Name__________________________

CALCULUS BC TEST #2 1ST SIX WEEKS
9/9/10

Chapter 1: Limits and Continuity

Find the limit of the following functions, if it exists. An analytical solution is expected.

             x 2 −4 x −12                                    tan θ
1)    lim                                     2)     lim
     x→ 2
       −         x +2                               θ→
                                                       π       θ
                                                         4




               x +4
3)   lim
     x →2   ( x − 2) 2                                       4)         ( x + ∆x) 2 − 4( x + ∆x ) + 1 − ( x 2 − 4 x + 1)
                                                                  lim
                                                                  ∆x →0                      ∆x




            tan 2 x                                                         x 2 −9
5)   lim
     x→0       x
                                                             6)      lim
                                                                     x→ −
                                                                       3     x −3




               3−x         x <2
7)    f ( x) =  2                    Find    lim f ( x ).
               x − 3       x >2
                                              x→2




                        1          x<0
                       
                       
8) Use        g ( x) =  1 − x 2   0 ≤ x ≤1    to evaluate the following:
                        2x −1       x >1
                       
                       



a) g(0)                                       b) g(1)

c)   lim g ( x)                               d)     lim g ( x )
     x →0                                             x →1




e) Describe the continuity of g (x)                                                         x           y
Use the tables to find:                                                                       2.9 1 / (-x10
                                                                                                          -
                                                                                             2.99    3- 100
                                                                                                       )
                                                                                            2.999    - 1000
                                                                                                3    undef
                                                                                            3.001      1000
                                                                                             3.01        100
                                                                                              3.1         10
9)    a)    lim f ( x )
                  x→ +
                    3




            b)   lim f ( x )
                 x→ −
                   3




            c) Describe the graph of f(x) at x = 3.




                                                      x          y
      10)   a)   lim f ( x )                            6.1    ( x- . 1
                                                                  10
                                                            6 ) 10 .+4
                                                                ( x 01
                    +
                 x→6
                                                       6.01
                                                            ) / ( x-
                                                      6.001 10 . 001
                 lim f ( x )                                    6)
            b)   x→ −
                   6                                      6     undef
                                                      5.999     9 . 999
            c) Describe the graph of f(x) at x=6.
                                                       5.99       9 . 99
                                                        5.9         9. 9




11)


12.

1st 2practice

  • 1.
    Name__________________________ CALCULUS BC TEST#2 1ST SIX WEEKS 9/9/10 Chapter 1: Limits and Continuity Find the limit of the following functions, if it exists. An analytical solution is expected. x 2 −4 x −12 tan θ 1) lim 2) lim x→ 2 − x +2 θ→ π θ 4 x +4 3) lim x →2 ( x − 2) 2 4) ( x + ∆x) 2 − 4( x + ∆x ) + 1 − ( x 2 − 4 x + 1) lim ∆x →0 ∆x tan 2 x x 2 −9 5) lim x→0 x 6) lim x→ − 3 x −3 3−x x <2 7) f ( x) =  2 Find lim f ( x ). x − 3 x >2 x→2  1 x<0   8) Use g ( x) =  1 − x 2 0 ≤ x ≤1 to evaluate the following:  2x −1 x >1   a) g(0) b) g(1) c) lim g ( x) d) lim g ( x ) x →0 x →1 e) Describe the continuity of g (x) x y Use the tables to find: 2.9 1 / (-x10 - 2.99 3- 100 ) 2.999 - 1000 3 undef 3.001 1000 3.01 100 3.1 10
  • 2.
    9) a) lim f ( x ) x→ + 3 b) lim f ( x ) x→ − 3 c) Describe the graph of f(x) at x = 3. x y 10) a) lim f ( x ) 6.1 ( x- . 1 10 6 ) 10 .+4 ( x 01 + x→6 6.01 ) / ( x- 6.001 10 . 001 lim f ( x ) 6) b) x→ − 6 6 undef 5.999 9 . 999 c) Describe the graph of f(x) at x=6. 5.99 9 . 99 5.9 9. 9 11) 12.