (t) = dz = res(−1 + i) + res(−1 − i) s 2πi C (z − (−1 + i))(z − (−1 − i)) ezt ezt e(−1+i)t e(−1−i)t = + = + z − (−1 − i) z − (−1 + i) 2i −2i z=−1+i z=−1−i eit − e−it = e−t = e−t sin(t) 2i Exercise [3] (20 points) Use the result of the previous exercise to solve, via the Laplace transform, the differential equation x (t) + x(t) = e−t sint, x(0) = 0. Hint: Take the Laplace transform of each side. Taking the Laplace transform of each side, and using the result from the previous exercise, L (x (t) + x(t)) = L (e−t sint) 1 sL x − x(0) + L x = s2 + 2s + 2 1 (s + 1)L x = 2 (s + 2s + 2) 1 Lx = (s + 1)(s2 + 2s + 2) Now, we use the inverse Laplace transform to determine x(t).
  • 6. 6 Let C be a sufficiently large circle that encircles the 3 poles at λ3 = −1, λ2 = −1 + i and λ3 = −1 − i. 3 1 1 ezt Z L −1 (t) = dz = ∑ res(λ j ) (s + 1)(s2 + 2s + 2) 2πi C (z + 1)(z − (−1 + i))(z − (−1 − i)) j=1 ezt ezt ezt = + + z2 + 2z + 2 (z + 1)(z − (−1 − i)) (z + 1)(z − (−1 + i)) z=−1 z=−1+i z=−1−i e−t e(−1+i)t e(−1−i)t −eit − e−it = + + = e−t 1 + = e−t (1 − cos(t)) 1 (2i)(i) (−2i)(−i) 2 Therefore, the solution to the differential equation is x(t) = e−t (1 − cos(t)).